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In this paper we present several new slightly nonlinear variants of the bipolar and
the open mapping theorems in Banach spaces, which we abstracted from the recent
developments in the theory of dual operator algebras.

A new application of our techniques to the theory of operator algebras is also
given.  © 1988 Academic Press, Inc.

1. INTRODUCTION

The basic problem that we discuss in this paper is the surjectivity and
openness of bilinear maps. We consider bilincar maps

. %(1) > &,

where Y(t) = # x A", and H#, X", ¥ are Banach spaces. By analogy with
Banach’s open mapping theorem (for linear operators) we will be
concerned with the richness of the sets

B={t(h k): (h, k)e 2(x), |l <1, Ikl <1, itk k)| <M}, (1.1)

where M > 0. Thus we will consider two problems.

1.2. Problem. Find conditions under which the closure of B necessarily
contains an open ball centered at the origin in Z.

1.3. Problem. Find conditions under which B necessarily contains a
ball centered at the origin in Z.

We will present two approaches to these problems. In PartI we give
some answers to Problem 1.2 in an abstract framework in which we give
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ourselves the set B rather than the bilinear map r. In Part Il we give
answers to both problems. Even though there are similarities between the
approaches in Parts I and 11, the results do not overlap compietely. In fact
we will see in our application in Part III that the two approaches can be
combined to yield new results.

We want to emphasize some new ideas introduced in this paper. In
Part I we consider a new type of convexity and dominancy in Banach
spaces. The basic observation is as follows. Let B be a bounded balanced
set in a Banach space 4. Even if B is not absolutely convex, there may be
many points x € Z such that all absolutely convex combinations ox + ffy,
veB, |a| +|B| <1, are in the closure of B. The set of all such points x
forms a closed absolutely convex set D(0) contained in B. Under certain
circumstances this allows us to conclude that B contains a given convex set
C (see Section 4 for the precise statements). It is seen that the set B defined
in (1.1) does sometimes satisfy the conditions in Part I, and this is based on
the observation that at(h, k)+ Bt(h’, k') is very close to t(a?h+ B"?H',
a'?k + B'2k") if t(h, k') and t(h', k) are very close to zero. See Section 10
for an application of this observation.

In Part II we consider Problem 1.2 and we give sufficient conditions for t
to be open (at every point). It is interesting that our conditions imply with
little additional work the solvability of arbitrary systems of the form

t(hy;, k) =x,, 0<ij< oo, (1.4)
where {x;:i,j>0} is a given array in Z.

In Part IIT we give an application of the methods developed in Parts I
and II to the structure theory of contractions on Hilbert space. Our results
are formulated using the concept of an HP-functional calculus. More
precisely, let T be a contraction on a Hilbert space #; assume that the
unitary part of T is absolutely continuous, and let ¢ € H” with p>2. One
can then define an operator ¢(T) acting continuously on a Banach space
denoted H%, 1/p+1/qg=1. The space H% is a dense linear manifold in .#,
and H3=. In Section 8 we define this functional calculus under the
additional assumption that T is of class C,,. The general case will be
treated elsewhere [9].

The basic result in Part IIT is that, if T is of class Cy, and there is
pe[2, +o0) such that

lo(D =y lel,, peH?”,

for some y >0 then T belongs to the class Ay, defined in [5].
We conclude this introduction with a few remarks on the history of the
problems treated here. The question of openness for bilinear maps was con-

580/78,2-8
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sidered by Cohen, who showed in [15] that a surjective bilinear map is not
necessarily open at the origin. Later Horowitz [17] provided an example
in this direction with 1: C*x C* - C* The abstract results in this paper
were inspired by certain techniques that proved to be very powerful in the
theory of operators on Hilbert space. (As a matter of fact, in operator
theory it is convenient to work with maps t(h, k) that are linear in 4 and
conjugate linear in k. Our results apply in this situation because any such
map t can be traded for a bilinear one upon replacing ¢ by its conjugate
version.) The first open mapping theorem of the kind proved in Part IT was
proved by S.Brown, who used it in [13] to show that all subnormal
operators have invariant subspaces. The idea of solving systems of the form
(1.4) first emerged in [12] and was further used in [5, 11, 3, 7], etc.

We believe that the abstract results in this paper will prove fruitful in
operator theory and in other areas of functional analysis. In particular, the
concept of super-dominancy (cf. Section2) seems to point to new
interesting properties in the geometry of Banach spaces. The H”-functional
calculus introduced in Part Il represents a new application of function
theory to the analysis of absolutely continuous contractions, and it is
expected to yield further insights about the structure of such contractions.
We thank Professor D.van Dulst for his pertinent remarks on the first
version of this paper. These remarks are included here with due reference.

PART I: SUPER-DOMINANCY

2. STATEMENT OF THE PROBLEM

Let & be a separable complex Banach space. For two bounded subsets
A, Bc ¥ we set

Dist(A4, B)=sup{dist(a, B):ac A4}

=sup inf |la— b|,
ae A beB

where ||-|| denotes the norm on 4.

Let B denote a balanced (ie., AB< B for AeC, |4 <1) bounded subset
of Z, and let C be a closed absolutely convex set. The sets B and C will
remain fixed throughout Sections 2 and 3. We will say that B dominates C
if

sup{|f(x)|: x& B} > sup{| f(x)|: x& C}



BANACH SPACE METHODS AND DUAL OPERATOR ALGEBRAS 309

for every fe 2'*. By the bipolar theorem, this is obviously equivalent to the
inclusion

(aco(B) o C,

where aco(B) denotes the absolutely convex hull of B. The following
stronger condition of dominancy occurred naturally in the study of dual
operator algebras (cf. [7]).

2.1. DermITION. The set B is said to super-dominate C if for every
feX*, every finite subset F of B, and every ¢ >0 there exists xe B such
that

(i) f(x)+e>sup{lf(y):yeC}, and
(i) Dist(aco{x, b}, B)<c¢ for every be F.

A useful property of super-dominancy is the obvious fact that it is
preserved by continuous linear maps. That is, if 7 & — % is a continuous
linear map and B super-dominates C, then TB super-dominates 7C. (This
property also holds for usual dominancy.)

The solution of several major problems in the theory of dual operator
algebras can be reduced to the following question for certain Banach
spaces & (cf. Part III below).

2.2. Problem. Assume that B super-dominates C. Is then B strongly
dense in C, ie., is Cc B?

Unfortunately, the answer to this problem is NO, as shown by the
following simple example due to D. van Dulst:

2.3. ExaMPLE. Let & be the space L' of (classes of) Lebesgue integrable
functions on T = {¢": 1€ [0, 27)} endowed with the usual norm

eli=o [T Ixendn xel!
Xl—zno x{e ) xel’.

Set C={xeZ:|x||<1} and B={xeC:x=0 on a subset §, of T of
measure (1/2n) f, dr>1}. Then it is obvious that B is not strongly dense in
C. But B super-dominates C since for every essentially bounded measurable
function u on T there exist x;e C, j> 1, such that

1 2 it it
{u, xj>=ﬂjo u(e”) x(e") dr

— ess max{|u(e”)|: te [0, 2n)}
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for j— oo, and

meas{e”: x(e")=0} - 0.

We will show, however, that there are many useful cases in which
Problem 2.2 has an affirmative answer.
There is a version of super-dominancy for the weak topology.

24. DEFRINTION. The set B is said to super-dominate C weakly if for
every fed*, every finite subset Fc B, every finite subset
{81, 82, &n} < X*, and every ¢ >0, there exists x € B such that

(i) f(x)+e>sup{|f(y)l:yeC}, and
(ii) Dist(aco{Tx, Tb}, TC)<¢, be F, where T: % — C" is given by
Ty=(8:(»), 82(¥); . 8.(¥)), y€X.

The remarks above show that super-dominancy implies weak super-
dominancy. Of course the two notions coincide if 4 is finite-dimensional.
We will show in Section4 (cf. Theorem 4.2) that the analogue of
Problem 2.2 always has a positive answer for weak super-dominancy.

3. AsYyMPTOTIC CONVEX STRUCTURES

In this section we introduce certain techniques that are relevant in the
study of Problem 2.2. These techniques will allow us to prove in Section 4
that Problem 2.2 has an affirmative answer for a rich family of Banach
spaces.

It is convenient to write &= 1/(card(F)+ 1) for every finite set F. Now,
if Fis a finite subset of B, we define

B.= {xe Z: Dist(aco{x, b}, B) <eforevery be F}. (3.1)

It is clear that the sets B, are balanced since aco{lx, y} caco{x, y} if
x,ye% and |A| < 1. It is also obvious that B, =%, {x:|[x] <&} € Bpc
{x:dist(x, B) <é&p} for F# ¢, and that B, c B, B, for all finite sets
F,FcB.

A basic property of the sets B is given in the following result.

3.2. LEMMA. Given a finite set F< B and x € B, there exists a finite set
F, Fc F' c B, such that Ax + uy € B for all ye By and A, pe C satisfying
the inequality |A| + |u| < 1.
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Proof. The lemma is obvious for F= ¢, so there is no loss of generality
in assuming that F# . We must find F’ such that

dist(ab + f(Ax + uy), By <ep (3.3)

for all beF, yeB, and all pairs (o, f), (4, u)el, where
I'={(&n)eC> & +|n) <1}. Let us set M =sup{|z|:ze B}, and

¢ =min{e,— Dist(aco{x, b}, B): be F}.

Obviously M < oo and ¢> 0. Fix § =¢/5(5M + 2), and let I'y= I be a finite

d-net in I” (i.e.,, every point of I is at distance at most § from some point in

I'y). Of course we can, and shall, assume that Au 50 for every (A, u)e I',.
For every (2, Bo) and (4, io) in Iy an be F, we have

dist (aob + Bodox

, B) <€p—g,
[oto] + [ Bo Aol F

and hence there is x, € B such that

oob + Bolox £
Zoo T PooX il <ep—t. 3.4
ool F 1BoZo] try (3:4)

_xo

Choose now a finite set F’' > F containing all the points x, constructed
above, and satisfying the inequality &, < 6.

For (o, f), (A, u)eI” we choose (o, o), (A9, o)€ly such that
lo—og| <8, |B—Bol <9, |A—Ao| <9, and | — pg| < 8. Then, for every be F
and ye By we have

dist(ab + B(Ax + uy), B) < dist(agh + Bo(AoX + 1o ¥), B)
+ llab + B(Ax + py) — aob — BolAo X + o )
< dist(ogb + Bo(Aox + o ), B)+ M +26 ||x|| + 26 || y||
< dist(agb + Bo(Aox + po ¥), B)+ M + 28(M +e,) + 26(M + &)
< dist(agh + Bo(Agx + ug ¥), B) +¢/4,
and hence in order to prove (3.3) it will suffice to show that
dist(oob + Bo(Aox + 1o y), B)<ep—¢/4.

With the vector x, as it occurs in (3.4) we have
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dist(atgb + BoAoXx + Bolto ¥, B)
< dist((Jog| + [BoAol) X0+ Bokto ¥, B)

oob + fohox
+ (laol + 1Bolol) | —————
o+ oAl T ¥ 1Bl
& &
<8F1+8F—5<8F—Z

by the choice of F' and 4. This concludes the proof.

We note for further use that the calculations in the above proof show
that

dist(ab + B(Ax + uy), B)y<ep—n, n=¢/d—¢cp,

for all ye B, and («a, B), (4, u) e I'. This inequality can be rewritten as

Dist(aco{b, x, y}, B) <ep—n, y€Br, bePF.

Let us define now

d{x)=dist(x, Br), x€%,

for every finite set Fc B. It is easy to sec that

ddx)<dp(x)< x|, xelZ,

if Fc F are finite subsets of B. Furthermore, we have

di(x)=dist(x, B) — ¢, xe¥%, F#,

because B, < {y:dist(y, B) <&},
dF(Ax)<|’1| df(x)s xeg" |l|<17

because B, is balanced, and
l[de(x)—ddy) <lx=yll,  x,yed.

We see now that the limit

d(x)=1lim d{x) = sup{d(x): F< B, Ffinite}
F
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exists for every x € & and enjoys the properties
ld(x) —d(y)I < llx—yll, x,yexZ,
d(Ax) < |A] d(x), xeZ, 1<, (3.5)
d(x) = dist(x, B), xed.

3.6. COROLLARY. (i)} For every finite set F < B and every x € By there
exists a finite set F' such that

di(Ax+py) < |pl de(y) < |pf d(y)

for every ye X and A, peC such that |A} + |u| < 1.

(i) For every finite set F = B, every x € ¥, and every ¢ >0, there exists
a finite set F' such that

dlx+py)<e+ |4l de(x)+ |ul dp(y)

for every ye X and i, e C such that |A| + |u| < 1.

Proof. (i) Let F' be given by Lemma 3.2, let ye %, and let n be an
arbitrary positive number. Choose y' € By such that |y —y'[| <dg(y) + 1.
Then, by virtue of Lemma 3.2,

de(Ax + py) <dglix+ 'y + [pul 1y =yl
=lul ly—=yl
<lplde(y)+n, A peC, |A+ul <L

Part (i) of the corollary follows since # is arbitrary.

(ii) Choose xy€ By such that ||x — x,|| <dx)+ ¢, and choose F" as
in the proof of (i), with x replaced by x,. Then we have

d(Ax + puy) < | Ax — Axo|l + d(Axo + uy)
Se+ Al dp(x) + |l de(y)

for ye 2 and |A| + |p| <1, as desired. Thus the proof is complete.
3.7. COROLLARY. Let Fc B be a finite set. Then

di(Ax + py) < A dp(x) + |ul d(y)

for all x,ye X and A, pe C such that || + |u| < 1.
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Proof. Fix x,yeX, ApeC, |M+|ul<l. It follows from
Corollary 3.6(ii) that

d(Ax+py)<e+ || de(x) + |ul d(y)
for every ¢ > 0. The conclusion follows immediately.
3.8. PROPOSITION.  The function d is absolutely convex, i.e.,
d(Ax + py) < |4 d(x) + |ul d(y)

for all x,ye & and 4, ue C with |A| + |u| < 1.

Proof. Fix x, ye & and A, pe C such that |4| + [u| < 1. By the preceding
corollary

d(Ax + py) =lim dp(Ax + py) <lim (|2 dp(x) + |p] d(3))
= |Al d(x) + |ul d(y).

The proposition is proved.

For every number 0 > 0 we define now the set
D(0)={xeZ: dx)<0}.

The following properties of the sets D(@) readily follow from
Proposition 3.8 and (3.5).

3.9. COROLLARY. For every 0=0, D(8) is closed and absolutely convex,
{x:[|lx]| <8} = D(9) = {x: dist(x, B)< 6},
and

D(0) =) {x:dist(x, B;) <0},

where the intersection is taken over all finite subsets F of B. In particular,
D(0)=B.
4. SUPER-DOMINANCY AND APPROXIMATION
We come now to a first positive answer to Problem 2.2 in an easy case.

4.1. LEMMA. Assume that B super-dominates C. If B is relatively
(strongly) compact then D(0) contains C.
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Proof. Fix feZ* and observe from Definition 2.1 that for each finite
set F'= B we can choose a vector xp€ B.n B such that

lim inf/f(x) >sup{|/(y)l: ye C}.
Since B is relatively compact there exists x € B such that

xe () {x¢:G>F, Gfinite} ~ = (\B.= D(0);
F F

clearly f(x)>=sup{|f(y)l:yeC}. Since D(0) is closed and absolutely
convex, the conclusion follows from the bipolar theorem.

4.2. THEOREM. Assume that B super-dominates C weakly. Then C is
contained in the weak closure of B.

Proof. Fix xy,e C and an arbitrary weak neighborhood of x, given by

V={xeZ:|f(x—x0)l<1,j=1,2,.., n},

where £\, f5, ... f,€ Z*. The map T: ¥ — C" defined by
Tx:(fl(x)sfz(x), '“’fn(x))’ XE&Y‘,

is linear and continuous and clearly 7B super-dominates 7C weakly. Since
C" is finite-dimensional, TB super-dominates 7C. By Lemma 4.1, TB> TC
and, in particular, there exists e B~ V. This completes the proof.

4.3. COROLLARY. Assume that B super-dominates C. Then C is
contained in the weak closure of BN B for every finite set F< B.

Proof. The corollary follows directly from Theorem 4.2 and the remark
that B-n B super-dominates C for every finite set F< B. To prove this, fix
feZ*, £>0, and a finite set F,c BN B. We must show that there exists
y€ BN B such that

Dist(aco{y, x}, Brn B) <e, x€eF,,

and

f(y)+e>sup{lf(z)l:ze C}.

By Definition 2.1, for every finite set F' = B we can find y € B,. such that

S +e>sup{lf(z)|:ze C},
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so it will suffice to produce a set F’ such that

Dist(aco{y, x}, BrnB)<e¢, xeF,, yeBp.

A repeated application of the remark following the proof of Lemma 3.2
shows the existence of # >0 and F’ such that

Dist(aco{b, x, y}, B)y<¢ep—n, beF, xeF,, yeB,..

We may of course assume that F' > F, and ¢,- <min{e, n}. Now, if 4, peC,
|A| +|u| <1, xe Fy, and ye B, we can find ze B such that

Ax+uy —zll <éep.
Hence for be F we have

Dist(aco{b, z}, B) < Dist(aco{b, Ax + uy}, B) + ¢,
< Dist(aco{b, x, y}, B) + ¢,

Sep—N+ep <t

and thus ze B~ B. We deduce that
Dist(aco{y, x}, BrN B)<ep <e, xeF,, yeBp,

as desired. This concludes the proof.

The following results show that Problem 2.2 has a positive answer in a
large number of cases. We start with a statement which is a substantial
improvement, due to van Dulst, of our original result concerning uniformly
convex Banach spaces.

4.4. PROPOSITION. Assume that B< C, and B super-dominates C. Then
every strongly exposed point of C belongs to D(0). If, in particular, & has the
Radon—Nikodym property, then B is norm-dense in C.

Proof. If & has the Radon-Nikodym property then C is the closed
convex hull of its strongly exposed points (Phelps’s theorem, cf.
Proposition 5.14 of [16]). Thus, the second part of the proposition follows
from the first part and the fact that D(0) is convex and closed.

To prove the first part fix a strongly exposed point x € C, and a strongly
exposing functional fe #*. In other words,

f(x)=sup{Ref(y):yeC},



BANACH SPACE METHODS AND DUAL OPERATOR ALGEBRAS 317

and

lim diam S,(C, x, f)=0,

el0
where

SAC x,f)={yeC:Ref(y)>f(x)—¢&}

By the remark made in the proof of Corollary 4.3, we can find
xr€ Bn B,.« C satisfying the relation

Re f(xp)>f(x)—¢p

or, equivalently, x.€5,(C, x,f). We clearly have then x=Ilim,x,, and
this concludes the proof of our proposition.

As a consequence of Proposition 4.4 we sec that in all separable dual
Banach spaces, Problem 2.2 has an affirmative answer provided that B< C.
Indeed, every separable dual Banach space has the Radon—Nikodym
property (cf. Corollary 6.3 in [16]), and hence Problem 2.2 has a positive
answer for such spaces.

The following is the main result given by the methods developed in
Section 3.

4.5. THEOREM. Assume that B super-dominates C. If the weak topology
on B C is metrizable, then D(0) contains C.

Proof. Fix xe C and a basis V>V, > V,> ...of weak neighborhoods
of x, in Bu C. By Corollary 3.9 it suffices to prove that d{x) =0 for every
finite subset F< B. Fix such a set F. We construct inductively sequences
{F:j=20} and {x,:j>0}cB with the following properties: F,=F,
x,€BpnBNV,, and

drj(lxj+ my) < [u| dFJH(.V),

for all ye & and A, ue C such that |4]| + |u| < 1. This construction is clearly

possible by virtue of Corollaries 3.6 and 4.3. Since the sequence {x,:j>0}

converges weakly to x, a classical theorem of Mazur implies that for every

>0 there exists a finite sequence {,:0<k<n}cC such that 4,#0,
"_olAl <1, and Jx =37 _, Avxill <n. We have then
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n n
dF(Z lk.xk)=d1:0< Z A,k.xk)
k=0 k=0

“ ZZ:ML&%)
<[ S 14 ) dy, (Bt e
<(El' ') ‘<zz-,uk|

2 ZZ:Zlkxk>
g(é M"') Ar: ( 72 1]

<2l dg(x,)=0,

and consequently d{x) < 7. The theorem follows by letting » tend to zero.

The following is an immediate consequence of Theorem 4.5.

4.6. COROLLARY. Assume that B super-dominates C. If '* is separable
then D(0)> C.

We conclude this section with a remarkable property of the sets D().

4.]. THEOREM. Let y>02>=0 be fixed. Then D(0)> {x: ||x|| <y} if and
only if D(0)> {x: ||x|| <y—6}.

Proof. Assume first that D(0)> {x:|[x||<y—6} and let zeZ with
Izl <y. We have then

d(z)=d(gz+(1—g> z)ég Izl +d((1 —g> z>=§ Izl <8
Y 14 Y v b

and therefore ze D(0), thus D(6) > {x: |x| <y}
Before proving the converse we note an additional property of the

function dj., where Fc B is finite. Let >0, xe %, and ye B.. Then we
have

d*‘(ﬁ)=dF(1iﬁ”1fﬂx;y>
STIB"F(”*lfﬂd<x?)=1fﬂd<x;)' “8)

Assume now that D(6) > {x: ||x|| <y} and note that this is equivalent to

dx)<Blxl, xeZ, |x|<y, (4.9)
where f =6/y. We will use (4.8) to show that (4.9) implies

dz)<plzl,  zeZ, |zl < (4.10)

_r
1+ 4
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Indeed, fix zeZ such that 0< |z} <y/(1 +pB), a finite set Fc B, and

B e (B, 1). Write x=(1+f)z From (4.9) we have d(x) <’ | x| so that
lx—y| <B |x|| for some ye B,.. Again by (4.9) applied to (x—y)/B’, we

have
() <5 )

Ix—=yl  y(B"—B)
<p 7 + 3
<+ 1D,
An application of (4.8) yields now
B (B — ﬁ)) 2 Vﬁ(ﬁ —B)
i) < (1t + LB < gz LU D) o

and hence d{z)<p’|z| since B e(B, 1) is arbitrary. Relation (4.10)
follows by taking the supremum over F.
An inductive application of the previous argument shows that we have

diz)< B, |z, zeZ, lzI<y,, n=0,1,2..,

where fo=p8, 7=y, and B8,.,=pB3, Ynr1 =Y/ (1+B,). Tt is clear that
B,.=p*, and

n—1 1—
yn=yklj0(1+sz)=y1(_ﬁzﬁn)>?(l—ﬁ)=y—9-

Thus, for ze & with ||z|| <y —6, we have

d(z)< lim B, |zl =

n— 0

This last relation means exactly that D(0)> {x: |x| <y—6}, so the

theorem is proved.

PART II: AN OPEN MAPPING THEOREM FOR BILINEAR MAPS
5. NOTATION AND PRELIMINARY RESULTS

Let #, A, and Z be normed spaces, and let
T D) H XA >
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be a partially defined bilinear map. The fact that 7 is bilinear means, in
particular, that whenever (4, k), (K, k), and (A, k') are 92(z), the pairs
(h+Hh, k) and (h, k+ k') also belong to 2(z) and

tth+h, k)y=1t(h k)+t(h' k), hk+k')y=1t(h k)+1(h k')
Note that £(t) is not generally a linear manifold. We will make, however,
the following assumption.

5.1. Assumption. There exist linear manifolds #;, = # and A, < A (not
necessarily closed) such that ] x X, < 2(t).

Our results will be based on the richness of the sets %= Z(z, #5, Hp)
defined as follows for 6 = 0.

5.2. DEFINITION. Assume that 5.1 holds and 8 > 0. The set Zy(t, 4, Aq)
consists of all vectors x € Z with the following property: Given an integer
p, vectors &, &, ..., £, € H#, vectors ny, 15, ..., §,€ Ko, and a number >0,
there exist vectors he #;, k€ X such that

1) r<t k<1,
(i) fx—t(h k) <B+e¢,
(i) (&, k)l <e, Nlzth, n)]) <efor 1<i<p.

5.3. LemMa. The sets Zy(t, #;, Hy) are closed.

Proof. Let xe Zy(1, #5, Ho) ™, &1, &ay oy €€ Ho, M4, 12,5 - 1, € Hy, and
£¢>0. There exists then x' € Zy(t, #,, H;) such that ||x — x'|| <&/2, and by
Definition 5.2 there are he # and ke #, such that |jA|| <1, |k|| <],
| x"—t(h, kY| <@ +¢/2, and ||t(&,, k)| <e&, ||t(h, 1) <& for 1 <i<p. The
lemma follows now easily because

x —z(h K < flx — x"I| + | x" — 1(h, k)|
<gf2+0+¢2=0+c¢.
We can now define the property of t which will be relevant to our
results.
5.4. DEFiNITION.  Let 1 be a bilinear map satisfying Assumption 5.1, and
let y > 0. The map 1 is said to have property (4,.) relative to A and A if
Xolz, #, Hy) 2 {xe X x| <y}

Let us note that Z,(zr, #, #;) always contains {xe % |x| <8}, and
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hence t always has property (4,,) if y <0. Thus, when working with the
properties (4,,,), we will normally assume that y>§>0.

5.5. Remark' Let XEL%(T, %a fO)a éla 52’ e ﬁpe%’ His Moo ﬂpe%,
and ¢>0. Then there are vectors he #;, k € Ay such that
() Al <1, [kl <1,
(i) |lx—1t(h k)| <O0+e,
(i) (¢, k)l <e, [t(h, n)| <efor 1<i<p.
Indeed, by Definition 5.2 there are A, k satisfying (ii) and (iii), and ||4| <1,

|kl <1. We can replace # and k by ah and ak, where a e (0, 1) is chosen
sufficiently close to one such that ||x —a?t(h, k)| <0 +e.

From this point on it will always be assumed that Assmption 5.1 is
satisfied and 7 is closed, ie., the graph {(h, &, x): (h, k)e D(7), x =1(h, k)}
is a closed set in # x ¥ x 2. Denote by #; and 4" the closures of
and ;. Observe that in this case the formulas

Ny={he#;:{h}xH<PD(t)and 1(h, k)=0for ke A}
Ny={keX;: Hyx{k}=2D(r)and 1(h, k)=0for he #}

define closed subspaces of # and ', respectively. In fact it also follows
that

(Ny XA g )UKy X Ny)= D(1),

and
1(h, k)=0 if (hk)e(NyxXHg)u(Hy xNy)

It is clear that the sets Z(t, 5, X5) (cf. Definition 5.2) do not change if
we replace s, and Ay by #,+ N, and A, + N, respectively. Therefore
the following technical assumption will not be restrictive.

5.6. Assumption. N, < #;and N, < A;.

5.7. Remark. Let 1. 2(t)c# x A - % be a closed bilinear map
satisfying Assumptions 5.1 and 5.6. Assume in addition that s and X" are
Hilbert spaces. Then we have 3% O N, < #), Ay O N, < Ay, and

%ﬂ(ra%a%)z'g‘e(t’%@Nf’%@NX)a 0=0. (58)

Indeed, if 4 and k satisfy conditions (i), (ii), and (iii) of Remark 5.5, then
W=Pycnyhand k'=P, -y, k also satisfy these conditions.

We conclude this section by showing that properties (4,,) are substan-
tially easier to verify in the case in which # and ¢ are Hilbert spaces.
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59. LEMMA. Let 1:9(t)c H xH X be a closed bilinear map
satisfying Assumptions 5.1 and 5.6. Assume in addition that # and A are
Hilbert spaces. If 820, xeXy(z, #y, Ay), ¢>0, p is an integer, and
$158as s E,€H0, N4y N2y oy M, € Ay, then there are he H# and k e Ay such
that
@) ri<t k<,

(i) flx—rt(h k)l <0 +e¢,
(i) (&, k)l <e, et n)l <e 1<i<p,

(iv) (B &)l <e |kinN<e, 1<i<p, where (-|-) denotes the
scalar product.

Proof. Let Fc i, and G < X; be finite sets. By (5.8) and Definition 5.2,
we can find hpge # O Ny, kpge Ay © N, such that

—

=y

“hF,G“ <1, ”k[-‘_GH <1, lx—1t(hee. kF,G)H <0+ €FG>

and
(&, kra)l SEpgs “T(hF.G’ ml SE&rg, (&, meFxaG, (5.10)

where ¢, =1/(card (F)+card (G)). The idea is to show that the weak
limit of the net {(hyg. k) }rec H# x A is (0, 0). Indeed, if this is shown,
it will suffice to take F, G sufficiently large so that h=h.; and k=k
satisfy conditions (i)-(iv). By symmetry it suffices to show that the weak
limit of the net {h.;}.c is zero. Let ¢ denote an aribtrary weak
accumulation point of this net, and fix ¢>0 and 5 e ;. Choose F and G
such that ¢, < e and # € G and note that by Mazur’s theorem ¢ belongs to
the norm-closed absolutely convex hull of the set {hp:F >F, G'>G}.
Thus there are F,, F,, .., F,, G, G,,..,G, with F,.oF, G,oG, 1<i<n,
and there are constants ay,0a,,..,a,eC such that 37_,|o|<1 and
1€ —27_1 %hrcll <& Note further that (5.10) implies the inequality

J
n
r( Y Gheg 11)” Sepg<e
y

=1

since &rg <épg, 1 <j<n But ¢>0 is arbitrary; so we conclude that the
tiple (& n,0) belongs to the closure of the graph of t, and hence
(¢, m)e2(t) and t(& 1) =0. Now, ne X, is arbitrary, whence £ € N .. But
we also have (e # O N, because hpceHy © N, . We conclude that
necessarily ¢ =0, and this completes our proof.

5.11. PROPOSITION. Let 17: 2(1) (= H x A )—> X be a closed bilinear
map satisfying Assumption 5.1. If # and X are Hilbert spaces, then the sets
Zo(t, H, A} are cllosed and absolutely convex for 6 = 0.
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Proof. As we noted above, we may assume that 5.6 holds. We already
know from Lemma 5.3 that the sets Zy(t, #, A") are closed. Fix =0,
X1, X2 € Xy, #, Ap), and a,, a, € C such that |a| + |a,| < 1; we want to
show that o, x,+a,x,eZp(t, #, #p). Choose then e>0 and
&, &qy o E,€ M, My, N, - 1, € Ky, and use Remark 5.5 and Lemma 5.9 to
find 4, h,e #, k,, k, e A, with the following properties:

Il <1, el <t lkli<l, k)<l
lx, —t(hy, k)l <8 +¢/2, Ix:—t(hy, ko)l <0 +¢/2,
Ie(h, nll <€/2,  llztha, n)ll <e/2,
e kDl <e/2,  lIt(Cn k)l <2, 1<is<p,
Ie(hy, ko)l <efd,  lllhy, ko)l <e/4,
[y )| < 501 = o] — oty [14,13),
[y [ Rl <5 (1= ol — foy | N1Ky %)

Of course, in order to satisfy the last inequalities, the pair (k,, k,) is chosen
after (A, k,). If o, =0 we can choose #, =0 and k, =0. Fix some square
roots o}’? and a}?, and define
h=al2h +al?h,, k=al?k, +alk,.
We have
IR = Joey| 1Ay 112 + laa] 1A5)17 +2 Re(a2hy | ad/2hy)
oy A 02 + o) + 2 [(hy | hy) <1

and, analogously, k|| < 1.

Next,
ooy x 1 + oy x5 — t(h, k)|

< lloyxy +oayx, —aytlhy, k) —ayt(hy, ky)ll
+ 2o e(hy, ko)l + ey oy t(hy, k)|l
< oyl lxy = wlhy, k)N + ol lx, —t(hy, &)l

+ ol (ol +lal) (0+2)+2<0
ata oy la,]) +§ +§\ +e,

and

le(h, nll < llt(hy, m)ll + e, m)l <&, 1<i<p,
(S, K < M kI + (€3 k)l <, I<i<p.

We conclude that x € (1, 5%, Ay), as desired. The proposition is proved.

580/78/2-9



324 BERCOVICI, FOIAS, AND PEARCY

An easy consequence of Proposition 5.11 and the bipolar theorem is the
following.

5.12. COROLLARY. Let 1: (1) (cH# XA ) — X be a closed bilinear map

satisfying Assumption 5.1. Assume, in addition, that # and A" are Hilbert
spaces. Then T has property (4,,) relative to #y and X, if and only if

sup{|f(x)|: x & Zy(t, #5, Ao)} 27 | Sl

for every fe I*.

6. THE OPEN MAPPING THEOREM

Let # and A" be Hilbert spaces, let Z be a normed space, and let
(N H X)X

be a closed bilinear map satisfying Assumptions 5.1 and 5.6. These objects
will remain fixed throughout this section.

6.1. LEMMA. Assume that T has property (4, ) relative to 3, and X, for
some y>02>0. Let xeZ, h, &y, &5, ., ¢, e, k,ni, N, ... n,€Hy, and

£>0 be given. Then there exist h'e #, and k'e Ay with the following
properties:

1 172
1) lrh< (I!hll2 +; lx —z(h, k)| +6> ,

1 1/2
&1 <(||k||2 +; llx —t(h, k)| +8> ;

(i) I —hl < (——————-——”x_ ol k”')]/z I’ — kIl < (___.__“"_ h, ")”)'/2
’}) 3 ~= ')) s

0
(iii) fx—(h', k") S% lx —(h, K)II,

(iv) It —hmn)li<e &, K —k)i<e,  1<i<p,

(v) (K —h|&)<e  [(K—kln)i<e  I<isp.

Proof. If x=1(h, k) we can choose h' =h and k' =k. If x #t(h, k) then
the vector x,=(y/llx—1(h, k)| )(x—t(h, k)) has norm y and hence
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xy € Zylt, H#y, Ay). Fix 6 >0 and choose (h,, k) e #, x A, with the follow-
ing properties:
loxy —t(hy, k)| <6+ 6,
Iethy, nll <o, He(&y, k<o,  1<i<p,

(k. k)l <6, iz(h, k1)l <9,

[(hy ] &) <0, [(ky [ n)l <é, 1<i<p,
and

[(hy | )| <0, I(ky | k) <o.

We define now
_ JAYRRE —1(h, k)[\
h’=h+(“x r;h, )||> b, k’=k+(“x ‘t; )|I> ..

and we will see that  can be chosen so small that (i)-(v) are satisfied.
Condition (ii) is clearly satisfied. We have

x—1(h, k x—1(h, k)|\?
||h'||2<uhu2+“—§—)”uh1n2+2(“—;—)ﬂ) \h | )l

— — 1
B (Lt 1)

Y

An analogous calculation for &’ shows that (i) is satisfied if

25 (lx;r—y(h—’my/z <e. (6.2)

Moreover, if (6.2) holds we also have

, x—1(h, k)N e
Ve = b o) =(“——V(—)) et m)l <3,
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so that (iv) and (v) are also satisfied. Finally,

e —(h', k) < || x — t(h, k)~ w(hy, ky)

Ilx — (4, k)|
v

|

(e, kDI + li(hy, K

LR 2 (Hx—rv(h,k)ll>”2

1
< 9—;”5- x — t(h, k)|l + 26 (———”x - T;h’ k”') /2,

+ <Hx~f(h, k)H)”2
y

and we see that (iii) is satisfied if

0+ —t(h, k)2
= e b+ 28 ()

< O—;if lx —(h, k). (6.3)

It is clear that § can be chosen to satisfy both (6.2) and (6.3), and this
concludes the proof.

6.4. COROLLARY. Assume that t has property (dq,) relative to #; and
HAo. Then t also has property (d,,,) relative to 3, and A, where
0,=6%(y+0) and y, =*/(y +0).

Proof. Let xe% be such that |x|<y,, and let ¢&,, .., ¢, e A,
Nis s N, €Ky, £>0, be given. Choose & so small that the following
inequalities are satisfied:

G+y+4
yyz x| +6<1

and

An application of Lemma 6.1 (with h=0, k=0, and ¢ replaced by J) yields
vectors ' € H#;, and k' € A such that



BANACH SPACE METHODS AND DUAL OPERATOR ALGEBRAS 327

wi<(B07 wa<(B)
~ ')) £ ~ ‘}) ]

040
llx — (', k")l <—y— (B4R

Ie(h',n)l <e/2, M€ k) <e/2, I<isp.

A second application of Lemma 6.1, with / and k replaced by k" and k',
respectively, yields A" € #, k" € X, such that

1 1/2
A" < (Ilh'll2 +; l[x— (A, k)] +5> ,

1 1/2
"'l < (||k'|12+; ! +5) :

e — (", k) <20 e k)1,
and
beh W)l <€, I K~k <2, 1<i<p.
Note that
) s”i“+1(9—+‘5) el +8 =220 x4 o<,

Y Y b 7

I — (", k") < ("%‘S) Ixll <0, +e,
and

ICh”, n I < T(B' n)ll + Nie(h” —h', m) <,
Ie(€o KN < NT(&i KO+ 12(Es k" — k) <6,
1<igp.
This clearly implies that xe % (1, #, #;), and we conclude from

Lemma 5.3 that 7 has property (4, , ) relative to ., and ;. The corollary
is proved.

6.5. PROPOSITION. Assume that © has property (d,,) relative to #;, and
Ho for some y>0=0. Then t also has property (4, o) relative to
and Ay .
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Proof. 1t follows from Corollary 3.4 that t has property (4, ), where
90 = 0’ )}0 =7 and 0,, +1= 05/(yn + Gn), Vn +17= ‘yi/(’yn + 0n) NOte that
Bn + l/’))n +1= (Bn/yn)z’ and by induCtion Bn/yn = (0/)’ )2”' Thus

PR S - Y G () o
One 1 =00 13g 5, = ‘B(H1+9,»/y,~>‘0<nl+(0/v)2'>

i=1 i=1

<) (e

and, analogously,

) =y< 1—9/v>

n+1 1+9n/yn 1_(9/y)2n+1
Clearly we have lim,, , , 0,=0, lim, , y,=y—8, and y, >y — 6. Suppose
now that xeZ with |x[|<y—6, £>0, and ¢&,¢&,,..,¢,€4,

Nis M2, - N, € Hy. Choose n so large that 0, <¢/2, and choose, by virtue of
property (4, . ), vectors he #y, k € A, with the properties

Al <1, Ikl <1,
lx—1(h k)l <0,+¢/2,
(A, n)ll <e, It(&, k)l <e,  1<i<p.

Since 6, +¢/2<e and ¢4, .., ¢, 1y, .., 1, were arbitrary, we deduce that ©
has property (4,, ) relative to 3 and ;. The proposition is proved.

6.6. THEOREM. Assume that t has property (4, ) relative to #; and HAy.
Given xe X, he #,, ke Ay, and ¢ >0, we can find (K, k') e D(z) such that

(i) x=1(n, k'),

i) 4] <(||h||2+—1— x = 1(h, k) +8)1/2
y—0

El

1 172
Ikl < (IIkII2 +y—_—5 x—(h, k)l + 8) ,

and

1 1/2
(i) ||h'—h||<(—— ux—r(h,k)n) e,
y—80

1 172
uk'-kns(mn—rm,kno e
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Proof. Choose 6 >0 such that

51/2
9)1/2(1 _ 51/2)

1 172
h|?+——|Ix —t(h k +6) +
(1812 + 5 = . k) -

1 1/2
< <||h||2+— lx—t(h, K)| +s)
y—6

and

51/2
=0T —57) "

Keeping in mind the fact that © has property (4,, ,), a first application of
Lemma 6.1 (with ¢ replaced by dy/|x —t(h, k)||) provides vectors h, € #,
and k, € A, such that

1/2
ik < 102 +—||x—z(h k)u+a) ,

1/2
el < ( 1K1 +—~ux (h,k)||+5) :

(
(
i =i <(
<

172

1
—lx—cth )
RN

172
— k
— I, )n) ,

and

lx —(hy, k)il <o

Successive applications of the same lemma will yield sequences
{hy,:n>2}c# and {k,:n>2}c A with the properties

lx—z(h,, kI <6,  n=2

6n 1/2 5n 1/2
”hn+l_hn”<<’y_0> ] ||kn+l——kn“<(y_0> 3 n>1

It is clear that A'=lim,_ A, and k'=lim,_ _ k, exist and, since
lim, , . t(h,, k,)=x and 7 is closed, it follows that (%', k')e 2(1) and
T(h', k') =x. It is easy to see that A’ and k' satisfy the other conditions in
the theorem. Indeed,
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, o el 6n 1/2
I <Al + 3 Mo =Bl TR+ Y <y_9>

512
(y—6)!2(1—46'7)

n=1 n=1

= [lh ]l +
and

A" =Rl < Ny =Rl + 3 1y — Rl < Iy — R
n=1

51/2
T o—omi—amy

and the required inequalities follow from the way in which § was chosen.
This concludes our proof.

6.7. Remark. Under the conditions of Theorem 6.6, suppose that 4 is
complete and we are given &,,...¢,€ 4 and n,,..,n,€4,. Then A’
and k' can be chosen such that (#,5,)e2(t), ({;,k)e2P(z), and
lt(h' —h, )l <e, |t(é,k'—k)|<e for 1<i<p. Indeed, the sequences
{h,} and {k,} could be chosen such that (upon denoting h,=#h and
ko=k) we have

€ &
”T(hn+l_hn9 r’l)” <W’ ||r(éi7 kn+l_kn)”<—2_nﬁs
1<ig<p, n=0.

It follows that the sequences {t(h,,n;):n=>0}, {z(&;, k,):n=>0} converge
for 1<i<p and, since 7 is closed, (K, n,)eD(t), (£, k' )eD(r). The
estimate of t(#’'—h,n;) and (¢, k' —k) is now immediate. A similar
argument shows that we can require the additional conditions
(W —h|&) <eand [(K'—k|n)l <efor 1<i<p.

A less precise form of Theorem 6.6 is the open mapping theorem referred
to in the Introduction and in the title of this section.

6.8. THEOREM. If 1 is closed and has property (4,,) relative to #;, and
Ky for some y>0=0, then t is surjective and open.
7. SYSTEMS OF EQUATIONS

Let 7, o, &, and t be as in the previous section. In order to treat the
solutions of infinite systems of equations of the form

t(h;, k)= x;, 0<i,j< o,
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we will consider another bilinear map
2P HxH - T.

The Hilbert spaces # and £ are orthogonal direct sums of infinitely many
copies of s and ¢, respectively. Thus

={{hj:j>0}:hje%and Y Iihj||2<oo}

j=0

and

1R = Z||h||2 h={h:j>0}e#.

The space & consists of all arrays {x,:i,j>0}<Z such that
[{x;:8,j20} =2 ¢ lx;ll <oo. Finally, 2(%) consists of those pairs
({h;:i=0}, {k;:j=0})e# x A with the property that (h,, k;)€ D(z) for
all 4,720, and 375_, ek, k)| <oo. If ({h,:i20}, {k;:j=0})e D(F), we
set

#{hy: 20}, {k;:j20)) = {x(hy k): 1,j> 0},

It is easy to see that 7 is a closed bilinear map (remember that t was
assumed to be closed in Section 6). However, £ is not generally continuous,
even if 7 is continuous. (In fact ¥ is continuous if and only if T =0!)
Assume now that #,c # and X,c ¢ are as in Assumption 5.1, ie.,
Hyx Ay D(t). Then H# x Ay D(%), where H#, and A, consist of all
finitely nonzero sequences with elements in 3, and %, respectively.

7.1. LEMMA. Assume that t has property (4,.) relative to Ho and A, for
some y>020. Then T has property (4,,) relative to H#, and A,.

Proof. The ball of radius y centered at the origin in Z is the closed
absolutely convex hull of all arrays {x;:i,j>0} such that x;=0 for all
pairs (i,j) except one (depending on the array), say (ig,j,), satisfying
x4/l < 7. It suffices then to show that such arrays belong to Zy(%, %, X;).
Assume therefore that x = {x,.j:~i,j=0} e, x;=0 for (i, j) # (i, jo), and
X0l <v. Let &, &, ., &€ #, 1y, 025 1, € Xy, and 6>0 be given.
Write &, = {&:i20},n,={n!":i=0}, I <n<p;then £ =0and " =0
for i > N for some large enough N. We can now use property (4,,) for 7 to
find he s and k e A, such that
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lht<t1,  lkli<1,
x4 — (A K <0+,
Ie(h, ni) <e/N, (&, k)| <é&/N,

1<n<p, O0<i<N.

We now define he #, ke A, by h={h;:i>0}, k={k;: 20}, h;=5,h,

k;=6,,k. (Here, of course, §,,=0 or 1 according to whether i #j or i=.) It

is not difficult to verify that
IRl=1Al<1, &l =lklI<1,
lx = (R, R)l = [0, — Tk, k) < O+,

and

1E (R, 0,1

It(h, 0"l <e,

~

Mz 1Mz

by
=
fl

1£(&,.,

Iz, k)l <e,  1<n<p.

We conclude that x € (%, #, #,), and the proof is complete.

We see now that all results proved in Section 6 can be applied to 7. We
will give only two applications which are very useful in operator theory:

7.2. THEOREM. Assume that Assumption 5.1 is satisfied, and v has
property (4,,) relative to #, and Ay for some y>02=0. Then for every
infinite array {x,:i,j=20}cZ there exist sequences {h;:i>0}eH and
{k;:j=0} c A such that (h,, k;)e D(t) and t(h,, k;)=x, for all i, j>0.

Proof. Determine first constants «, >0 and ;> 0 such that
aiﬂj”x,-jHSZ*"*f, i,j=0.

We can then define an element %= {o;f,x;:7,j>0} eZ. By virtue of
Lemma 7.1 and Theorem 6.6 there exists (%, k) € 2(%) such that #(h, k) = .
If h={¢&:i>0} and k= {n;:j =0}, the vectors h,=a; ¢, and k,=B; 'z,
will satisfy the conditions of the theorem.

The following result about finite systems of equations requires the full
strength of Theorem 6.6.

7.3. THEOREM. Assume that Assumption 5.1 is satisfied, and t has
property (dg.,) relative to #y and Ay for some y>6>0. Suppose neN,
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«a>0, and let {hg,hy,.nh,_}=H, (ko kysnk, Ay, and
{x;:0<i,j<n}c X be such that

lx,;—t(h, k) <a, 0<i,j<n
Then there exist {hy, h\, ... h,_}eH, {ko, k|, ...k,_} €A such that
(hi, k)Y e D(z) for 0<i, j<n,
t(hi, k)= x,, 0<ij<n,
and
no'’? no'’?
lhi — Al SW, llk; — k| SW, 0<ij<n

Proof. Define hes#, ke, and €& such that k= {hy, h, ..,
h,_1,0,0,..}, k={ko ky,..sk,_;,0,0,..}, and %={u;:i,j>0} with
u;=x;if i, j<n—1 and u; =0 if max(i, j) > n. We have

n—1

I=2RK) = 3 lx;—t(h, k)l <n’a.

ij=0

Choose ' <o and &> 0 such that ||% — #(%, k)| <n®«’ and

Theorem 6.9 implies the existence of (7', k') € @(%) such that (A, k') =%
and

172 172

- . no
If B={hj:i>0} and k'={k;:j>0}, it is easy to check that
{ho, by, s h_y} and {kq, kY, ... k,_,} satisfy the conditions of the

theorem.

8. REMARKS ON THE CASE OF BANACH SPACES J# AND %~

Some of the results presented in Sections 6 and 7 remain valid in case #
and ¢ are Banach spaces. The estimates for the solutions # and & are
somewhat different, and the technique for solving infinite systems of
equations is much more complicated. We refer to [8] for the detailed proof
of the results outlined below.
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It will be assumed throughout this section that s, 2, and % are
Banach spaces, and 1: 2(1)c # x ¥ — & is a closed bilinear map satisfy-
ing Assumption 5.1.

8.1. PROPOSITION. Assume that t has property (d,,) relative to #, and
Ay for some y>020. Then 1 also has property (4, 12 gny) relative to #,
and A,.

8.2. THEOREM. Assume that t has property (4,,) relative to H#y and X,
for some y>0=0. Given xe X, he #,, ke Ay, and £¢>0, we can find
(W, k'Ye D(t) such that

(i) x=1(h, k),

1
A" —hll < (m) lx—z(h, k)| + e,

(i 1
e e T LR G

8.3. THEOREM. Assume that t has property (4,.) relative to A, and A,
(¥4
for some y>0>0. Let {x;i,j20}cX be an array such that
2o llxy P <00, 0<i<oo, XX, llx,l'?<o0, 0<j<oo, and let
g,:i=0} be a sequence of positive numbers. Then there exist sequences
q p
{h;:i=20}e s, {k;:j=0}e X such that

(i) (hi,k)eD(x) and  t(h, k)= for §,j=0,
Il <e; +( 9*/2> Z lxsl2,  0<i<oo,

(i1) :
||kj|| $£j+<1/2—0‘17§> Z |!xij||1/2, 0<]< 0.
Y i=0

If # and A" are Hilbert spaces then (ii) can be replaced by

ki <e, +( ) S Ixl, Osi<em
(iif)
2 <, +( ) 2 Il 0<j<e
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PART HI: APPLICATION TO OPERATOR THEORY
9. A BAsIC ILLUSTRATION FROM OPERATOR THEORY

Let 5 be a separable complex Hilbert space, and suppose 7T is a
Cyp contraction on J#, that is, |T| <1 and lim,_ |T"| =
lim, , ,, [[T*"A] =0 for all he #. 1t is well known (cf. [19, Chap. VI]) that
T is unitarily equivalent to a functional model S(@), where @ € H*(Z(&)),
@], <1, @(e") is unitary for almost every 1€ [0, 27), and & is a suitable
Hilbert space. We recall the relevant definitions.

If & is a separable Hilbert space, and 1 < p < 0, we denote by L?(&) the
space of measurable &-valued functions f on T = {e": te [0, 2n)} such that

1 2= ) 1/p
11,=(m [ it ) <o

If & = C we will write simply L” for L?(&). The space H?(&) [resp., H{(£)]
consists of those functions fe L?(&) such that |37 e™f(e") dt=0 for n>0
[resp., n>0]. We denote by H*(#(&)) the set of all bounded, analytic,
£ (&)-valued functions @ on D={ieC:|i| <1} As before, we use the
notation H* in the numerical case. If ®e H*(L(£)) then the limit
P(e")=lim,_, , d(re”) exists in the strong operator topology for almost
every te [0, 2n). We refer to [19] for a detailed account of these facts.

We can now define the operator S(@), where @ is as above. Let S denote
the unilateral shift in H?(#) (ie, multiplication by e), and let
H(0)=H* &) O OH?*(&). Then

S(@)=PS| H(0),

where P denotes the orthogonal projection of H*(£) onto #(@). Without
loss of generality, in the sequel we take # = #(©) and T=S(@).
We note that for f, ge H*(&) we can define a function f-ge L' by

(f-8)e")=(f(e")] gle"),  t€[0,2n),

where the scalar product is taken in &. It will be convenient to denote by
[y ] the class in L'/H} of a function y € L'.

The sesquilinear map 7,: # x # — L'/H}, defined by 7,(f,g)=[f-g],
f, g€ H, has proved a basic object in the study of T. It was shown that T
displays a very rich structure (for instance, it is reflexive, and is a strong
dilation of every strict contraction on a separable Hilbert space) whenever
7, is surjective (cf. [14, 1, 3, 5, 10, 7]). Indeed, if T is, as above, of class
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Cw, and 7, is surjective, it was shown in [3] that T belongs to the class
Ay, and hence the dilation theory of [5] can be applied to T. It is
therefore important to characterize the operators T of class C,, for which
7, is surjective. It is important to realize that an operator T, for which 1, is
surjective, necessarily satisfies the relation ¢(7)> T.

We recall now such a characterization which was first conjectured in
[3]. For ue H* define a bounded operator u(T)e £ () by

u(T) Pf=P(uf), feH&), (9.1)

where P, as before, is the projection of H*(&) onto #. The association
u—u(T) is the H™-functional calculus for T (cf. {19]). Recall that
()| € fu|l o, ue H®. 1t is easy to show that the H*-functional calculus
is an isometry (i.e., |u(T)|| = |lull,, ue H*) whenever 1, is surjective. The
conjecture states that the converse is also true, i, t, is surjective if the
H>=-functional calculus is an isometry. In this paper we prove weaker forms
of this statement, and the conjecture may be viewed as a limiting case of
our results. Our difficulty in proving the conjecture lies in the fact that
Problem 2.2 has a negative answer for 2 =L'/H} as shown by the
following slight modification of van Dulst’s example (see (2.3)).

9.2. ExampLeE. Let X=L'/H), C={[x]eX:|[x]I<1}, B={[x]:
xeL', |lxl, <1, x=0 on a subset 6, of T of measure (1/27) {, dr>4}. As
in Example 2.3, since H* ~ (L'/H})* and the norm of ue H® is

ess max{u(e"): te [0, 2n)},
we readily infer that B super-dominates C. If B were strongly dense in C

then [1]€ B~, and hence we can find sequences {x,}* =B, {y,}= ,cL’,
and {¢;}>* < Hj such that

j=1
l+o,=x+y, Jj=12,., (9.3)

and
hyill, =0 for j— co. (9.4)

Let

el 4 7

1 e’ + 9
t//j(z)—exp(ﬂj‘o eT_—Zlog|1+<pj(e )Idt), ze D,

be the outer factor of 1+ ¢,e H'. Then
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1 (2n ) )
1<exp(o- | log [x(e")+ (e di
27[ o . y

1
< {exp [(meas T\0, ) log (——meaS(F\G_‘,) J‘v\ff\., |x; 4yl a’t>J}

1
-eXp (Z LV log |yl dt),

which tends to 0 for j — oo, which is a contradiction.

10. H”-FuNcTioNAL CALCULI AND SURJECTIVITY OF T,

Let T=S(@)e L(H# = #(0), be as in Section 9; thus T is an operator
of class Cgo. Fix a number re (1, + o) and define the space HY as

Hy.=H (&)n K if rz2,
H.=closure of & in H'(&) if r<2
Denote, as before, by P the orthogonal projection of H*(&) onto #. We
recall that, for fe H*(&),
Pf=f—OP24,8, where g(e”) = @(e”)* f(e") almost everywhere.
A famous theorem of M. Riesz, and the fact that ¢ is a Hilbert space,
implies that there exists a constant ¢, such that

1Psrgll, <c, gl  geLE)NL'(&).

We conclude that P(H* (&) H'(&)) = H’ and

1PAL <(c,+ D IIfNl,, feHYE)nH'(&).
Now H*(&)n H'(&) is dense in H'(&), and therefore there exists a con-
tinuous linear map P,: H'(§) — H’, such that P, coincides with P on
H*(&)n H'(&). It is easy to check that P, is actually a projection of H'(&£)

onto H%.. We remark that the scalar product (-|-) extends to a sesquilinear
form

- Hpx Hy - C

if 1r+1/s<1.
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10.1. Lemma. Letr,se€ (1, + o0) be such that t/r + 1/s = 1. Then we have

(24 ) ISl <sup{|<f | gdl:ge Hyn o, gl <t} <f],
Jor fe H,.

Proof. Observe first that the sesquilinear form <¢.|-)> extends to
L’'(&)x L*(&) by the formula

1 (2= . :
{hiky =3 L (h{e") | k(e")}) dt, heL'(&), kel’(&),

and
Iall, =sup{|<h|k)|:ke L*(&), |kll, <1}

for all he L'(&). The inequality

sup{|{f| grl:geHyn ., gl <1} <],

is obvious, and for the first inequality in the lemma it suffices to consider
elements fe H:n #. We have, indeed,

/1, =sup{I<{f | g>l: g€ L’(&), lgh <1}
=sup{|{f | g>l:ge L(&) N L* (&), lgll, <1}
=sup{|(pus)f | g): g€ L*(E)n LX(8), lgll. <1}
=sup{|(f | Pras) 8)l: g€ L(E)NL2(E), lgl, <1}
<sup{|(f | k)|: ke H(E) n HX (&), Ikl < ¢}
=sup{|(Pf | k)|: k€ H'(&) n HX (&), llkll, <.}
=sup{|(f | Pk)l: ke H'(§) n HX(&), Ikl <c,}
<sup{|(f | M- he Hrn o, |hll <cfc,+1)}
and this completes the proof.

We now define the HP-functional calculi. Let pe(l,x], re
[p/{p—1), 0], and let g be defined by 1/g=1/r+1/p. For ¢ H? we
define a bounded linear operator I, (¢): H— H% by

Fp,r((p)fz Pq((pf)’ fe HrT

Clearly I' , ,{¢) = @(T), as defined in (9.1), for ¢ € H*. A density argument
based on (9.1) shows that, in fact,

@) P, f=Pof), feH(S).
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Since |of |, <llell, If|l, for ¢ € H?, fe H'(&), we have

I <(I+c,)lel,,  @eH”

The spaces H; and the functional calculi I',, can be defined for arbitrary
absolutely continuous contractions, and for re [1, + oo ], without the use
of functional models. We refer to [9] for details.

We can now state the main result of this section.

10.2. THEOREM. Fix pe(2, +) and rel[2,2p/(p—2)]. If the
Sfunctional calculus I, is an isomorphism, ie.,

I, (@l =zclel,,  @eH?, (10.3)

for some ¢ >0, then 1, is surjective.

It can be shown (cf. [9]) that the above sufficient condition is also
necessary. The conjecture alluded to in Section 9 is equivalent to the
limiting case p = oo in the statement of the above theorem.

The remaining part of this section will be devoted to the proof of
Theorem 10.2, which will be broken into a sequence of lemmas. We will
consider analogues of the map t, which, unlike 7,, take values in Banach
spaces with a separable dual. More precisely, note that for p’ > 1 we have a
continuous injection L7 /HZ — L'/H}. In order to simplify notation we will
identify L”/HZ" with a linear manifold in L'/H}. We define now

Ty

' D(t,) (cH xH)->L|HE

by setting 2(r,)={(f,g)eHA xH#:1,(f, g)eL?/HY} and writing
1,(f,g)=1,(f,g) for (f,g)eZ(z,). The fact that 7, is a closed ses-
quilinear map (as defined in Section 5) is immediate. It is also clear that

(HpnH)yx (HnH)c D(1,)
and
It (N <IfI lgls, feHyn#, geHinH, (104)
provided that 1/r+ 1/s<1/p".

10.5. LEMMA. Assume that r,s,p'e[1, + ) and 1/r+1/s<1/p’. Let
fiforfism€HYNH  and  g,80, 8, ..., CHyNH  be such that
sup{llfill,:j=0} < o0, sup{lig,l,:j=>0} < oo. Then we have

lim |z, (T’f},g)ll— lim z, (Tf, g)ll =0.

J—= >

580/78/2-10
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Proof. We notice first that it suffices to prove the lemma under the
more stringent condition 1/r + 1/s=1/p’. In order to prove that

lim |7, (T, g;)I =0
J—= o0

it suffices to show that lim, , ., |T’f[|, =0 for all fe H;.n . Since Te Cy,
we know that lim,_, . |7/, =0 and hence, if r <2, we have

lim | T’f], < lim || T’Al,=0.
_ m

Jj— oo
It suffices therefore to consider the case in which r > 2. Moreover, since

1771, < e, + DAL

we may restrict ourselves to the case where f belongs to the dense (in HY)
linear manifold H% with p =2r —2>r. In that case the Schwarz inequality
yields

IT < NTAIY TS <+ e ) 11, TN

and again we conclude that lim, , ., [|7’f], =0 because T € Coo. The proof
that

lim |0 (T7f;, g)I =0
J—

is based on the observation that T*’g e H%., ©,(Tf, g) =1,(f;, T*’g), and
lim,, , [IT*gll,=0. The fact that T*’ge H} and |T*'gl, <y, gl
ge H.n 3, for some y,< oo follows by duality from Lemma 10.1. The
proof that lim, ., [|T*/g||,=0 is now similar to the above proof for the

sequence {77f:j>0}. The lemma is proved.

Let us note for future reference the useful relation

Ko, 1,(/.8)>=(T,(0)f | 8) (10.6)

for fe HY, ge H%., s=pr/(r(p—1)—p), 1/r+1/s=1/p’, and ¢ € H. This
relation was implicitly used in the above proof.
Let now p and r be as in the statement of Theorem 10.2, and set

/ P _ pr
p=——, S =

= rip—1)—p
We define now the set
B={1,(f,g):feHynH,ge HrnH, | fl. <1,
lgll,<1,and |z, (f, &)l <1}
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10.7. Lemma. If (10.2) holds then B super-dominates the ball
C={heL”/HE||h| <y}, where
c
c,elc,+ 1) e, +1)

')):

Proof. We use first Lemma 10.1 and relation (10.6) to show that
B dominates C' = {h:||h| <y'}, where y = c¢/(¢, + ¢?). Indeed, for
peH = (LF/HZ)* and s’ =s/(s— 1)=pr/(p+r) we have

sup{|{¢, x>|: xe B}
= sup{|<o, 1,(f,g)|: fe H N #,
geHsn A Sl lgla< L it (gl <1}
z sup{|<{l, (@) f | g)|:fe HrnH, ge Hyn H,
IA1.<1L gl <1}
2 (I +e) 'sup{ll, @) flle: fe Hrn #, |If)l, <1}
=7 lloll, =sup{|<p, x>|: xe C'},

where we used the fact that r>2 and s> 2.

Fix now an element ¢ € H* and define ¢,e H® by ¢,(1)=4A"¢(A),
AeT, for n=0,1,2, ... By the previous calculation, we can find elements
h,e H.n 3 and k,e Hyn # such that ||4,|, <1, ||k,|,<1, and

P> Tyl k)0 27 N@all, — Un=7"lol,—1/n.
Observe that
<(pn’ Tp’(hn’ kn)> = <(pn’ 7:l(hn’ kn)>
=(@.(T) h,| k,)
=(T"o(T)h, | k,)
=(p(T)T" h, | T*"k,).
We have f,=(l/c(c,+1))Th,e H n#, g,=(1/c,) T*k, e H,n K,
Il <1, lg.ls<1, and
<(p’ Tp’(fn’ gn)> > Y ”(p”p— 1/"

Since H* is norm-dense in H” = (L*/HE)*, in order to conclude the proof
it suffices to show that 7,(f,, g,) € B, eventually, for every finite set F < B.
This will follow at once if we prove that

lim Dist(aco{t,(f,,g.) 1,(f.g)}, B)=0

n-— oo
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for every fe Hrn#, ge Hyn#, such that ||f|,<1, lgl,<1, and
T,/ g)il < 1. It suffices to prove that

lim dist(a,7,(f,, g,) + B,1,(f, g), B)=

n— oo

for any sequence {(a,, f,): n>0} = C such that |a,| +|8,] <1 —¢, for some
¢€(0,1). Fix square roots «)> and .2 and define u,=al?f,+pl2f,
vy,=aP g, + B2 g We haveu eH.AH,
leaall3 < lotl 1Sl + 1Bl 1S13 42 1o, |2 (B2 1S £
< (o) + 1B+ 1 L))

<(I=e) A+ 1S 1 LD,

and
% 1t 1 kn
(1)l = i +1)I(T flh) <——= (c,+1)“T fll.

We conclude that |u,ll,<1 for n sufficiently large. Analogously,
v, e Hyn A and |v,||, <1 for n sufficiently large. Next,

I (2t ) S Nl 17,45 8N+ 1BA) T,(f: 8)I
+ 1021 1B 21, (fs @)+ e (S 2011
< (o + 18D+ 3 I7,(f £ + 3 12,0/ 81
S =&)X+ 30,0/ O + 3 17,1, 801,

and an application of Lemma 10.5 shows that ||z,(u,, v,)[ <1 eventually.
We conclude that t,(u,,v,)eB eventually. Finally, we show that

limna © ”antp'(fn’ gn) +ﬁntp’(f; g) _Tp’(un’ Un)” =0. Indeed’
”anrp'(fn’ gn)+ﬂnrp’(.f; g)_ ( Up, Uy )”
<o) 182 (e p (S @ + 1T, f, gl

and the present lemma follows by Lemma 10.5.

10.8. LEMMA. Under the conditions of Lemma10.7, 1, has property
(4,,,) relative to H;. and H¥,.

Proof. The dual H” of L”/HE is separable, and therefore the set D(0)
(associated with B in Section 3) contains the ball C= {xe L”/H%: ||x|| <y}
by Corollary 4.6. In particular, the closure of B contains C.

Let x € C be such that ||x|| <y, and choose € L? such that [|ys| <y and
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¥ + HY = x. Next, define for n=1,2,3, .., x,e C by x,=y,+ Hf, where

Y, (e") = e "y(e") almost everywhere. Since B is dense in C, we can find

hi,hy, .€e Hyn H, ki, k,,..€ Hn3# such that |h],<1, [k, l,<1,

It (h,, k) <1, and |x,—7,(h,, k)| <1/n for n> 1. Set now f, = Th,,

g.=T*"k, n>1 Fix pe H”, |¢|,<1, and set ¢,(1)=2"¢(1), || <1.
We clearly have |¢,[,<|l¢l,<1, and hence

<o, x—1,(fs &) > =<0, x> —(@(T) [, | gl
= {@u x> = (@u(T) b, | K,)|
=[{@n X, = Tyl k)|
<l@all, 1xy —1,(h,, k) < 1/n.

We deduce that

”x_Tp’(fn’ gn)” =Sup{|<(Pa x_Tp'(fna gn)>| (pEHOO’
loll,<t}<t/n

By Lemma 10.5 we see that xe Zy(t,, HY, H}), where HY. and HY. are
viewed as linear submanifolds of #. Thus Cc Zy(t,, H}, H%) and the
lemma follows.

Theorem 10.2 follows at once from Theorem 6.8 and the following
lemma.

10.9. LEMMA. Under the conditions of Lemma 10.7, ©, has property
(do.1) relative to Hy=H and Hy= H).

Proof. For each 1eC such that |i| <1, there exists an element
¢, € L'/H} such that ||c,|| =1 and <u, c;» =u()) for ue H*. Moreover, the
closed absolutely convex hull of the elements c; is the unit ball of L'/H).
Thus, by virtue of Proposition 5.11 in order to prove our lemma, it will
suffice to show that c;e%,=%(t,, #, #). It is easy to see that
¢, € L7 /H? ; indeed, the functional u — u(1) is continuous on H”. Fix AeC,
|]A] < 1. By Lemma 10.8 and Theorem 7.2 we can find sequences {/,:n>0}
and {k,:n>0} such that ¢, (h, k;)=1,(h;, k))=0d,c;, i,j=0. With the
notation u,,(z)=(z—A)", zeC, |A] <1, we have

(T—A)"h,;| kj) = (s Ty(H;, kj)> = 5ijum('l)= 51)'5m0'

These relations imply that (7' — 1) .# has infinite codimension in .#, where
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M=\ {Th;:i,j=0}. Let e, e,,.. be an orthonormal system in
M E ((T— 1) #), and notice that we have

Ti(e;, e;)=c;, iz0

Since T e Cy,, we have

fo

Jim iz\(e;, )| = lim |z,(h, e,)| =0

r every he #, and this clearly implies that ¢; € %;,. The lemma is proved.

10.10. Remark. 1t is an easy consequence of Lemma 109 and

Theorem 7.2 that the operator T of class Cy, belongs to Ay, if (10.3) is
satisfied. We recall that Te Ay, is and only if arbitrary systems of the form

T
di

(f»8)=x;, ,j=0, can be solved or, equivalently, if T is a strong
lation of any strict contraction acting on a separable Hilbert space (see

[5,7]).

10.

11.

12.
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