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The Stokes’ series is a small amplitude perturbation expansion for nonlinear, steadily translating waves of the form u(x - ct). 

We have developed a modification to the Stokes’ perturbation expansion to cope with the type of resonance that occurs when 
two different wavenumbers have identical phase speeds. Although the nonlinear wave is smooth and bounded at the resonance, 

the traditional Stokes’ expansion fails because of the often-encountered “small denominator” problem. The situation is 

rectified by adding the resonant harmonic into the expansion at lowest order. The coefficient of the resonant wave is determined 

at higher order. Near resonance is treated by expanding the dispersion parameter in terms of the amplitude. As an example, 

we have chosen the Korteweg de Vries equation with an additional fifth degree dispersion term. However, the method is 

applicable to the amplitude expansions of much more complicated problems, such as the double cnoidal waves of the 

Korteweg de Vries equation, the problem that motivated this study. 

1. Introduction 

A sine wave is an exact solution to most wave equations in the limit of infinitesimal amplitude. When 
the amplitude is finite, however, nonlinearity modifies the wave in two ways. First, the phase speed is a 
function of amplitude, as shown by Sir G.G. Stokes and discussed in detail by Whitham [l]. Second, the 
steadily translating wave becomes the sum of the fundamental sine wave plus its harmonics. 

Some nonlinear wave equations can be solved exactly via the inverse scattering transform, but unfortu- 
nately, this method applies to only a handful of special equations. For general nonlinear equations, 
however, one can calculate an appropriate analytic solution in the form of an asymptotic series, the 
“Stokes’ expansion” [l-3]. Both the phase speed and the dependent variable are expanded in powers of 
the amplitude parameter. 

Whenever the parameters of the problem are such that two waves of different wavenumber have the 
same nonlinear phase speed, they become harmonically resonant. In a traditional perturbation expansion, 
the denominator of a higher order term vanishes, causing the expansion to break down. Nayfeh [4] shows 
that the remedy is to add in the resonant term at lower order. Here, we apply a similar strategy to the 
Stokes’ expansion. 

Wave resonance is a real phenomenon which appears in many physical systems. We first became 
interested in the problem of resonance while studying a two-dimensional wave equation. Where we 
expected a rapid monotonic decrease in the amplitudes of the succeeding waves, we instead found that 
one of the higher harmonics was anomalously large since it was resonant with one of the lower order 
wave components. Thus, it is useful to determine a method to study such resonances. 

The remainder of this paper describes the details of the Stokes’ expansion and its modification for 
resonant cases. In Section 2, we introduce the Super Korteweg de Vries equation and apply the Stokes’ 
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perturbation expansion to it in Section 3. We show what happens when the parameters are such that a 
resonance occurs. The Stokes’ expansion is modified in Section 4 to treat resonance. In Section 5, we 
develop the Galerkin numerical solution to the problem. The generalization to “near” resonance (small 
but nonzero denominators) is dealt with in Section 6. Section 7 is used to discuss some specific observations, 
such as higher wavenumber resonance, limits of validity, and relation to double cnoidal waves. Conclusions 
are summarized in the final section. 

2. The Super Korteweg de Vries equation (SKDV) 

As a test problem, we have chosen the Korteweg de Vries equation with an additional fifth degree 
dispersion term, 

u, + uu, + pu,, - .vu,,, = 0. (2.1) 

We will refer to (2.1) as the Super Korteweg de Vries (SKDV) equation. 
The SKDV equation is a model for several physical phenomena including shallow water waves near a 

critical value of surface tension, magneto-acoustic waves propagating at an angle to an external magnetic 
field, and waves in a nonlinear LC circuit with mutual inductance between neighboring inductors [5]. 

Since (2.1) has two independent variables, one dependent variable, and two free parameters, two of its 
degrees of freedom may be fixed without loss of generality. If u is a solution to (2.1), a one-parameter 
family of new solutions may be generated via the similarity transform 

with 

u(x, t)+ A%(Ax, h4t), (2.2) 

CL+& v+ h-‘&J, 

where A is a constant. We may therefore choose p = 1 without losing generality. A second useful similarity 
transform is 

u(x, t)+ c&+x, a3t), (2.3) 

with 

where (Y is a constant. This implies that we may also choose an arbitrary period (27~) without loss of 
generality. 

We are interested in traveling wave solutions of the form u(x - ct) where c represents the phase speed 
so (2.1) becomes 

(u - c)ux + uxxx - vnxxxxx = 0, (2.4) 

where X = x - ct is the phase variable. The linearized dispersion relation is 

c=-k2-vk4. (2.5) 

The SKDV has only three polynomial-type conserved quantities, in contrast to the KDV equation (v = 0) 
which has an infinite number of conservation laws. Therefore, the SKDV is nonintegrable whereas the 
KDV can be solved via the inverse scattering transform. Although no general solution is known, exact 
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solutions of the SKDV have been found for special cases of both solitary waves and periodic cnoidal 
waves by Kano and Nakayama [6] and Yamamoto and Takizawa [7]. 

By varying the parameters p and Y, the SKDV becomes a rich source of nonlinear phenomena. Our 
study is only the most recent in a line of investigations that have used it to better understand nonintegrable 
equations. Kawahara [8] found that the fifth degree term gives the tails of the solitary wave a structure 
of damped oscillations. Gorshkov, Ostrovskii, and Papko [9] studied the interactions of solitary waves 
of the SKDV both theoretically and experimentally, showing that a bound state could be formed. Further 
interaction studies were done by Nagashima and Kawahara [lo]. Yoshimura and Watanabe [5] used the 
SKDV to study recurrence and the onset of turbulence. More recently, Boyd [2] has used a form of eq. 
(2.4) to test a variety of analytical and numerical techniques. 

For the remainder of this paper, we will work with the SKDV in the form of eq. (2.4) with p = 1, a 
period of 2~, and Y and the wave amplitude a as the only free parameters. 

For purposes of comparison, an “exact” solution was computed via a Fourier/Newton-Kantorovich 
algorithm similar to Boyd [2], but using Galerkin’s method instead of the pseudospectral. 

3. The nonresonant Stokes’ expansion 

Boyd [2] showed that for small amplitude, the periodic solutions of the SKDV may be accurately 
represented by expanding both the independent variable, U, and the phase speed, c, in terms of a, the 
coefficient of cos(X). Henceforth, we will refer to a simply as “the amplitude” although it is possible to 
define other less convenient measures of the size of the wave. Specifically, we let 

u = c” &(X), 
N-l 

c= c a’c,. 
i=l i=O 

(3.la, b) 

The lowest order solution is taken to be 

u1= cos(X), (3.2a) 

from which we find 

co=-l-v. (3.2b) 

Continuing the expansion by matching powers of a at each order, we find the ith order equation is 

tZi: -W,XXXXX + %,XxX - cOui,X = ECx), (3.3) 

where 

i-l 

F,tx)=-C (Uj-Cj)Ui_j,X. 
j=l 

At each order in a, we expand the solution, ui, in a finite Fourier cosine series and the right-hand side, 
Fi, in a sine series, 

S(X) = i Uik COS(kX), Fi(X)= i jjksin(kX). 
k=l k=l 
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Substituting into eq. (3.3), we find 

_fi 
Uik = 

vk5+k3+cok’ (3.4) 

Since for k = 1 the denominator of ui, is zero, the solvability condition is to cancel any nonlinearly forced 

wavenumber 1 components on the right-hand side, Fi. This is easily accomplished by choosing ci_i so 

that hl = 0. Then all A, are completely determined by the lower order solutions and (3.4) gives the solution 

at ith order. 

Completing the solutions to fifth order in a with the help of the REDUCE algebraic manipulation 

language, we find: 

1 

‘*= 12(5v+l) 
cos(2X), 

1 

u3=192(10~+1)(5~+1) 
cos(3X), 

(35~~+12~+1)cos(4X)-(425~~+42~+1)cos(2X) 

“= 3456(17~+1)(1250~~+875~~+225~*+25~+1) ’ 

5(650v3+245v2+28v+l) c0s(5X)-9(9870~~+1437~*+68~+1) cos(3X) 

u5=331776(26~+1)(212500~6+182500~5+63 125v4+ll 200~~+1070~*+52~+1)’ 

The corrections to the phase speeds are: 

1 
c, = c3 = cg = 0 9 

c2=24(5~+1)’ 

-35v+ 1 

c4= 13 824(1250~~+875~~+225~*+25~+1)’ 

(3.5a) 

(3.5b) 

(3%) 

(3.5d) 

(3.6a, b) 

(3.6~) 

Note, however, that when the free parameter v is chosen so that the denominator of (3.4) becomes zero 

for wavenumbers other than one, the corresponding term in the Stokes’ expansion (3.5) is infinite. This 

“small denominator” problem is the sign of a harmonic resonance. In our case, the resonance condition 

of wavenumber k is 

v= v,,(k)=-& (3.7) 

In such resonance, the phase speed of the kth wave is precisely the same as that of the lowest order 

solution for k = 1 as shown by the linearized dispersion relation, eq. (2.5). Although (3.7) is the condition 

for an exact resonance, it should be noted that there is actually an amplitude-dependent neighborhood 

about vres for which the denominator is so small that the Stokes’ expansion is invalidated. This neighborhood 

shrinks to a point for infinitesimal a, but widens like a fan in the v-a plane as a is increased. An 

improved perturbation theory that is accurate for v = v,,, will be discussed in Section 6. 

Numerical calculations (Section 5) show that the Fourier coefficients are finite and well-behaved for 

all parameter values. Only the perturbation theory is singular. However, in the numerical solution, the 

resonant wave varies as a different power of a than expected. Therefore, in the next section, we will 

specifically add it in at lower order in the expansion. 
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For instance, if Y = -&, we find a resonance of wavenumber k = 3. The denominator of (3.4) vanishes 
and the linearized phase speeds of wavenumbers 1 and 3 are both c, = -0.9. Table 1 shows the numerical 
solutions for this value of V. Comparison of the mantissas for the two amplitudes of 0.001 and 0.01 shows 
that the computation is highly accurate at these small amplitudes. Since the amplitude changed by one 
order of magnitude, the difference of the exponents between the two cases indicates the appropriate order 
in amplitude. As expected, wavenumber 2 is second order. One would expect wavenumber 3 to be third 
order. However, it is first order, i.e., O(a). The higher coefficients are all bumped up one or. more powers 
of a due to the nonlinear interaction of wavenumber 3 with the other wave components. 

The resonances need not occur at lowest order in Q. Table 2 lists the numerical Fourier coefficients for 
a wavenumber 5 resonance. Each coefficient through wavenumber 4 appears at its anticipated order. But 

Table 1 

Fourier coefficients of SKDV solution for k = 3 resonance (Y = 
-A) as computed by the Newton-Kantorovich Galerkin 

algorithm 

Wavenumber a = 0.001 a = 0.01 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
12 

1.0000~ 1o-3 1 .oooo 1 o-2 

-1.4961. lo-* -1.4961. lo+ 

-5.4488 . 1o-4 -5.4488. 10-s 

2.5947. 1O-8 2.5947. lo-’ 

-4.3377. lo-‘) -4.3377 lo-‘0 
-7.8544. lo-” -7.8544. 10-s 

3.8863 . lo-l4 3.8863 . lo-” 
-8.9930. lo-l9 -8.9930. lo-” 

-3.7151 . lo-l6 -3.7150.10-‘3 

2.3270. lo-*’ 2.3270 lo-l6 
-6.9486 ’ lo-” -6.9486. 1O-2o 
-1.3232. lo-= -1.3232. IO-‘s 

Table 2 

Numerically computed coefficients for k = 5 res- 
onance (Y = -8) for a cc 1 

Wavenumber a, 
+ 

1 1.0000. a’ 
2 0.10317. a2 
3 0.010479. a3 
4 0.0076881 . a4 
5 0.064036 . a3 
6 -0.0021623 . a4 
7 -0.000050157. a5 
8 -0.0000021046~ a6 
9 -0.0000013313~ a’ 

10 -0.0000035898 . a6 
11 0.00000016030~ a’ 
12 0.00000000082829~ a8 

‘These values were computed by comparing 
numerical coefficients for a = 0.001 with those for 

a =O.Ol, as was done in Table 1. 
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the coefficient of k = 5 is third order in a instead of the nonresonant fifth order. Coefficients for wavenumbers 
6-12 are once again of lower order than expected due to their nonlinear interaction with the resonant wave. 

The Stokes’ expansion in its present form cannot be expected to handle this type of resonance since 
the solution is computed stepwise and it is presupposed that wavenumber k does not appear until kth 
order in the amplitude series. This supposition is not true when one is sufficiently close to resonance. 

4. Resonant Stokes’ expansion 

We show here how adding in the resonant wave at the appropriate order gives us an accurate solution. 
For simplicity, we will restrict ourselves to v = v,,,(k) in this section; we will discuss variable v in Section 6. 

In Table 1, we saw that the resonant wavenumber 3 varied linearly with a for v = -&. To modify the 
Stokes’ expansion, we simply add in the wavenumber 3 solution at lowest order with a variable amplitude, 
6, which will be determined at higher order. In particular, we let 

U, = cos(X) + 6 cos(3X). (4.1) 

At higher order, we must cancel not only terms proportional to cos(X), but also terms in Fi proportional 
to cos(3X) to avoid a zero denominator in eq. (3.4). However, we now have two quantities, ci-, and b, 
which may be chosen to allow these cancellations. At second order, the right-hand side, F2 is 

F2 = -c, sin(X)+(f+ b) sin(2X) -3bc, sin(3X)+2b sin(4X)+$b2 sin(6X). (4.2) 

Thus, c, = 0 to cancel terms in both sin(X) and sin(3X), and 

u2= (d+fb) cos(2X) -&b cos(4X) -&b2 cos(6X). (4.3) 

At second order, b still appears as a variable. We must continue to third order to determine it, where the 
right-hand side becomes 

F,=[9(12b2+21b-84c,+7)sin(X)+3(-b3-756bc,+108b+63)sin(3X) 

+256(25b +9) sin(5X) - 133b2 sin(7X) -9b3 sin(9X)]/756. (4.4) 

We must eliminate terms proportional to sin(X) and sin(3X), giving two simultaneous equations to solve 
for c2 and b, 

12b2+21b-84c,+7=0, b3+756bc2-108b-63=0. (4.5a, b) 

There are three roots, which are 

b(‘) = -0 5449 . , b(‘) = -1 784 . , b@) = 0 5947 . , (4.6a) 

producing 

c:1) = -0.01048, c$” = 0.09200, ci3’ = 0.2825. (4.6b) 

The first of these roots is the one appearing in Table 1. The other two roots were also verified by the 
Newton-Kantorovich Galerkin program. All roots exist for values of the amplitude a well over 1. It is 
suspected that only one of these roots is stable, but investigation of their stability is beyond the scope of 
this present study. Here, we simply point out that the modification to the Stokes’ expansion did find the 
correct resonant amplitude and correctly predicted the existence of multiple modes. The relationship of 
these modes to the double cnoidal wave is discussed in Section 7. 
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It should be noted that this resonant amplitude, b, is correct only to lowest order. At order three, we 
happily obtained two equations in two unknowns when we used the two solvability conditions. If we view 
b as a constant, we have the problem at succeeding orders that we must again cancel two terms and will 
thus obtain two equations, but we will have only a single unknown quantity, ci-, . Therefore, b cannot 
be constant; it must also be expanded in the amplitude parameter as: 

b=b(a)=b,+ab,+a*b,+.... (4.7) 

The three roots found at third order, (4.6a) are thus solutions for bo. Continuing the expansion to 
fourth order, we find b, = c3 = 0. At fifth order, we obtain a linear relation for b2 and c, as functions of 
b. and c2. We find values for b, and c, corresponding to each of the three roots of b,. 

b;” = 5.152 . 1O-4 , b(*) 2 = 2 . 106 . 1O-3 9 bi3’ = -9.031 . 10-3. I (4.8a) 

CY) = 9.094 * 10-6, c$*’ = -6.046 . 10-3, ci3) = -6.274 . lo-*. (4.8b) 

For small amplitudes, b = b,. The values listed for b in subsequent calculations refer to the lowest order 
solution, b,. 

What about higher order resonances, such as the k = 5 resonance (v =-f) which we saw in Table 2 
appeared at third order? Normally, we would not expect to find the fifth wavenumber appearing until 
fifth order. Carrying through the above procedure, we simply add it in at third order. We carry the 
expansion through third order as a nonresonant expansion. After the unmodified Stokes’ series solution 
for third order is found, we add the additional term. Thus, aI and u2 are given by (3.2a) and (3.5a) 
respectively, but instead of (3.5b), the complete third order solution is 

1 

U3= 192(5Ov*+ 15v+ 1) 
cos(3X)+ b cos(5X). (4.9) 

The coefficient of cos(5X) does not appear at order four. At fifth order, however, the nonlinear forcing 
produces a term proportional to cos(5X) which we must set to zero simultaneously with the coefficient 

of cos(X). We have 

-256 048 128c4+ 134 017 = 0, -145 152b+9295=0. (4.10a, b) 

We find 

b = 0.06404, c, = 5.234 - 10-4. (4.1 la, b) 

These values are substantiated by the numerical solution in Table 2. One would have to progress to order 
seven to compute an improvement to b. 

Table 3 compares the zeroth order computed coefficients, bo, with the corresponding numerical 
coefficients. Note that the numerical coefficients were divided by a raised to the power of the order of 
resonance to correspond to our b (e.g. for k = 5, the Galerkin coefficient is divided by a”). Thus b is really 
a resonance factor-the ratio of the amplitude of the resonant wave to that of wavenumber 1. We see 
that the modification to the Stokes’ expansion works well in expressing the amplitude of the resonant wave. 

The remaining issue is how to determine the order of resonance without the benefit of a numerical 
solution such as was used in Tables 1 and 2. The solution is to go ahead and apply the modified Stokes’ 
expansion with b expanded as in (4.7) so that b, is at lowest order. When this method is used for the 
k = 5 (third order) resonance, we find that b, and b, are identically 0 and b, = 0.06404, in agreement with 
(4.1 la). Although this method requires carrying a couple extra variables through the calculation, it is 
effective in determining the order of resonance. 
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Comparison of amplitude factors, b computed by the resonant 

Stokes’ expansion with the “exact” Galerkin solution 

Wavenumber Order of 

resonance 

Resonant 

Stokes’ 

expansion 

Galerkin 

(a = 0.001) 

2 first 0.7071 0.7071 
-0.7071 -0.7071 

3 first -0.5449 -0.5449 

-1.784 -1.784 

0.5947 0.5947 

4 second 4.425 4.425 

5 third 0.06404 0.06404 

5. Newton-Kantorovich Gale&in solution 

We digress a bit at this point to discuss our numerical techniques. Boyd [2] describes the Newton- 

Kantorovich method for solving nonlinear differential equations. The crux of this iterative procedure is 

to express both u and c as a guess (u” and c”) plus a correction (A and 6,). 

u ?I+1 =u”+A, c*+‘= c”+6,. (S.la, b) 

Substituting into eq. (2.4), we obtain a linear equation for the corrections by neglecting terms of O(A’) 

and 0(&A), 

LA - u;S,=f, (5.2) 

where 

f= Vu~x~~x-ul;x~-(u”-c”)u;. 

The right-hand side is completely determined by the first guess. 

Next, the corrections to u”, A, are expanded in a Fourier cosine series. 

A = c” Sk cos(kX). 
k=2 

(5.3) 

Finally, the Galerkin technique is applied by multiplying (5.2) by sin(iX) and integrating from -7~ to 

7~ to produce the matrix equation: 

Hs+h&=g, (5.4) 

where 

& = (sin(iX), L cos(kX)), hi = (sin(iX), -U$), gi = (sin( iX),f(X)). 

The outer parentheses denote inner products- multiplication and integration from -IT to IT. 

There is a modest complication in applying (5.4) numerically-both the operator, L, and the right-hand 

side, f, include nonlinear terms. However, since both u” and A are expressed as Fourier cosine series, 
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the nonlinearity is easily dealt with by applying trigonometric identities which express the product of 
trigonometric functions as sums and differences of linear trigonometric functions. 

We represent this by breaking Z9ik into its linear and nonlinear components. 

Hik = & + Kik 3 (5.5) 

where 

Dkk = T( v/c5 + k3 + c”k) (5.6) 

is the linear component and Kik is the nonlinear portion defined as 

Kik = (sin(zX), (-u” sin(kX)+uk cos(kX))) (5.7) 

un is a cosine series and U: is a sine series so that the trigonometric identities may be applied term-by-term. 
We expect a full matrix for a nonlinear problem. In our case, we can think of this as being caused by 

the nonlinear interaction of the waves, or equivalently, as, the products of the trigonometric functions 
being transformed to sums and differences producing additional wavenumbers in each row. Plus, of course, 
we need an additional full column to solve for 6,. Actually, this column replaces the first column to solve 
for S1, the coefficient of cos(X), since we choose S, (equivalent to a) as the fixed parameter. The resulting 
matrix equation looks like 

K13 -*- KIN 

K23 * *a K2N 

(5.8) 

Given an adequate first guess, the matrix equation is solved for the 6’s. After applying the corrections to 
the coefficients of (5.3), the process is iterated until the corrections are sufficiently small. 

This Galerkin technique produces well-behaved solutions, even when v = v,,(k). It does not break 
down for a harmonic resonance as does the Stokes’ expansion. Each step of the Stokes’ expansion is 
equivalent to solving a Galerkin matrix equation (5.8) with Kik = 0 and including hl but not the higher 
order phase speed components, i.e., the matrix is diagonal. A resonant condition is manifested by one of 
the diagonal elements, Dkk as defined in (5.6) vanishing, which is exactly the same condition as a zero 
denominator of (3.4). For a diagonal matrix, a zero diagonal element produces a zero matrix determinant, 
precluding solution of the matrix equation. In contrast, the Galerkin matrix is not diagonal; it is a full 
matrix including the nonlinear elements, Kik. Therefore, a vanishing diagonal element, indicating reso- 
nance, does not make the matrix singular, and the system is solvable even for cases of resonance. 

However, the Galerkin method will break down for vanishing values of amplitude. Both the Kik and 
hi elements are proportional to powers of a. Therefore, a zero value of a will produce a singular matrix 
equation. (In the language of bifurcation theory, a = 0 is a “fold point” or “limit point”.) We had no 
problem, however, getting the Galerkin method to converge for values of a as small as 10F5. 

6. Expansion near a resonance 

In Section 3 we showed that the Stokes’ expansion worked well as long as we are not at a resonance 
which produces a zero denominator of (3.4). The Stokes’ expansion was modified in Section 4 to handle 
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resonance. What about cases where the denominator is not quite zero, but small enough so that the 

nonresonant Stokes’ expansion is still inaccurate? A resonance is not a discontinuous phenomenon that 

we can expect to disappear when the parameters are very slightly off the exact resonant values. There is 

a neighborhood about the exact resonance parameter for which a resonance is evident. We can further 

modify the resonant Stokes’ expansion to express this blending from resonance to nonresonance by 

expanding the resonance parameter, v, in powers of the amplitude: v = v,+ av, + a*~,+. * . . Since this is 

the expansion of a free parameter, we may then express a near resonant condition in terms of these v’s. 

When u, c, and v are all expanded in powers of a and like powers of a matched, the ith equation is 

” a . -VO"i,XXXXX + &,XxX - cOui,X = FI(X)v (6.1) 

where 

i--l 
F:(X) =- C [-“jUi_j,XXX~~+(Uj-Cj)Ui_j,X]. 

j=1 

Expanding Ui and FI in Fourier cosine and sine series respectively, the kth coefficient of Ui is 

%,k = 
A.k 

vok5 + k3 + c,k’ 

For a resonance of wavenumber 3, we let u, = cos(X) + b cos(3X), finding that v. = -8 and co = -1 - v, = 

-#. At second order we find it convenient to choose v, = 0 so that the solution is unaltered. With c1 = 0, 

the second order solution is 

u2 = ($6 +:) cos (2X) -(&b cos(4X) -&b* cos(6X). (6.3) 

So far, this solution is identical to that of Section 4. At third order, applying the solvability conditions in 

the nonlinear forcing produces two equations in the two unknowns (b and c2), but now includes the free 

parameter v2, 

12b2+21b-84c2-84v2+7=0, (6.4) 

-b3-756bc2-61 236bv,+108b+63=0. (6.5) 

Eliminating c2, we obtain a cubic for b( v,), 

k=3: b3+1.734b2+(-0.4128+554.9vz)b-0.5780=0. (6.6) 

The values of b computed by (6.6) are actually the lowest order in an expansion of b in powers of a. 

One could go to higher order to produce corrections to b. Table 4 compares the values of b as a function 

of v2 computed from equation (6.6) with the “exact” Galerkin solution for one of the roots. The b’s 

computed from the nonresonant Stokes’ expansion are also included. Note how the results of (6.6) track 

the exact solution closely for small v2 but the unmodified Stokes’ expansion is in error. As v2 increases, 

we move away from the resonance and the unmodified Stokes’ expansion becomes more accurate but the 

blended Stokes’ expansion loses accuracy. Similar results were evident for the other two roots. The behavior 

of the solution for various ranges of v2 is further explored in Section 7. 

The above procedure was repeated for resonances of wavenumbers 2-5. For the k = 2 resonance, VI 

was nonzero at second order, 

k=2: b=f(30v,*~900v:+2). (6.7) 

Figure 1 compares the value of b computed from the positive root of (6.7) with the Galerkin solution 

and the unmodified Stokes’ expansion. The higher wavenumber resonances all showed vanishing values 
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Table 4 

Comparison of resonance factors b for the first root of the k = 3 
resonance as a function of V~ for the resonant Stokes’ expansion, 

the “exact” Galerkin solution, and the nonresonant Stokes’ 

expansion 

“2 Modified 

Stokes’ 

expansion 

Exact 

Galerkin 

solution 

Nonresonant 

Stokes’ 

expansion 

0 -5.449 

1o-4 -5.671 

10-3 -9.625 

1o-2 1.083 

10-l 1.049 

10° 1.042 

10’ 1.166 
lo* -7.027 

10-l 

10-l 

10-l 

10-l 

10-r 

1o-3 

1o-4 

10-s 
- 

-5.449 ’ 10-l 

-5.671. 10-l 

-9.625 . 10-l 

1.083 . 10-r 

1.049. 1o-2 

1.041. 1o-3 

1.031. 1o-4 

9.470. 1o-6 

03 

7.654. 10’ 

9.940.10-’ 

1.043 . 10-I 

1.042. 1O-2 

1.041 . 1o-3 

1.031. 1o-4 

9.47O.lOP 

b 1,; 

Fig. 1. Amplitude b of the k = 2 resonance as a function of Y, 

The solid line is the modified Stokes’ solution, the dashed line 

is the nonresonant Stokes’ expansion, and the circles denote 

the “exact” Galerkin solution. The modified Stokes’ solution 

is quite close to the exact solution over the range shown. The 

nonresonant Stokes’ expansion is only accurate sufficiently far 

from exact resonance while the modified Stokes’ expansion 

produces good results over the entire range depicted. 

b 
10-5 - 

to-8 I I I I I 
, ‘\ 

ro-4 fo-3 to-2 to-’ 1.0 10’ ro* !03 

Fig. 2. Amplitude b of the k = 4 resonance as a function of v2. 

The nonreso%ant Stokes expansion (dashed line) is not accurate 

near resonance but tracks closer to the “exact” Galerkin sol- 

ution (circles) far from resonance. The modified Stokes’ 

expansion (solid line) does not depart from the exact solution 

until far from the resonance. 

of v, at second order. Values of b as a function of v, found at higher order are 

k=4: b= 
425 

96(90 720v2+ 1)’ 

k=5: b= 
120835 

145 152(399 168q+ 13)‘ (6.9) 

Figure 2 is similar to Fig. 1 but for k = 4. Note how closely the expansions track the Galerkin solution. 
Plots of b vs. v2 for the k = 3 and Jc = 5 resonances produce similar results. 
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7. Other issues 
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7.1. Range of validity 

All singular perturbation methods assume the expansion parameter to be small. It is useful to determine 

how large the perturbation parameter (in our case, the amplitude a) can be for the expansion to be valid. 

We may check the lowest order approximation by examining the amplitude dependence of the exact 

solution to see how far b is independent of a. 
We find that for a E [0, 11, b remained constant to at least two decimal places except for the k = 4 

resonance. 

Figure 3 compares the Newton-Kantorovich Galerkin solution (circles) for the first root of k = 3 with 

the modified Stokes’ expansion solution to lowest order (solid line) and to second order (dashed line) 

for the first of the three roots. Note the very narrow scale of the ordinate axis. The lowest order modified 

Stokes’ solution is, if course, independent of amplitude. The second order solution tracks the exact solution 

very closely, even for values of a close to 1 where we expect the expansion to begin to break down. 

In Fig. 4, we see the k = 5 resonance plotted to higher amplitude. The exact solution for b is nearly 

independent of a until approximately a = 1, and then changes rapidly. Similar plots of the other resonances 

showed the same conclusion: little change in the exact value of b until a = 1, then a significant change. 

This is to say that if b were expanded in powers of a, (b, = 0) we would find lb,) < 1. 

We thus conclude that the modified Stokes’ expansion yields solutions accurate to a couple of decimal 

places until a becomes close to 1. We can change our definition of a, of course, but the cutoff must change 

as the definition changes. Better accuracy may be achieved by computing b to higher order. However, as 

for any asymptotic expansion, the series must fail for large values of the perturbation parameter, no matter 

what order we take. 

- 0.54442 
r 

t 
- 0.54450 

1 

- 0.544581 

b 
- 0.54488 

-0.54482 

-0.544906 ’ ’ ’ ’ I ’ ’ ’ ’ ’ ’ 1 
0.18 0.32 0.48 0.84 0.80 0.98 

a 

.0300 ’ ’ ’ ’ ’ ’ ’ n ’ ’ I ’ 
0.80 1.60 2.40 3.20 4.00 4.80 

a 

Fig. 3. Amplitude b of the first root of the k = 3 resonance as Fig. 4. Amplitude b of the k = 5 resonance as a function of the 

a function of the amplitude a. The “exact” Galerkin solution base amplitude a. The “exact” Galerkin solution (solid line) 

(circles) is compared with the results of the modified Stokes’ is compared to the zeroth order Stokes’ expansion (dashed 

expansion-the solid line is the zeroth order solution and the line). They agree quite well until a = 1, then the exact solution 

dashed line is the solution to second order. Even the lowest changes rapidly. Higher order solutions are therefore necessary 

order solution was accurate to three significant figures over the for larger values of the amplitude. The unmodified Stokes’ 

range shown here. The second order solution, 6, + a’b,, tracks expansion is not included since it produces infinite b 

the Galerkin solution closely. for Y = Y,,,. 

.078- 

.070 - 

.062- 

b 
.054- 

.046- 

,038 - 
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7.2. Higher wavenumber resonances 

95 

So far we have looked for resonances of higher wavenumbers with wavenumber one only. However, a 
resonance may occur between any two waves. The criteria is that their phase speeds be equal. For the 
SKDV equation, we prescribed an exact resonance with wavenumber one by setting the variable parameter, 
Y equal to v,,,(k) as determined by (3.7). To compute the value of v for which any two wavenumbers k, 
and kz are resonant, we set their phase speeds (described by eq. (2.5)) equal to find 

(7.1) 

Certain higher order resonances, however, are merely similarity transforms of resonances with wave- 
number one. For instance, it is irrelevant to search for the resonance of wavenumber 4 with 2 because 
setting (Y = 2 in (2.3) shows that it is the same as a resonance of wavenumbers 2 and 1 with v multiplied 
by one-fourth and u resealed by a factor of four. 

The resonance we will investigate here is k2 = 3 with k, = 2 which implies Y&Z, 3) = -&. The resonance 
is first order, so the lowest order solution becomes: 

u1 = cos(2X) + b cos(3X), c0 = -2.769. 

Second order produces: 

(7.2a, b) 

u2 = -[65526 cos(X) +936 cos(4X) +4686 cos(5X) +91 b2 cos(6X)]/24 192, (7.3a) 

c, = 0. (7.3b) 

At third order, we determine the lowest order solution for b. We find two roots, 

b = b, = kO.9370, c2 = -0.1467. (7.4a, b) 

For a,= 0.001 (where a2 is the amplitude of the k, =2 wave), (7.4) agreed with the pseudospectral 
Newton-Kantorovich solution to three significant figures. To maintain accuracy for higher amplitudes, 
one may easily proceed to higher order to obtain corrections to b. As in Section 6, it is easy to extend 
the method from Y = vres to a small neighborhood about Y_. 

In a similar manner, the resonance of any two other wavenumbers could be investigated. 

7.3. Resonance as limiting case of double cnoidal wave 

A normal Stokes’ expansion produces periodic cnoidal wave solutions to a nonlinear wave equation. 
For many nonlinear equations, double cnoidal wave solutions also exist. These double cnoidal waves are 
merely two distinct waves of differing amplitude and phase speed on each period interval. In the limit of 
large amplitude, these two waves interact like solitary waves with peaks of two different heights within 
each period. 

For a double cnoidal wave, the lowest order Stokes’ expansion is 

u, = a[cos(X)+ b cos( Y)], (7.5) 

where X and Y are phase variables of the two waves, 

X=x-qt, Y = k(x - c2t). (7.6a, b) 

In general, the phase speeds of the two waves, cr and c2 are independent. In the special case where cr = c2, 
we have a single parameter family and the solution collapses to a single cnoidal wave. 
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In comparison, we also have two distinct dominant components in the modified Stokes’ expansion 

model for resonance waves. The resonance factor b functions the same as for the double cnoidal wave 

expansion in (7.5). Indeed, the modified Stokes’ series for the single cnoidal wave is a special case of 

that for the double cnoidal wave-special in that c, = cl. 

Thus we may consider wave resonance for the ordinary cnoidal wave to be the limiting case of double 

cnoidal waves with precisely equal phase speeds. 

7.4. Multiple roots and double cnoidal waves 

We have seen that for some resonances, multiple roots of the resonance factor b were found in the 

modified Stokes’ expansion and verified numerically. Specifically, for an exact resonance of wavenumber 

3 with wavenumber 1, three real roots were identified. More can be learned about these multiple roots 

.by examining them in the neighborhood of the resonance. To do this, we use the results of the modified 

Stokes’ expansion in Section 6 with v expanded in powers of a, which produce eq. (6.6). We are interested 

in results away from the exact resonance, that is, (va( >> 0. We examine (6.6) for two separate cases. 

Case 1. For Ibl<< 1, an order of magnitude analysis reduces eq. (6.6) to 

554.9bv2 -0.5780 - 0, 

producing 

b 1.042 - 1O-3 

v2 

This is the root which appears in Table 4. 

(7.7) 

(7.8) 

Case 2. For (bl>> 1, eq. (6.6) instead reduces to 

b3 + 5549bv, - 0, 

producing the other two roots for b: 

(7.9) 

b--h/w. (7.10) 

There are two possible subcases for eq. (7.10). The first is v2 >> 0, for which the roots b are both imaginary 

and no physical solution is possible. The second subcase is vz<< 0, for which two real roots exist. 

The above cases and subcases are shown pictorially in Fig. 5, which is a graph of the three roots for 

the k = 3 resonance for (a) v,> 0, and (b) v2 < 0. In both plots, the root of Case 1 is seen as the apparently 

straight line at about b = 0 for sufficiently large IvJ. The other two roots are real in both graphs for small 

(v21, but the two plots demonstrate the differences in the subcases for Case 2. For v2> 0 (Fig. 5(a)), the 

roots reach a bifurcation point at v2 = 1.054 - 10w3, beyond which they no longer represent a physical 

solution. The situation is different, however, when v2 < 0 (Fig. 5(b)) and the values of the two additional 

real roots are approximated by (7.10). 

The remaining issue is to attach a meaning to the two additional roots of the k = 3 resonance for v2 < 0. 

In the previous subsection, we saw that a double cnoidal wave collapses to a resonance of a single cnoidal 

wave when cl = c2. We may thus interpret the additional two roots in terms of a double cnoidal wave of 

the SKDV consisting of wavenumbers 1 and 3. When the SKDV, eq. (2.1), with p = 1 is written in terms 
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Fig. 5. Amplitude b of all three roots of the k = 3 resonance as a function of v2 as computed by the Galerkin algorithm: (a) For 

v,>O; (b) For v,<O. 

of the two phase variables (7.6a and b), it becomes 

-~(uxxxxx +5kuxxxxv+ 10k2uxxxvv+ 10k3uxxvvv+5k4uxvuvu+ k%yvyy) 

+u~,+3ku,,,+3k2uxv~+k3u,,-c,u~-kc~uy+u(u~+kuy)=0. (7.11) 

Expanding u, c,, c2, and Y all in powers of a; taking the lowest order solution as (7.5); and using k = 3 

produces phase speeds to second order of 

c,=-l-(v,+a*v,)+a* 
(620a2u2-12b*-7) 

12(550a2v2 - 7) ’ 

c2=-9-81(vo+u2v,)+a2 
(-620a2b2v2+17280u2v2+7b2-75b) 

756(710u2v2-7) 

(7.12) 

(7.13) 

By setting cr = c2 for y. = -A (the value for resonance of wavenumbers 1 and 3) and assuming [al<< 1, we 

obtain a relation for b: 

b - *d-%4.!h,+ 0.413. (7.14) 

Eq. (7.14) is the same as (7.10) for large negative v2 when the wavenumber 3 component is large in 

comparison to wavenumber 1. Therefore, the two additional modes of the k = 3 resonance represent the 

collapse of the double cnoidal wave to a single cnoidal wave. 

The third root, the only one which exists for large positive v2, may be the limit of a double cnoidal 

wave too, but we have not examined this question. 

8. Conclusions 

Here, we have made a rather simple modification to the Stokes’ expansion to study small amplitude 

waves even when resonance occurs. 
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The resonant wave is simply added in at the order of the observed resonance. For a lowest order 

resonance, this is equivalent to taking the lowest order approximation to be u, = a[cos(X) + b cos( kX)] 

where k is the wavenumber of the resonant wave and b is the resonance factor. Since the resonant wave 

interacts nonlinearly with other components, applying solvability conditions at higher order determines 

b and the higher order corrections to the phase speed. 

When there is resonance, we must expand the resonance factor, b(u) as well as u(X) and the phase 

speed in powers of the amplitude a. In the neighborhood of the resonance, where the phase speeds of 

the two waves are nearly equal, we may expand the resonance parameter (in our case, v) in powers of 

the amplitude as well, expressing the blending from resonance to nonresonance. When all these variables 

are expanded in powers of a, the algebraic computations can become quite complicated. Luckily, algebraic 

manipulation languages such as REDUCE make the work less formidable. As shown here, low order 

solutions give reasonable accuracy for moderate amplitude. 

This study has used a simple one-dimensional model as a testbed. Work in progress will extend the 

technique to compute double cnoidal waves of the Korteweg de Vries and Regularized Long Wave 

equations, which are solutions of two-dimensional eigenvalue problems. 
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