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Abntmct-A nonlinear theory of plates and shells for thick and thin models accounting for consistent and 
inconsistent kinematical approximations is presented in general curvilinear tensorial form. The in- 
cremental shell governing equations for the finite element formulation of boundary value problems for 
finite strains and large deformations are derived employing the incremental virtual work principle deiined 
in a Lagrangian description. 

Sample problems are investigated numerically employing a hyperekxstic material model for which both 
general and speci6c forms are introduced. Finite element solutions of thick and thin plate and shell 
problems are obtained by employing lower and higher order displacement models and are compared with 
results deduced from application of the finite element method based on exact equations of continuum 
mechanics. 

It is found that the kinematical theories, which are based on one general formulation, adequately predict 
displacements and normal stresses. However, major discrepancies arise in the shear stress distributions 
at finite strains when exact and lower order theories are compared. Finally, it is noted that the consistent 
kinematical theory described by a cubic variation of in-plane and transverse displacements through the 
thickness coordinate yields the most accurate and meaningful solutions. Furthermore, it is shown that 
higher order kinematical theories become significant in the analysis of thick structures. 

1. INTRODUCI’ION 

The formulation of an adequate kinematical approxi- 
mation has become one of the main issues in the field 
of plate and shell theories. During recent years, the 
research trend in shell theories has shown an in- 
creasing interest in constructing a higher order theory 
accounting for a nonlinear variation of the displace- 
ments through the shell thickness. In addition, a great 
deal of emphasis has been focussed upon shear stress 
effect for plate problems [ 1,2]. 

The significance of higher order terms in the expan- 
sion of the displacement field has been discussed by 
Hilderbrand et al. [3], Nelson and Larch [4] and Lo 
et al. [l] in the context of linear elasticity. On the 
other hand, the importance of a nonlinear kin- 
ematical approximation has been evaluated for finite 
strain and large deformation analyses of thin and 
thick plates and shells by the present author [5]. 

Despite the development of higher order theories, 
very little effort is being made to investigate plate and 
shell structures undergoing large displacements and 
finite strains. Indeed, the motivation of such non- 
linear types of research stems from the need to 
adequately analyse problems involving complex geo- 
metrical deformation and material behavior of shell- 
like bodies. Such applications concern, for instance, 
press formability of sheet metals which has recently 
found a growing interest in industry. 

A nonlinear plate and shell theory accounting for 
consistent and inconsistent kinematical approxi- 

mations is presented herein. The terminologies con- 
sistent and inconsistent approximations are employed 
to describe respectively equal and unequal distribu- 
tions of in-plane and transverse displacements 
through the thickness. Lower and progressively 
higher order theories are investigated. The lowest and 
highest order theories are described respectively by 
linear and cubic variations of the displacements 
through the shell thickness coordinate. 

The theory which incorporates finite strains and 
large deformations is derived in a suitable form for 
the 6nite element method. Moreover, the constitutive 
model utilized is valid for a wide class of materials. 
And, in particular, hyperelastic material laws are of 
interest in the present work. 

Subsequently the kinematical approximation is 
introduced in a general form. Then, starting from the 
three-dimensional vjrtual work based on Lagrangian 
description, the shell resultant stresses and equi- 
librium equations accounting for consistent and in- 
consistent displacement fields are derived. Also the 
resultant stresses and governing equations are ob- 
tained in incremental format. Next, an energy density 
function for nonlinear compressible materials is 
presented in both general and specific forms. 

The development of the incremental virtual prin- 
ciple which constitutes the basis for the derivation of 
the governing equations for a finite element formu- 
lation of shell boundary value problems is then given. 
Numerical results for semi-infinite thick and thin 
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plates subjected to distributed and eccentric loads are 
provided to demonstrate the effectiveness of the 
various orders of kinematical approximations 
presented. Furthermore, semi-infinite thick and thin 
shallow shells subjected to a prescribed transverse 
displacement at mid-thickness are investigated. Finite 
element models taking into account the exact elas- 
ticity equations are employed to compare results 
obtained by implementing the theory presented 
herein. 

The outcome shows that the shell theory yields 
accurate displacements and normal stresses (the in- 
plane ones) in comparison with the exact finite ele- 
ment solutions for plates. Besides, it is found that the 
higher order terms in the displacement approxi- 
mation become significant in adequately predicting 
the shear stresses. We may finally note that the 
consistent theory accounting for four generalized 
displacements predicts more accurately the displace- 
ments, and normal and shear stresses when compared 
to the other kinematical theories in relation to the 
exact theory. Moreover, the displacements obtained 
at mid-arc of the thick and thin shallow shell prob- 
lems show that the higher order theories are kine- 
matically in good agreement, while the formulation 
based on a linear variation of the in-plane and 
transverse displacements though the thickness coor- 
dinate exhibits noticeable discrepancies. 

initial configuration described by the vector P may 
not necessarily be the undeformed configuration. 

The counterparts of eqn (1) defined in the reference 
surface where e3 = 0 may be written as 

r(C”, t) = WY) + WY, t), 

where, by definition, 

tit”, t) = tit=, 0, t) 

R(P) = WC”, 0) 

ucea,~)=u(r2,0,f). 

Let the expressions g (gi) and Gi (C’) be re- 
spectively the covariant (contravariant) base vectors 
of an arbitrary point in the deformed and un- 
deformed configurations and let their duals in the 
reference surface be respectively ai (a’) and A, (A’), 
then in view of (1) and (2) we have 

gi = ap/ayi 

ci = aplay) (3) 

and 

a, = arlaym 

A, = aRlay= 

a3 = a, xa, . _ 
2. SHELL THEORY 

A3 = A’ = A, xAJ(A, XA2 1. (4) 
A shell is defined as a three-dimensional body R 

embedded in a Euclidean 3-space whose upper aR+ Employing eqns (3) and (4), the metric tensors and 
and lower dR_ surface boundaries are respectively at their conjugates may be written as 
a distance h, and h, measured normal to the reference gi’gj=gij 

surface F and whose lateral surface boundary XJ,, is 
generated by the normal N,. The sum of h, and hz 

p’.g’=+j 

constitutes the thickness of the shell. Gi.Gj= Gij 

Geometrical relations and kinematics 
G’.Gj=G” (5) 

Let the material points in n be identified by a set 
of convected curvilinear coordinate system r ’ (here 
and subsequently Latin indices range from 1 to 3 and 
Greek indices from 1 to 2 unless stated otherwise), 
where [C ‘, 5 2] .sr and the thickness variable r ‘E [II,, 
h2], then at time t in the deformed state the position 
vector p of a generic point characterizing a particle is 
transformed with respect to a fixed origin to 

PG’V 5*, t3. t) = PG’, 5*, e3> + W’, P, r3, t), (1) 

where P denotes the position vector relative to the 
same fixed origin at the initial configuration and U is 
the displacement vector of the same material point.7 
For simplicity the position vector P is defined at time 
I = 0; however, it should be emphasized that the 

and 

ai*aj=aij 

ai.a.i= aii 

A,.A,= A, 

A’.&= A”. 
(6) 

The scalar product of the covariant and the con- 
travariant base vectors of a typical particle in the 
current and reference configurations yields the iden- 
tity tensor, viz. 

and 

t For convenience we shall use lower case to refer to 
a,.a = s;.i 

quantities defined in the current configuration and upper 
case for the ones in the initial configuration. A,*Aj= &.i. (7) 
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Fig. 1. Shell body. 

In shell theory and for practical purposes, the 
position vector P is often linearized with respect to 
the thickness coordinate c’. Thus, material points of 
the shell in the initial configuration can, in general 
and without loss of generality, be described by 

P=R+r3A3, (8) 

where A, (Fig. 1) is the normal vector to the reference 
surface of a particle in the initial configuration and 
is defined in (4). Physically, eqn (8) specifies that shell 
fibers are initially straight and normal to the reference 
surface. It should be mentioned that for a shell 
surface identified with an initial curvature the unit 
vector A, changes in direction. Thus, differentiating 
A, with respect to the surface coordinates the follow- 
ing relation results: 

A,., = - 4#, (9) 

where B,@ is the second fundamental form of the 
reference surface in the initial state. It is noteworthy 
that in differential geometry A, is called the first 
fundamental form defined with respect to the initial 
state. In the case of a flat plate-a special subcase of 
a shell-the base vector A, of a material point is 
constant in direction. Now, employing the results in 
(3) through (9), an important tensor often called 
‘shiftor’ or ‘translator’ relating the base vectors at an 
arbitrary point in R to the base vectors defined in r 
is deduced, viz. 

Of particular interest in the development of the 
shell equations is the determinant of the shiftor which 

can be expressed in terms of the reference surface 
mean curvature H and Gaussian curvature B as 

p = de+:) = 1 - 2Ht3 + (t3)*B 

H=fB: 

B = det(B;). (11) 

Hence a volume element in the initial configuration 
may be defined in terms of a reference surface element 
as 

where 

(12) 

dr = A”*dt’dt* 

and by definition 

(13) 

G”* = G,xG,.G, = /iA”* 

A = det(AaB). 

The vector fields p, P and U in (1), expressed in 
reference to the initial configuration, are approxi- 
mated here in the general form as 

WC”, e*, r3, t) 

= U(5”, t) + 5 L(?) WV, r), (14) 
r-1 

where d, and U, represent respectively the surface 
director and generalized displacement vectors whilef, 
designates the rth degree Legendre polynomial 
defined in the domain [h,,h,]. In eqns (14) the 
reference surface (i.e. r3 = 0) position and displace- 
ment vectors respectively r(r”, t) and U(C”. t) intro- 
duced also in (2) are associated with the xeroth degree 
Legendre polynomial (i.e. the subscript r = 0). 

The idea of expanding the displacement com- 
ponents in series of powers of c appears to have been 
originated in 1890 by Basset [6] who applied this 
concept to derive a linearized isotropic shell theory. 
An extended investigation of shell theories in linear 
analysis may be found in the works of Hilderbrand 
et al. [3] and Naghdi [A. Moreover, a generalization 
of shell theories in the context of nonlinear analysis 
was investigated later by Naghdi [8] and Yokoo and 
Matsunaga [9]. 

In the present work, the subscript in bold face (r) 
associated with the director and generalized displace- 
ment vectors indicates an implicit dependency on the 
direction of these surface vectors. Henceforth, in 
explicit form we may write 
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For instance, the components of the generalized 
displacements in the summation terms in (14) can be 
expressed as 

(15) 
r,o = 1 

Thus, the subscripts (i) associated with the italic r 
should be specified in agreement with the directions 
defined by the surface displacement vectors. Now, in 
(15) the limiting integer values R(,), Ru, and &, are 
not necessarily equal. The choice of the order merely 
depends on the kinematical approximation favored 
(note that in general 4,) = Z$)). As an example 
consider a consistent second order theory, where the 
displacement components in rectangular Cartesian 
system are given, in view of (14) and (15), by 

0, = u, +A UI, +h u12 

02 = u2 +A u2, +h u22 

~s=~,+.h~,,+fi~,,~ (16) 

which clearly shows that for this choice of kine- 
matical approximation RuJ = R(,, = J+,, = 2 (see 
Meroueh [5]). 

Some authors have also considered the case where 
r(,, and rC2) are given the values 1 and 3 and rcn = 0 and 
2 (see [lo, 1 l]), thus neglecting in-plane modes of 
deformations. Consequently, divers types of theories 
may be adopted and implemented by appropriately 
defining the values and the ranges of rCo. 

Lo et al. [l] refer to various theories as level (N) 
theories. In this paper, different levels of the theory 
will be distinguished by the notation 

R =mn, (17) 

where m specifies the order of approximation of the 
in-plane displacements keeping in mind that 
RI, = R2) and n describes the degree of approxi- 
mation of the transverse displacement. 

Resultant forces and governing equations 

There exist a number of ways to derive the re- 
sultant stresses and equilibrium equations for plates 
and shells based on various conjugate stress and 
strain tensors. In particular, one may adopt a Eu- 
lerian or a Lagrangian description. In the former case 
all field quantities and equations are derived with 
respect to the current configuration and in the latter 
formulation all static and kinematical variables are 
referred to the initial configuration. It is noted that 
in numerical work the Lagrangian description is 

t The scalar product of two tensors de&d by K..U is a 
scalar, for instance in the rectangular Cartesian system 
K..IJ = $U,. 
$ By abuse of terminology, we call resultant stresses w 

and III, although in the literature m, is often called the stress 
couple. 

characterized as a total Lagrangian formulation 
when the initial configuration is defined at time t = 0 
and is referred to as the updated Lagrangian formu- 
lation when the field quantities are determined based 
on the last calculated configuration. The choice 
of formulation merely depends on the problems 
considered. 

In continuum mechanics, for a three-dimensional 
solid acted upon by a surface traction vector f and 
body force B, the exact statement of the principle of 
virtual work based on Lagrangian description is 

s n 
T+dn=~$%Jd/L + jnB.cWdn (18) 

where dG as defined in (12) and dA are volume and 
surface elements at the initial configuration 
(an = Xl+ UaR_ C.kQ)t. It is recalled that the ini- 
tial configuration may not necessarily be character- 
ized at time t = 0. The quantity T = G,T’ is the first 
nonsymmetric Piola-Kirchhoff stress tensor and 
F = giGi is the deformation gradient. The internal 
virtual work in (18) may also be postulated in terms 
of the symmetric Piola-Kirchhoff stress tensor and its 
conjugate strain tensor. 

Starting from the three-dimensional virtual work 
formulation given in (18) we may obtain the shell 
resultant stresses and applied forces. Indeed, using 
(lo)-(14) and the left hand side term in (18) we arrive 
at 

S[ 5 WW,, + 5 m.SU, df, r r-0 r-1 1 
where the resultant stresses are defined ass 

m= h2f;T3pdr3, 
s hl 

(19) 

(20) 

where r=0,1,2,. . . , R. By (“) we designate the 
partial derivative with respect to the convected coor- 
dinates ca, whereas ( )’ indicates the derivative with 
respect to c3. The covariant derivative of field vari- 
ables follows the usual rules defined in tensor analysis 

(see [121). 
Similarly, noting that t = N-T the terms including 

the traction vector and body force in (18) become 

II 

Z[S r-o r 
(q,+B,)*WdF +/~rt,.Wdr], (21) 

in which the following have been introduced 

e=f,tw/ at Vrl,h21 
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(22) 
shells with arbitrary geometry and for a wide class of 
materials can be cast in the form 

with A*liI,+k,+&=rh, on r 

and where dr in (21) is the element boundary of r and 
GM are simply contravariant components of the 
metric tensor in the initial state of the shell previously 
defined in eqn (5). The quantity W is introduced to 
take into account a variable thickness [El]. 

For later purposes, we may also record the quan- 
tities in (20) and (22) in component form as follows: 

mi,,, = s h2f;,,,‘I’3.Aip de’ 
hl 

and 

t:,, = s h* Cf,,,,t.A’N=v,& dC3 
hl 

B:,,, = 1 h2 Cf,,,B*A’d dt3, (23) 
hl 

where r(,,=O, 1,2 ,..., q,,. 
It is important to realize that in the results just 

outlined, the appearance of a repeated index referring 
to the subscripts (i) associated with the subscript r of 
the Legendre polynomials and the superscripts i of 
the basis vectors does not imply summation. 

Equating (19) and (21) and employing the Gauss 
theorem, the shell equilibrium equations and bound- 
ary conditions for consistent and inconsistent kine- 
matical formulations expressed in general form are 

A*M,+B,+a=m, on r 

M;v =t, on ar, (24) 

where 0 < r 6 R and A = A” a/aca. Because these 
equations are based on a Lagrangian description, the 
incremental form need not be rederived, and these 
may be obtained by simply superposing with a dot 
( ’ ) (representing time-like derivatives) all quantities 
subscripted with r in (24). It is also noted that the 
partial derivative as well as the covariant derivative 
of a vector or tensor follow the standard rules defined 
in tensor analysis. Thus, the incremental equations of 

l@.v=t, on ar. 

For future reference we present the components 
of the equilibrium equations (24) in the following 
manner: 

Af:;,,a - M$, Bt + B&, + q&, = m&, 

a3 a8 3 3_ 3 
Mq,,la + Mr,p,B.s + 4(,, + qr<a, - rn,,, on r 

AC&v, = f!@, M”3v =t’ 
‘(3) @. ,,,, on ar, 

wherero=0,1r2 ,..., handro,=0,1,2 ,..., I$,,. 
A vertical stroke denotes covariant differentiation 
with respect to the undeformed metric and Bar are the 
components of the curvature tensor defined by the 
relation (9). We note that although the equations in 
component form are cumbersome, their inter- 
pretation is rather straightforward. 

Constitutive relations for shells 

What follows is the introduction of the incremental 
relations entering in the formulation of shell struc- 
tures for which the initial geometry is known. 

The incremental constitutive equations presented 
subsequently are valid for a wide class of in- 
crementally linear materials and can be expressed in 
general three-dimensional form as 

+=H:R, (25) 

where H represents the three-dimensional incremen- 
tal moduli. For finite strains and large deformations, 
these moduli are in general dependent on the current 
stresses, displacements and history parameters. In 
component form the fourth order tensor is defined as 

H = H’~G,g,&G,. (26) 

Thus, in view of (20), (25) and (26) the incremental 
stress resultants can be cast in the form 

while the two-dimensional incremental moduli for the 
shell are given explicitly by 

s 

hz 
HN ~uPl~1 = f;,,,&,(A’G’* .H. .G’Ak)p dr’ (28) 

hI 
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noteworthy that for the plane strain case the elastic 
potential proposed is strongly elliptic (for an account 
on the ellipticity conditions see Knowles and 
Sternberg [13]). This latter condition is imposed 
merely to avoid instabilities which may add 
difficulties in evaluating the kinematical behavior of 
the sample problems considered in further parts of 
this paper. 

Although we have considered only nonlinear elas- 
tic materials in this work it should be emphasized that 
the aforementioned theory is not limited to such 
constitutive models. Indeed, shell problems including 
hypoelastic and elasto-plastic constitutive laws are 
also being investigated by the author. 

The existence of a strain energy density W offers 
the possibility of reconstructing the resultant stresses 
directly from a quantity defined as the surface density 
function which may be obtained by appropriately 
integrating the material function with respect to the 
thickness, namely: 

@, = &.4JA’ 

e.3 = C%*WA’, (29) 

wherer(,,=0,1,2 ,..., ~oands,,,=0,1,2,...,S,,,. 

It is clear that eqns (27) are linearly dependent on 
the increment of the generalized vectors d,. The 
advantage of this feature will be obvious in the 
numerical formulation. 

Constitutive equations for nonlinear compressible 
materials 

Of special interest in this paper are compressible 
hyperelastic materials for which a strain energy func- 
tion exists. A general form of an energy density 
function for rubber-like materials is presented, 
namely: 

w = M(J) + c &,(I - 3)“(ZZ - 3)“(J - 1)” (30) 
“,U.W 

A<0 and ,liy++(J)=-co, 
_ 

where Z, ZZ and J* are the invariants of the 
Cauchy-Green deformation tensor. The latter condi- 
tions simply insure a singular behavior of the mate- 
rial. Indeed, we see that the function Win (30) meets 
the growth condition which requires an infinite 
amount of energy to reduce the body volume to zero. 
In practice, to avoid mechanical types of failures, one 
may also apply the ellipticity conditions outlined by 
Knowles and Stemberg [13] to a specific material 
model. 

Rivlin [14] has previously proposed an energy 
density function of the strain invariants composed of 
the terms under the summation sign on the right hand 
side of (30). Similar types of energy functions have 
also been advanced by Ogden [15] who has shown 
that particular cases of (30) predict quite well experi- 
mental applications on rubber-like materials. A for- 
mal and practical study of nonlinear elastic materials 
is of interest here. For an extensive development on 
the mathematical requirements of the existence, con- 
vexity and ellipticity conditions the reader is referred 
to the works of Ball [16], Oden and Kikuchi [17] and 
Oden [18]. 

In what follows a specific strain energy function 
derived from (30) for finite plane deformations of a 
compressible hyperelastic solid is proposed, namely: 

W=(X+p)-(lnJ+J-Z)+(ji/2)(1-2J), (31) 

in which 1 and ji designate respectively the Lame and 
shear modulus constants of elasticity. The function in 
(31) is constructed in such a form as to yield the 
two-dimensional elastic moduli upon linearization. It 
can be further shown that in the limit as J-P 1 and 
Z + 2 the function W and the stresses are zero. It is 

(32) 

where p given in (11) accounts for the shell curvature. 
Thus the variational principle may be formulated by 
employing the following definitions of the resultant 
stresses 

aY 
mr=G’ (33) 

Taking into account the parameters introduced in 
(29), the relations in (33) can be cast as follows: 

ay 
W=ae,. 

av 
m,=Ky (34) 

where r=O, 1,2,. . . , R. Similarly, these quantities 
may be expressed in component form as 

av jp =- 
‘0) de,+ 

ay 
ml,,, = - 

Wc,,3i 
(35) 

and r,,=O,1,2 ,..., 4,. 
Finally, for a nonlinear elastic material structure 

which admits the existence of an energy density 
function W, the shell incremental moduli are given by 

H”k’ a*y 
‘(I)‘(‘) = ae,fj,,ae,,,' (36) 
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These are of course formulated on the basis of 
various orders of kinematical approximations. It 
should be mentioned that the parameters in (29) and 
(33)-(35) are the generalized strain-like quantities 
and do not represent strain components. 

3. FINITE ELEMENT ANALYSIS FOR 
PLATES AND SHRLLS 

Fotmulation 

Rome problem models including geometrical and 
physical nonlinear&s are examined employing the 
finite element method. In particular, semi-infinite 
plate and shell problems are investigated. Never- 
theless, we shall present the finite element equations 
in general form valid for shell and plate analyses. The 
interest here is focussed on studying displacement, 
stress and strain behaviors resulting from consistent 
and inconsistent kinematical approximations. Lower 
and progressively higher order generalized displace- 
ments arc accounted for in the theory to investigate 
plate and shell problems. The lower order theories 
wili be specified by R = 11, 12, 13 and 31 and the 
higher order ones by R = 33,32,23 and 22 (we recall 
that in regard to the expression R = mrr, we have 
t(,, = tc2) = 0, 1, . . ., m and rC3) = 0, 1, . . . , n). 

It is emphasized that the choice of analysing semi- 
infinite structures is rather due to their geometrical 
simplicity. 

As in any nonlinear calculation, the loading and 
unloading (elastic-plastic) behavior is in general asso- 
ciated with an incremental process. Hence, in what 
follows we establish the incremental equations uti- 
lized in the numerical scheme. In particular a linear 
incremental method is adopted throughout the anal- 
ysis. Furthermore, the incremental punters of the 
principle of virtual work defined by (19) and (21), to 
lowest order, is employed for plate and shell prob- 
lems 

= ?0 Jr]{4 + R>*W,,l dr, (37) 

while the generalized strain-like quantities are given 

by 

@)m = (AI*U,,,)A’ 

and 

ts,, = (A, *U,)A’. (38) 

It is noteworthy that the shell finite element may 
also be formulated employing the concept of degener- 
ate shell theory (for account see Hughes and Liu [19] 
and Bathe and Bolourchi [20]), 

Now, the derivation of the incremental counterpart 
of the shell traction and body forces given in eqns 
(22) is straightforward. The expression for the in- 
crement of the variational principle in terms of the 
two-dimensional incremental moduli is obtained by 
substituting (27) into (37) and taking into account 
(28)-(29) and (38), we arrive at 

(39) 

It is important to realize that these equations are 
linearly dependent on the generalized incremental 
displacements. Furthermore, consistent and inconsis- 
tent kinematical approximations of any order can be 
applied to the formulation by properly truncating the 
series keeping in mind that the choice of &, Rcl and 
& depends on the particular theory adopted. 

Subsequently, the increment of the variational 
principle (39) shall form the basis for the finite 
element analysis of the problems. The variational 
relation expressed in (39) may be easily adopted to 
linear analyses. For small strain and small defor- 
mation theory the incremental shell moduli ~~~,~ 
reduce to the well-known two-dimensional elastic 
stiffness matrix of the shell structure. 

The finite element formulation is characterized by 
a total Lagrangian description. The shell region r is 
discretized into finite number of elements and the 
~~~b~urn equations resulting from (39) are applied 
to each element. The complete shell structure equi- 
librium is assumed established by the requirement of 
nodal equilibrium and compatibility of the displace- 
ment method. 

In each of the finite elements, the generalized 
~spla~ments are represented in terms of the nodal 
generalized displacements by 

U,=N,U: r-0,1,2 ,..., R, (40) 

where N, is the interpolation model corresponding to 
the u-node in the element. And the virtual generalized 
displa~ments are expressed in terms of the nodal 
virtual generalized displacements simply as 

6U, = N&J;. (41) 

The isoparametric concept is adopted and hence 
the shell curvilinear coordinates as well as the gener- 
alized displacements @I)-(41) are discretized with the 
same shape functions. Moreover, only Co continuity 
is required given that the field variable is continuous 
at element interfaces. In component form the virtual 
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displacements in (41) are 

where r,,)=O,1,2 ,..., &,. 
Substituting (42) into (38) and the results into (39), 

the element matrix equation takes the following form 

K’U=Q’, (43) 

where K’ designates the element incremental stiffness 
matrix and U and Q’ denote the incremental gener- 
alized element displacement and force vectors. Upon 
assembly of eqns (43) over each element the global 
matrix equation is obtained. 

Results 

The accuracy of the plate finite element solutions 
employing the various aforementioned shell theories 
will be assessed by direct comparison with the finite 
element results based on the exact equations of a 
continuum, whereas for the shell models, the sol- 
utions obtained from the various kinematical theories 
are compared considering that the displacement 
theory involving R = 33 exhibits high accuracy as is 
shown in [S]. A linear incremental solution technique 
for the nonlinear problems is achieved by considering 
a number of incremental load steps. And the true 
equilibrium state resulting from the internal stresses 
and external loads is reached by applying an iterative 
process at each incremental load step using a simple 
Newton-Raphson method. 

For simplicity semi-infinite plates and shells are 
investigated throughout this work. Thus, the plain 
strain condition is imposed perpendicular to the 
plane of deformation. The lack of literature on the 
present type of nonlinear analysis leads us to formu- 
late and utilize the exact two-dimensional plate finite 
element counterpart of the same problems. There- 
fore, two computer programs for plates are devel- 
oped: 

Fig. 2. 

the first one is based on the shell theory 

(al (b) 

Plate geometry and loading. (a) Distributed trans- 
verse and shear loads. (b) Eccentric load. 

outlined previously and in the second program the 
exact elasticity equations are employed to formulate 
the plate finite element models. 

A variable array defining the order of the displace- 
ment approximation in (40) is generated in the pro- 
gram so as to allow an effective implementation of 
consistent and inconsistent kinematical assumptions. 

A simple iterative/incremental Newton-Raphson 
scheme is utilized. The Euclidean norm of the in- 
cremental displacements less than E (a small value) 
times the current displacement norm constitutes the 
condition of convergency. The interpolation model is 
characterized by two-node isoparametric elements. 
The integration through the thickness is performed 
using the exact Gauss integration rule in accordance 
with the degree of approximation governed by the 
kinematical theory assumed. Noteworthy is that the 
shell theory was checked by testing a pure bending 
problem including finite strains and large defor- 
mations for which an exact analytical solution was 
derived [5]. 

Example problems exhibiting behaviors that are of 
interest herein are presented, and in particular thick 
and thin plates subjected to a combined transverse 
and shear loading and a thick plate subjected to an 
eccentric load as depicted in Fig. 2 are examined. 
Also, thick and thin shallow shells acted upon by a 
prescribed displacement at mid-arc and at Z = 0 are 
analysed. 

Plate under combined transverse and shear loads 

At first, let us consider the plate subjected to 
uniformly distributed transverse and linearly distrib- 
uted shear loads at the top surface (Fig. 2(a)). The 
choice of these loads is motivated by the need to 
study structural behavior involving significant ben- 
ding and shear effects as, for instance, in sheet metal 
forming. The constitutive equation is dictated by the 
material model given in (31). The plate is fully 
clamped at the edges and the properties of the 
material are characterized by a Poisson’s ratio of 0.24 
and a length to thickness ratio of L/2h = 8, where 
H = h and h, = h2 = h. 

Due to symmetry only half of the plate is modeled. 
The number of elements is chosen so that no addi- 
tional significant accuracy is obtained by an increase 
of the mesh. Indeed, the interest here is on establish- 
ing the accuracy of the different kinematical assump- 
tions. 

(a) Thick plate. The load is incremented with 
constant dimensionless values and nine increments 
are employed to reach a maximum of 200% strain 
level in the thick case. Within each load incremental 
step four iterations are needed to reach the exact 
equilibrium state. 

The load versus total displacements are plotted in 
Fig. 3 and the kinematical models are shown in the 
legend of the graph. In Table 1, numerical results for 
the values of the total transverse displacements at 
levels where the displacements are of the order of 1.2 
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PLATE DISPLACEMENTS Al X=l/Z.D 
Dirtrlbuted Tmnrvwr~ and Shear Loads 
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Fig. 3. Load vs displacement at Z/h = - 1. 
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times h and at maximum deformation (W = 3.5h) are 
presented. It is interesting to note that the discrep- 
ancies between the exact and the approximate models 
decrease considerably as we approach the large defor- 
mation range. Now, the displacements modeled with 
R = 33 and R = 22 underestimate the exact by a 
percentage of 0.09% whereas W for R = 23 over- 
estimates the exact by 0.09%. In the lower defor- 
mation range the approximate theory accounting for 
R = 33 predicts the best accuracy as shown in Table 
1. It should be mentioned that overall the displace- 
ments in all cases reveal good agreements with the 
exact solution. 

In Fig. 4, the undeformed and deformed 
configurations of the exact and the R = 22 models are 
shown. As is expected, the differences increase to- 
wards the boundary conditions at X = 0.0. Note- 
worthy is that the deformed configurations represent 
the displacements when strains are of the order of 
200%. 

Table 1. Displacement values at intermediate and maximum loads in plates under 
transverse and shear loads 

Displacement 
Exact Approximate R = mn theory 
theory 33 22 11 23 32 12 13 31 

At W=l.U 1.20 1.20 1.15 1.11 1.15 1.18 1.17 1.17 1.13 
At W=3.2/1 3.26 3.26 3.26 3.29 3.26 3.24 3.28 3.29 3.24 

Fig. 4. Plate subjected to transverse and shear loads. 
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Sexmd PIOLA-KIRCHHOFF STRESS 
Dlrtrlbuted Tunrvws~ and Show Loads 

Distributions at X=L/&D at ZDOX MAX STRAIN 

Fig. 5. Normal stress vs thickness (distributed loads). 

The axial and shear components of the second 
Piola-Kirchhoff stresses are also plotted in Figs 5-8. 
The components associated with the kinematics for 
which m > 1 and n > 1 (in the relation R = mn) are 
graphed separately from the lower order ones in- 
volving m c 1 or n Q 1. It is clear that the lower order 
theories exhibit higher differences when compared 
with the higher order and exact theories. For the axial 
stresses (Figs 5 and 6) the comparison is good and a 
minimum order of 2% error is obtained between the 
R = 33 curve and the exact one. The shear stress 
curves depicted in Figs 7 and 8 show more acute 
differences between the lower order theories and the 
exact theory. 

It should be mentioned that in Fig. 7 the curves 
obtained from the consistent displacement theories 
expose better approximations in relation to the exact 
case than the inconsistent ones. It is of interest to 

Second PIOLA-KIRCHHOFF STRESS 
Distributed Transverse and Shear Loads 

Distributions at X=L/4.0 at 200X MAX STRAIN 

-0.3 
-1.) -‘ -a* $4 0.1 1 

Fig. 6. Normal stress vs thickness (distributed loads). 

Second PIOLA-KIRCHHOFF STRESS 
DktrlbtM i+anrvwu and Shmr Loads 

Dirtrlbutlons at X+/4.0 at 200% MAX STRAIN 

Fig. 7. Shear stress vs thickness (distributed loads). 

note that the R = 23 curve exhibits more desirable 
accuracy than the R = 32 curve in this case. 

(b) Thin plate. In this case, the maximum strain 
reached is of the order of 220% and the highest 
displacements obtained are equal to about four times 
the total thickness of the plate. Note that length to 
thickness ratio is equal to 40.0/2.0 and v = 0.24. 

As shown in Fig. 9, the theories accounting 
for R = 33, R = 22, R = 11, R 3: 23 and R32 are 
analysed. Differences appear mainly in the case of 
R = 11. 

Figure 10 shows the undeformed and deformed 
shapes of the exact and R = 22 cases. It can be seen 
that, as in the thick model, the kinematical differences 
appear mainly near the wall where full clamping is 
implemented. 

The stress curves (Figs 11 and 12) represent the 
plotting of the normal and the shear stresses at 

Second PIOLA-KIRCHHOFF STRESS 
Distributed Transverse and Shear Loads 

Distributions at X=L/4.0 at 200X MAX STRAIN 

-0.n 1 
-1.1 -I -0.3 ZiH 0.) I , 

Fig. 8. Shear stress vs thickness (distributed loads). 
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Fig. 9. Load vs displacement at Z/h = - I. 
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Dlstributlms ot X=L,kO at 220% MAX STRAIN 

Fig. 11. Normal stress vs thickness (distributed loads). 

quarter length. Clearly the stresses for R = 11 exhibit 
high discrepancies. Moreover, aside from the R = 33 
model, the higher order theory where R = 32 demon- 
strates better remits as can be seen in Fig. 11. 

Plate under eccentric loading 

In this example an eccentric load (Fig. 2(b)) is 
applied at x = L to study the kinematical behavior of 
the plate in the postbuckling range. The plate is 
clamped at X = 0 and free at the other end. The 
properties of the structural element are represented 
by a Poisson’s ratio v = 0.3 and length L/2h = 8. The 
total load is subdivided into 1X increments to reach 

the maximum displacement depicted in Figs 13 and 
14. Initially seven iterations per load incremental step 
are needed for convergency but as we approach the 
region where reversal of transverse displacement 
occurs, as shown in Fig. 13, the load increment is 
decreased by a factor of half and four iterations per 
increment satisfied the convergency criterion. 

The calculations reveal that the total axial displace- 
ment at X = L reaches a value of seven times the totai 
thickness (i.e. 2h) of the plate. Table 2 shows values 
obtained for the axial and transverse displacements 
calculated from the exact and the approximate 
theories at Z/h = + 1. 

Fig. 10. Plate subjected to transverse and shear loads. 

C.A.S. 29114 
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Fig. 12, Shear stress vs thickness (distributed loads). 

PLATE DISPLACEMENTS AT X=L 
Ccncmkatsd Load 

Thick Case 
, EXACT --- l 
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Fig. 13. Load vs displacement at Z/h = + I. 

It is important to refer to the displacement curves 
depicted in Figs 13 and 14 in addition to Table 2 
when evaluating the kinematical behavior of the 
lower order theories. 

The normal stress S” and normal strains E,, and 
Ezz evaluated at midspan are also plotted in Figs 
15-20. The curves show a good agreement between 
the theories for S” and E,, whereas when Ez2 is 
considered the discrepancies increase moderately for 
the R = 22, 23, 32 curves. The latter observation is 
partly due the fact that the strain Eu involves domi- 
nantly derivatives with respect to the thickness vari- 
able. In Table 3 the percentage of error between the 

PLATE DISPLAWNTS AT X=L 
conc*ntmt.d LOod 

@.W 
0 1 -W/N: -U/H at Z:+H/2 ‘* ” 

Fig. 14. Load vs displacement at Z/h = + 1. 

exact and approximate theories for the stresses and 
strains at maximum load is given. It is interesting to 
note that improved results are acquired when the 
R = 23 theory is employed in comparison with the 
R = 22 and R = 32 kinematical assumptions. 

Table 3 shows that the occurrence of low per- 
centage of error predicted by some of the lower order 
theories is simply accidental and is in accordance with 
the location of the data reading. Thus, the stress and 
strain curves should be considered for a proper 
interpretation of the results given in Table 3. 

Shallow shell subjected to a prescribed displacement 

Thick and thin shallow shells are analysed employ- 

Fig. 15. Normal stress vs thickness (concentrated load). 

Table 2. Displacement values at maximum load in plates under concentrated load 

Exact Approximate R = mn theory 
Diisplacement theory 33 22 23 32 II 12 13 31 

u 14.42 14.17 13.86 14;00 14.04 13.55 13.75 14.02 13.96 
w 5.22 5.26 5.36 5.29 5.32 5.67 5.35 5.20 5.46 
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Fig. 16. Normal stress vs thickness (conoentnitwi Ioad). 
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17. Normal stress vs thickness (concentrated load). 
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Fig. 18. Normal stress vs thi&ness (concentrated load), 

Distribution8 at X=l&G at 90% MAX STRAIN 

Fig. 19. Norma1 stress vs thickness (concentrated foad). 

ing the shell theory proposed. The structural elements 
are fully clamped at the ends and a transverse in- 
cremental ~sp~~nt is prescribed at mid-arc and 
at Z = 0.0. The radius to thickness ratio is in the 
thick case equal to 4.75830.793 and in the thin case 
equal ta 4758/O. 11895. Poisson’s ratio is specified in 
both cases by v = 0.3. 

These sample problems are examined by applying 
only the shell theory and in particular the kinematical 
mod&consistofR =33,R =2&R = IlandR =23 
(see .Figs 21 and 22). In Fig. 21 the displacements 
generated from the thick shell model show that the 
R = 23 theory is in excellent agreement with the 
R = 33 one at large displacements, while the R = 11 
formulation underestimates, at any stage, the higher 
order theories. Now, the displacements in Fig. 22 
indicate that only the R = I1 them-y underestimates 
the R = 33 case for thin shells. _ 

LAGRANGIAN STRAIN 

Dist&utiom %$%tL MAX STRAtN 

Fig. 20. Normal stress vs thickness (concentrated bad). 
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Table 3. Percent of stress and strain error at maximum load in plates under concentrated load 

Theory R = mn % error 
33 22 11 23 32 12 13 31 

S” at Z/h = - 1 ’ 0 -3.4 -17.4 -27.5 -4.3 -12.6 -8.3 +7.8 -19.2 
E,, at Z/h = 1.0 -2.4 -6.5 0.0 -3.2 -5.3 -10.7 -5.7 -1.2 
E,, at Z/h = 1.0 -2.4 -15.9 +70.2 +4.3 -11.4 +18.0 31.4 +3.3 

The undeformed and deformed shell configurations 
are shown in Figs 23 and 24 for, respectively, the 
thick and thin cases. In both models the cases with 
R = 33 and R = 22 are superposed. Differences 
appear to be prominent mainly at fibers along the 
thickness for the thick element, while the deformed 
configurations based on the R = 33 and R = 22 
theories demonstrate graphically perfect super- 
position in the thin case. Such observations are 
evident at and away from the boundaries. It is 
interesting to realize that the discrepancies in the 
thick shell models are characterized by a degree of 
kinematical nonlinearity with respect to the thickness 
parameter. 

The results indicate clearly that a higher order 
theory becomes significant in the analysis of thick 
structural elements. 

4. CONCLUSIONS 

A nonlinear shell theory for finite strains and large 

SHELL DISPLACEMENTS AT MID-ARC SHELL DISPLACEMENTS AT MID-ARC 
Prescribed Displacement at Z=O.O Prescribed Displacement at 20.0 

Fig. 21. Load vs displacement at Z/h = 1. 

deformations is presented. The theory is derived in a 
suitable form to allow consistent and inconsistent as 
well as lower and higher order kinematical approxi- 
mations. The constitutive equation is modeled em- 
ploying a hyperelastic material function for which 
both general and specific cases are presented. 

The increment of the principle of virtual work for 
shells used as a basis to formulate the finite element 
governing equations is derived accounting for 
material and geometrical nonlinearities. 

Various orders of kinematical theories are em- 
ployed to analyse thick and thin semi-infinite plates 
subjected first to combined transverse and shear loads 
and then to an eccentric load. Moreover, the kine- 
matical behavior of thick and thin shells subjected to 
a prescribed transverse displacement are investigated. 
In particular, higher order theories for which R = 33, 
32, 23, 22 (where, for example, R = 32 means 3 + 1 
and 2 + 1 generalized displacements are kept in the 
expansion of in-plane and transverse displacements 
respectively) and lower order ones with R = 11, 12, 

Fig. 22. Load vs displacement at Z/h = I. 
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Fig. 23. Shell subjected to a transverse displacement. 

13 and 31 are implements to study the kinematical 
behavior of the problems considered. 

The finite element solutions based on exact elas- 
ticity equations serve as a basis of comparison for the 
plate problems. Thus, the results obtained for the 
displacements show that excellent agreements exist 
between exact and approximate theories at high load 
levels. The stresses and strains obtained from the 

higher order theories for the plate problems are also 
found to be in good agreement with the exact solu- 
tions. It is worth mentioning that among the theories 
presented, the consistent kinematical theory with four 
generalized displacements (i.e. R = 33) reveals the 
best behavior in all aspects. Moreover, the inconsis- 
tent theory for which R = 23 predicts, at times, more 
accurately the stresses, strains and displacements as a 
whole in comparison with the R = 32 kinematical 
theory with respect to the exact theory and the 
R = 33 formulation at tinite strain and large defer- ., 
mation ranges; however, the opposite is also valid in 
some cases. It is interesting to observe that the R = 11 
kinematical theory exhibits high discrepancies with 
the exact models in all cases. 

Finally, it is found that as a thicker model is 
considered a higher order kinematical theory 
becomes si~ifi~nt in plate and shell analyses. 
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