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Abstract--This paper studies the effects of an axial magnetic field on the flow and heat transfer 
about a porous rotating disk. Using modern quasi-Newton and globally convergent homotopy 
methods, numerical solutions are obtained for a wide range of magnetic field strengths and injection 
and suction velocities. Results are presented graphically in terms of three nondimensional 
parameters. There is excellent agreement with previous work and asymptotic formulas. 

1. INTRODUCTION 

Von Karman [1] first noted that the Navier-Stokes equations governing the flow past a 
rotating disk reduced to self similar form. He also obtained an approximate solution for 
that problem. Later, Cochran [2] obtained a more accurate solution to the same problem. 
The effects of  an axial magnetic field on the flow and heat transfer about a rotating disk 
were studied by Sparrow and Cess [3], and asymptotic solutions for the flow were obtained 
by Kakutani [4]. Beginning with the pioneering work of  Prandtl in 1904 on mass addition 
or removal at a bounding surface, there has been continuing interest due to the wide range 
of applications. Some important examples are boundary layer control, cooling of  turbine 
blades, and cooling the skins of  high speed aircraft. Another significant application is to 
model the boundary layer on the face of  a crystal grown by the Czochralski method with 
an axial magnetic field (Hurle and Series [5]). Considerable work has been done recently 
on the effects of  uniform suction or injection on the flow field induced by a rotating disk. 
Stuart [6] obtained a series solution for strong suction at the surface of  a rotating disk. 
Sparrow and Gregg [7] developed numerical solutions for the rotating disk problem with 
suction or injection at the disk surface. Kuiken [8] examined the case of  strong injection 
at the disk surface. Ackroyd [9] obtained uniformly valid series solutions for suction 
velocities and low values of  injection velocities. 

In this paper we describe the effects of  an axial magnetic field and suction (or injection) 
on the flow and heat transfer about an insulated rotating disk. Pande [10] obtained a series 
solution for this problem when there is strong suction and a weak magnetic field. We will 
present results on the flow and heat transfer for a wider range of injection velocities and 
suction velocities combined with a wide range of  magnetic field strengths. When the disk 
is conducting, adding a magnetic field promotes the motion of the fluid, whereas if the disk 
is insulated, adding a magnetic field decreases the flow velocities. Conducting disk 
problems belong to the class discussed by Lin [11], and are not considered here. 

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

Let the disk lie in the plane z = 0 and the space z/> 0 be occupied by a homogeneous, 
incompressible, electrically conducting viscous fluid. The geometry of  the problem being 
studied is shown in Fig. 1. Here (r, 0, z) are cylindrical coordinates, B0 is the externally 
applied magnetic field in the z direction, co is the angular velocity of  the disk, 7',. is the 
uniform temperature at the disk surface and T~ is the ambient fluid temperature, the basic 
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Fig. 1. C o o r d i n a t e  system. 

equations for a nonconducting disk are modified to include the Lorenz force J x /~(Jbe ing  
the current density)• 

In cylindrical coordinates (r, 0, z), assuming angular symmetry, the equations of motion 
are [3]: 

] ( u )  0 v 2 ~p - ~  
p u ~ + w  u . . . . .  r dr+t~ V 2u -auBo, (1) 

u v  
~ v B  2 , + ~) - p[(u~ w~)v+-F]=.(V~v -v  (2) 

[ '~ ~z] @ +~V2w' (3) p U~r+W w=-gz 

and the continuity equation is 

~r(rU ) + ~z(rW ) = 0, (4) 

where u, v and w are the velocity components in the r, 0, z directions respectively, p is the 
density of the fluid, /~ is the coefficient of viscosity, p is the pressure, a is the electrical 
conductivity and: 

2 82 1 c9 c92 
v = ~ + 7  Tr +~z --~" 

Further, equations (1)-(3) assume that the induced electric field is negligible compared with 
the imposed magnetic field. This assumption is valid for flow at low magnetic Prandtl 
number as shown by Rossow [12] and Neuringer and McIlroy [13]. The energy equation 
is: 

U~r+W~z = uV2T, (5) 

in which T is the static temperature and ~ is the thermal diffusivity. The boundary 
conditions of the problem are: u0 } 

u - * 0  

v = r o )  
at z = 0 ,  v-*0  as z - , m ,  (6) 

w = - - n  w 
T--, T~ 

T=Tw 
where Hw > 0 corresponds to suction and Hw < 0 corresponds to injection. 
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3. REDUCTION TO ORDINARY DIFFERENTIAL EQUATIONS 

Following Von Karman [1], we introduce the following relations: 

u = rooF(t~), v = rwG(t / ) ,  w = (coo) I/2 n(t /) ,  

P(r/) = p O ( t l ) =  T -  T°~ (w '~  j/2 . (7) t / =  z \ v /  

Also, from equation (4) we have: 

H'(t/) (8) 
F(t/) = 2 

Substituting equations (7) and (8) into equations (1)-(5) yields: 

(n ' )  2 
H "  = H H "  - - -  + m H '  + 2G 2, (9a) 

2 

G" = H G '  - H ' G  + raG, (9b) 

0 "  = P r H O ' ,  (1 O) 

where prime denotes differentiation with respect to t/. The Prandtl number Pr and the 
magnetic parameter m are given by: 

v 
P r = - ,  m = - - ,  (11) 

ot po~ 

where 0 = #/p  is the kinematic coefficient of viscosity. 
in equation (7), the new boundary conditions from 

H ' = O  } H" 
H = - A  
G = I  at t/=O, G 

O = 1  O 

In terms of the new variables defined 
equation (6) are: 

t --, 0 as 

-~0 
t/-~ oo, (12) 

where A is the nondimensional velocity normal to the disk surface. A > 0 represents 
suction while A < 0 represents injection. Observe that equation (10) decouples from 
equations (ga) and (9b), and that once H(t/) has been determined, O (t/) can be computed 
by solving a relatively easy 1-D two-point boundary value problem. 

4. NUMERICAL METHOD 

Following the format in Heruska [14], define: 

(H"(O)~ (13) 
x = \ c ' ( o ) /  

Let H(t/; X), G(t/; X) be the solution of the initial value problem given by equation (9) 
with the initial conditions (12) and (13). The original two point boundary value problem 
described by equations (9) and (12) is numerically equivalent to solving the nonlinear 
system of equations: 

F ( X )  = ( H ' ( z  ;X)'~ = 0, (14) 
\ G ( , ; X ) J  

where ¢ is chosen large enough so that I H ( t / ) - n ( z ) l  <* and IG(t / ) -G(¢) l  < e  for 
z < t /<  oo and a given, > 0. Equation (14) is derived from the boundary conditions (12). 
Algorithms for solving nonlinear systems like (14) typically require partial derivatives such 
as aH'/OXk. We can write the functions needed as: 

, 0H(t/) 0H'(t/) an"(t/) aG(t/) OG'(t/)'~ 
Y =  H( t / ) ,H ' ( t / ) ,  H"(t/) ,  G(t/), G"tt/), -~kk ' "~kk ' OXk ' OX, ' OXk ] '  
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for k = 1 and k = 2. Now H'(q; X), G(r/; X) and their partial derivatives can be calculated 
from the first order system: 

r ;=  r2 

r~ 
Y;= Y~ Y 3 - - f  + mY2 + 2Y 2 

r',= r, 

Y;= Y I Y s -  YEY4+mY4 

Y~ = Y7 (15a) 

Y~= ]I8 

Y~= Y~ Ys+ Y~Y~- Y2Y~+4YgY~+mY~ 

Y9 = Y,o 

Y;o = Y, Y,o + Y~ Y~- Y~ Y , -  Yg Y~ + mY9 

Y(0) = ( - A ,  0, X,, 1, X2, 0, 0, 6,k, 0, (~2k) (15b) 

where 6~ is the Kronecker delta. By solving this system twice, for k = 1 and k = 2, the 
Jacobian matrix DF(X) of F(X) can be calculated. 

Two methods were utilized to solve this problem, a quasi-Newton method and a globally 
convergent homotopy method. The quasi-Newton method used was HYBRJ from the 
MINPACK subroutine package by Argonne National Laboratory [15]. These quasi- 
Newton routines are robust and quite efficient. However, they fail at times by converging 
to local minima. 

The other method, a globally convergent homotopy method developed by Watson [16], 
does not suffer from the convergence problems of the quasi-Newton method. However, 
this method requires considerably more computation time. Details about the algorithm 
and some of its applications can be found in [16-19]. 

The strategy for these problems was to try to solve them first using the inexpensive 
quasi-Newton method. If  that fails, then use the expensive, but guaranteed convergent, 
homotopy algorithm. 

As previously mentioned, these methods use some partial derivatives with respect to the 
initial conditions. For some values of m and A, these partials increase drastically as q 
increases. This problem was worse in cases where m was large and/or there was large 
injection velocity. Large values of suction velocity tended to make the problem better 
conditioned. Therefore, results with large m and/or large injection velocities are not as 
accurate as other results. This also limited the range of injection velocities and m values 
for which solutions could be computed. Such instability is an inherent problem with 
shooting methods, the type used. Other methods, such as finite difference, collocation, and 
finite element, will be considered in future work. 

5. DISCUSSION 

The flow depends on two parameters, .4 and m, while the temperature depends on Pr, 
A and m. Graphs are presented to gain some insight into the effects of these parameters. 
For m = 0 we have the case of  a rotating disk in the absence of a magnetic field while A = 0 
corresponds to the case of an impermeable rotating disk. The effects of A and m on radial 
velocity (F(r/)) are shown in Fig. 2. From these figures, we see that the radial velocity 
increases monotonically with increased q, until a maximum is reached, and then decreases 
monotonically to 0 as q--, ~ .  For an imposed magnetic field, as the value of suction 
decreases (Fig. 2a), the maximum for radial velocity moves away from the disk and the 
magnitude of the radial velocity increases. Increasing the value for injection moves the 
maximum away from the disk and increases the maximum radial velocity. For an imposed 
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Fig. 2. Radial velocity F. (a) Effect of A, m ~-0.5, A = -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0 
(top to bottom). (b) Effect of m, A = 1.0, m ~ 0.0, 0.1, 0.5, 1.0, 2.0, 3.0, 4.0 (top to bottom). 

suction value, as the strength of  the magnetic field increases (Fig. 2b), the maximum radial 
velocity moves towards the disk and the magnitude of  this maximum decreases. From these 
two figures, it can be inferred that for large values of  m, there is a considerable reduction 
in the 3-D character of  radial velocity (i.e. the flow becomes 2-D). 

Figure 3 shows the behavior of  the tangential velocity (G(r/)) for various values of  A 
and m. For an imposed magnetic field, as suction increases (Fig. 3a), the boundary layer 
thickness increases, whereas an opposite effect is observed for increasing injection values. 
Figures 3(b) and (c) show the effects of  various magnetic fields on the tangential velocity 
for A = 1.0 and - 1.0. In both cases an increase in magnetic field has the same effect as 
that of  increasing suction, namely thinning of  the boundary layer. 

Figure 4(a) shows that with an imposed magnetic field, for higher values of  suction the 
axial velocity is almost constant with respect to r/. When A is - 1.0, there is still some inflow 



(a) ~[ . 0 

.8 

.6 
C 

.4 

.2 

(b) ~.  0 

O 

(c) 

. 8  

. 6  

. 4  

. 2  

1 . o  

~ 2 

\ 

\ 

~~. . .~ . . . .= , . .~ , . . . .~_~  
S 4 5 6 7 8 9 ~@ "~J 

n 

~.~ 
\% 

" " ~  i i  i i i  . 

2 3 4 
q 

% 

G 

2 , ' \  • ' \  \ ~ k  .... 

\ - .  ~ - -~ . . .  

n 
Fig. 3. Tangential velocity G. (a) Effect o f  A, m =0.5,  A = -3 .0 ,  -2 .0 ,  -1 .0 ,  0.0, 1.0, 2.0, 3.0, 
4.0 (top to bottom). (b) Effect o f m  with suction, A ~- 1.0, m = 0.0, 0.1, 0.5, 1.0, 2.0, 3.0, 4.0 (top 
to bottom. (c) Effect o f m  with injection, d = - 1.0, m = 0.0, 0.I, 0.5, 1.0, 2.0, 3.0 (top to bottom). 
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Fig. 4. Axial velocity H. (a) Effect of A, m =0.5 ,  A = - 3 . 0 ,  - 2 .0 ,  - I . 0 ,  0.0, 1.0, 2.0, 3.0, 4.0 
(top to bottom). (b) Effect of  m, A = 1.0, m =4.0 ,  3.0, 2.0, 1.0, 0.5, 0.1, 0.0 (top to bottom). 
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in the axial direction at infinity. But, as the injection value increase ( - 2 ,  - 3 ) ,  there is no 
inflow at all. We can understand this better by referring to Table 1. For m = 0.1 there is 
inflow towards the disk in the axial direction from infinity ( H ( ~ )  is negative) for all values 
of injection. For m = 0.5 there is no inflow from infinity (H(oo) is positive) when the 
injection value has a larger magnitude than - 2.0. The effect of m on H can be seen from 
Fig. 8 and Table 1. For small values of suction, as the strength of the magnetic field 
increases, the axial flow towards the disk decreases. For larger values of suction (A > 2.0), 
the increase in magnetic field has less effect on H ( ~ ) .  For small injection values 
(A = - 0 . 1 ) ,  H ( ~ )  becomes positive when m =4.0; for A = - 0 . 5  onwards, H ( ~ )  
becomes positive for smaller values of m. 

The torque (M) required to overcome the shear on one side of the disk is given by: 

2M 
n r 4  p (oo~3) l / 2  - - G ' ( O ) ,  (16) 
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of  A and m on torque (G'(O)), axial velocity at infinity (H(ov)) ,  displacement thickness (6*) 
m o m e n t u m  thickness (6~') 

and 

A m H"(O) G'(O) H ( ~ )  6*(eg/o) °/2 6~(co/o) n:2 

0A 0.1 -0.94970031 -0.70556753 -0.80728 1.1888 0.56923 
0.1 0.5 -0.75941834 -0.89547865 -0.51409 1.0308 0.50523 
0.1 1.0 -0.61001359 - 1,1179265 -0.33015 0.86351 0.42797 
0.1 2.0 -0.45588843 -1.4921873 -0.20045 0.66254 0.33033 
0.1 4.0 -0.32862435 -2.0606763 -0.13849 0.48375 0.24168 
0.5 0.1 -0.87549736 -0.90682387 -0.95198 1.0012 0.48878 
0.5 0.5 -0.69933108 -1.1086137 -0.76389 0.86247 0,42644 
0.5 1.0 -0.56725454 -1.3356967 -0.65346 0.73299 0.36456 
0.5 2.0 -0.43130013 -1.7095775 -0.57285 0.58047 0.28968 
0.5 4.0 -0.31608844 -2.2746559 -0.53043 0.43859 0.21917 
1.0 0.1 -0.73348580 -1.2305623 -1.2269 0.78192 0.38723 
1.0 0.5 -0.60106000 -1.4357645 -1.1410 0.68282 0.33973 
1.0 1.0 -0.50208794 -1.6570758 - 1.0898 0.59708 0.29775 
1.0 2.0 -0.39513646 -2.0184735 -1.0481 0.49318 0.24631 
1.0 4.0 -0.29803228 -2.5693250 -1.0225 0.38858 0.19421 
2.0 0.1 -0.46957149 -2.0834812 -2.0536 0.47727 0.23830 
2.0 0.5 -0.42074136 -2.2490111 -2.0413 0.44289 0.22123 
2.0 1.0 -0.37743805 -2.4313615 -2.0318 0.41017 0.20494 
2.0 2.0 -0.32102279 -2.7423451 -2.0213 0,36407 0.18197 
2.0 4.0 -0.25887694 -3.2413392 -2.0123 0.30828 0.15411 
3.0 0.1 -0.32592346 -3.0445028 -3.0175 0.32804 0.16397 
3.0 0.5 -0.30740555 - 3.1678635 -3.0153 0.31534 0.15763 
3.0 1.0 -0.28844315 -3,3105664 --3.0131 0.30180 0.15087 
3.0 2.0 --0.25964084 --3,5671320 --3.0102 0.28017 0.14006 
3.0 4.0 -0.22194538 -4,0034081 --3.0069 0.24970 0.12484 
4.0 0.1 --0.24719169 --4,0298749 --4.0076 0.24804 0.12401 
4.0 0.5 --0.23870361 --4.1258146 -4.0070 0.24229 0.12113 
4.0 1.0 --0.22932912 --4.2400206 --4.0064 0.23577 0.11788 
4.0 2.0 --0.21370296 --4.4526459 --4.0054 0.22452 0.11226 
4.0 4.0 --0.19061247 --4.8306252 -4.0041 0.20698 0.10348 
5.0 0.1 -0.19864430 - 5.0225310 --5.0039 0.19907 0.099530 
5.0 0.5 --0.19413489 -5.1005006 --5.0037 0.19603 0.098010 
5.0 1.0 -0.18894688 -5.1948049 --5.0035 0.19247 0.096232 
5.0 2.0 -0.17980709 - 5.3741780 - 5.0031 0.18605 0.093023 
5.0 4.0 -0.16516062 - 5.7030098 -5.0025 0.17533 0.087663 
0.0 0.1 -0.96096043 -0.66211964 -0.77929 1.2363 0.58847 
0.0 0.5 -0.77026519 -0.84872385 -0.45888 1.0755 0.52567 
0.0 1.0 -0.61851596 - 1.0690534 -0.25331 0,89896 0.44505 
0.0 2.0 -0.46111824 - 1.4420940 -0.10858 0.68477 0.34131 
0.0 4.0 -0.33140610 -2.0102667 -0.040775 0.49577 0.24767 

-0.1 0.1 -0.96927842 -0.62109785 -0.75394 1.2839 0.60729 
-0 .1  0.5 -0.77923730 -0.80441572 --0.40639 1,1210 0.54628 
-0.1 1.0 -0.62598320 -1.0223583 -0.17809 0,93547 0.46256 
-0.1 2.0 -0.46591593 - 1.3937003 -0.017229 0.70768 0.35262 
-0.1 4.0 -0.33402817 - 1.9610945 0.056832 0,50807 0.25381 
-0 .5  0.1 -0.97523069 -0.47860730 -0.67365 1,4764 0.67862 
-0 .5  0.5 -0.79618949 -0.64963677 -0.22074 1.3106 0.62967 
--0.5 1.0 -0.64470132 -0.85634630 0.10702 1.0912 0.53644 
-0 .5  2.0 -0.48031949 - 1.2168142 0.34294 0.80587 0.40097 
-0 .5  4.0 -0.34276608 - 1.7766978 0.44613 0.56019 0.27976 
- 1 . 0  0.1 -0.93342121 -0.34145130 -0.60563 1.7252 0.76046 
- 1.0 0.5 -0.77949348 -0.49935791 --0.032133 1.5623 0.73459 
- 1 . 0  1.0 -0.64332440 -0.69066292 0.43166 1.3048 0.63569 
- 1.0 2.0 -0.40244571 - 1.3204110 0.78156 0.94240 0.46784 
- 1.0 4.0 -0.34935998 - 1.5731223 0.93015 0.63162 0.31531 
- 2 . 0  0.1 -0.76986197 -0.17012160 -0.52194 2.2707 0.91238 
-2 .0  0.5 -0.67355551 -0.30469715 0.25947 2.1129 0.94692 
- 2 . 0  1.0 -0.58296165 --0.46571471 1.0075 1.7822 0.85028 
- 2 . 0  2.0 --0.46608986 --0.75841319 1.6265 1.2534 0.61869 
--2.0 4.0 -0.34797800 -1.2471552 1.8900 0.79339 0.39564 
--3.0 0.1 -0.60318822 -0.08888757 -0.46554 2.8897 1.0652 
--3.0 0.5 -0.54997174 -0.20059342 0.49926 2.7237 1.1693 
- 3 . 0  1.0 -0.49679764 -0.33393640 1.5417 2.3084 1.0790 
- 3 . 0  2.0 -0.42062178 -0.58053840 2.4462 1.5974 0.78175 
--3.0 4.0 -0.33145553 -- 1.009386,4 2.8415 0.97518 0.48542 
-4 .0  0.1 --0.47811827 -0.05236093 --0.41853 3.5666 1.2289 
--4.0 0.5 -0.44915707 -0.14412499 0.74209 3.3743 1.3991 
--4.0 1.0 -0.41848145 --0.25452370 2.1621 2.7973 1.2495 
--4.0 2.0 -0.37057638 --0.46234394 3.2866 1.9269 0.91705 
--4.0 4.0 --0.30710176 --0.83580028 3.7894 1.1667 0.57715 

where r0 is the radius of  the disk. The effect of  m and A on G'(0) can be observed from 
Table 1. The torque on the disk increases with m for all values of  A. However, when suction 
is small, say A = 0.1, G'(O) increases by nearly 192% as m increases from 0.1 to 4.0. 
Contrast this with the case A = 5.0, where the increase is only 13.5% as m increases from 
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0.1 to 4.0. This shows that while the effect of m on torque is large when suction is small, 
the effect is reduced as suction increases. Table 1 also shows that as the values for injection 
increase in magnitude, the effect of m on torque becomes increasingly dominant. 

Under the assumptions discussed in Section 2, the current density: 

j = o" x ~ = o'roBo - F0(~) • 

Using F(~) and G(e) computed from the initial conditions given in Table 1 or read from 
Figs 2 and 3, one can easily compute the current lines, which are spirals of the form: 

r = ~ e x p  (-G(~)O/F(~)), 

in the z = constant planes. The equipotential surfaces can be computed from the above 
expression for the current density J in terms of F(r/) and G(t/). 

6. D I S P L A C E M E N T  T H I C K N E S S  AND M O M E N T U M  T H I C K N E S S  

For the tangential direction, define the displacement thickness 5" as: 

~*(~)l/2=f;G(rl)dt]. (17) 

The momentum thickness for the flow about a rotating disk as defined by Stuart [6] is: 

_ _/~\x12 f ;  bl*t~- ) = G(t/)(1 - -  G(r/))dl l .  (18) 

The values obtained for ~* and ~* are shown in Table 1 as functions of m and A. The 
displacement thickness decreases for increased suction and increases for increased injec- 
tion. The displacement thickness is greatly affected by increasing m when the suction value 
is small, whereas the displacement thickness changes only slightly with increases in m when 
the suction values get larger. However, for all values of injection, displacement thickness 
decreases significantly with increased m. Similar trends are observed for momentum 
thickness. 

7. HEAT T R A N S F E R  

From Fourier's Law, the heat transfer from the disk to the fluid in transformed variables 
is 

/o\1/2 

where r is the thermal conductivity. The Nusselt number is given by: 

N u =  q(o/('o)l/2 
( T w -  T~)~" 

From equations (19) and (20): 

(19) 

(20) 

Nu = - O'(0). (21) 

An expression for - O ' ( 0 )  is obtained by integrating equation (10) subject to the boundary 
conditions (12) resulting in: 

1 
- O ' ( 0 )  = ~o ~ - ( 2 2 )  
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Table 2. Effect of Prandtl number (Pr) and A on Nusselt number Nu = - O'(0) 
when m -- 0.5 

A\Pr 0.01 0.10 1.0 10.0 

4.0 0.040069 0.4006091 4.002395 40.00112 
3.0 0.030151 0.3013329 3.005322 30.00255 
2.0 0.024076 0.2036261 2.015051 20.00770 
1.0 0.011394 0.1126061 1.059119 10.03991 
0.0 0.004556 0.0428310 0.2826559 0.9515366 

- 1.0 0.000318 0.0031799 0.0034330 

Table 4. Comparison of the analytic 
solution of Pande [10] a and the present 

Table 3. Effect of m and Pr on Nu when A = 1.0 numerical results h (comparison valid 
only for large suction (A) and small m). 

m\Pr 0.01 0.10 1.0 10.0 m = 0.1 

0.0 0.012566 0A225589 1.0925388 10.054518 A - H ( o o )  ~ - H ( ~ )  h 
0.5 0.011394 0.1126061 1.0591194 10.039911 
1.0 0.010889 0.1081711 1.0418339 10.031811 2.0 2.0533 2,0536 
2.0 0.010477 0.1044617 1.0254037 10.023168 3.0 3.0175 3.0175 
3.0 0.010311 0.1029297 1.0177857 10.018525 4.0 4.0076 4.0076 
4.0 0.010224 0.1021232 1.0134742 10.015565 5.0 5.0039 5.0039 

Some values of  - O ' ( 0 )  obtained from the above integration are shown in Tables 2 and 
3. We can see that the Nusselt number ( - O ' ( 0 ) )  increases as suction increases but 
decreases as injection increases. For  a given A, Nu increases as Pr increases. From Table 
3, we can see that for A = 1.0, an increase in m from 0 to 4.0 decreases Nu by less than 
19% for Pr = 0.01 and by less than 0.4% for Pr = 10.0. 

Values can not be obtained for Nu with A and m parameters that result in a H(oo) value 
greater than 0. H(oo) > 0 corresponds to fluid outflow at infinity, which makes T ,  flow 
dependent. This violates the tacit assumption made in writing O(r/) in equation (7). 
Mathematically, H ( o o ) >  0 causes the integral in equation (22) to be unbounded and 
equations (10) and (12) to not have a solution. 

Tables 4 and 5 show good agreement of  our results with the analytical solution obtained 
by Pande [10] for large A and small m and the numerical results of  Sparrow and Gregg 
[7] for m = 0. 

8. A S Y M P T O T I C  C O M P A R I S O N S  

Applying standard perturbation techniques to equation (9) for small A and large m 
yields the asymptotic formulas: 

2 
H = ~ [exp( -  x / ~ q )  - ½ exp( - 2v/-mq) - ½l - A, (23) 

1 
- H ( o o )  = ~ + A. (24) 

From Table 6, we see that the asymptotic formula for H(oo) is fairly accurate for m 
values as low as 2. Also, as A increases, the percent difference decreases even though the 
absolute difference increases. However, negative values of  A have a larger difference as well 
as a larger percent difference as the magnitude increases. The asymptotic formula does not 
have as much accuracy with injection values as it does for suction. 

Table 5. Comparison of Uthe numerical solutions from Sparrow and 
Gregg (7] and btbe present numerical results 

A - H"  (0) a - H"  (0) b - G'(0) a - G '  (0) b 

4.0 0.2495 0.249475 4.005 4.00518 
2.0 0.4848 0.484832 2.039 2.03853 
0.0 1.020 1.02047 0.6159 0.615922 

- 1.0 0.9790 0.978962 0.3022 0.302173 
- 5 . 0  0.395 0.395131 0.0155 0.015471 
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Table 6. Comparison of obtained values with asymptotic formula values 

A m --H(oo)ob , --H(oo)~y Idifl %ldifl 

0.0 1.0 0.25331 0.33333 0,08002 24.0 
0.0 2.0 0.10858 0.11785 0.00927 7.8 
0.0 4.0 0.04078 0.04172 0,00094 2.3 
1.0 1.0 1.0898 1.3333 0,2435 18.3 
1,0 2.0 1.0481 1.1178 0,0697 6.2 
1.0 4.0 1.0225 1.0417 0,0192 1.8 
2.0 1.0 2.0318 2.3333 0,3015 12.9 
2.0 2.0 2.0213 2. l 178 0,0965 4.6 
2.0 4.0 2.0123 2.0417 0,0294 1.4 
3.0 1.0 3.0131 3.3333 0,3202 9.6 
3.0 2.0 3.0102 3.1178 0.1076 3.5 
3.0 4.0 3.0069 3.0417 0,0348 l.l 

--1.0 1.0 -0.43166 -0.6667 0,23504 35.3 
-1 .0  2.0 -0.78157 -0.8822 0,10063 ll.4 
- 1.0 4.0 -0.93015 -0.9583 0.02815 2.9 
- 2.0 1.0 - 1.0070 - 1.6667 0,6597 39.6 
- 2.0 2.0 -- 1.6265 - 1.8822 0,2557 13.6 
- 2.0 4.0 -- 1.8900 - 1.9583 0,0683 3.5 
- 3.0 1.0 -- 1.5417 - 2.6667 1,1250 42.2 
-3 .0  2.0 --2.4462 -2.8822 0,4360 15.1 
-3 .0  4.0 --2.8415 -2.9583 0A 168 3.9 
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