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Pseudomorphic (strained channel) modulation doped field effect transistors (MOD- 
FETs) have recently received a considerable amount of attention. These devices 
provide potential for both improved device performance and new physics studies. 
In this paper we present theoretical studies of n-type and p-type strained channel 
MODFETs. Information on carrier masses, subband occupation, and the charge 
control picture as a function of strain in the channel is presented. The n-MODFET 
studies are based on using the results of tight binding calculations for bandstructure 
in the strained channel. The p-MODFET problem involves the use of the Kohn 
Luttinger hamiltonian. S If e consistent solution of the Schrcdinger equation and 
the Poisson equation then allows us to study the MODFET properties. In ptype 
MODFETs, the control of heavy hole - light hole coupling via strain allows the pas- 
sibility of tailoring hole masses. Comparisons with some of the experimental works 
previously published are also presented 

I. INTRODUCTION 

In a few short years, advances in epitaxial growth 
techniques such as molecular beam epitaxy (MBE) and 
metal-organic chemical vapor deposition (MOCVD) have 
moved the MODFET from a research curiosity to a com- 
mercially viable device. Much of the MODFET work has 
focused on material systems composed of GaAs/AlGaAs 
(on GaAs substrates), and more recently, InussGaarrAs/- 
Ins.ssAls.aAs (on InP substrates). These are lattice 
matched systems with relatively well developed growth 
and processing technologies. 

In general, the device performance of a MODFET 
can be improved by controlling the following material 
related issues: i) higher sheet charge density (controlled 
by increasing the band discontinuity), ii) lower carrier 
effective mass (by altering the channel bandstructure), 
iii) increasing peak and saturation velocities (by increas- 
ing band discontinuity and ptervalley separation), iv) 
increasing low field mobility (by lighter carrier effective 
masses and better carrier confinement). It is possible 
to achieve the above goals by introducing excess In in 
the channels of the two lattice matched systems men- 
tioned above. For the GaAs/AlGaAs system, addition 
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of In could also avoid the light sensitivity problem that 
the n-type lattice matched system suffers from’. The 
use of strain in p-MODFETs can have additional ad- 
vantages due to the ability of strain to decrease the hole 
masses. Indeed, recently, p-MODFETs have received 
considerable attention due to this potential. The need 
for superior hole transport properties exists for both p- 
MODFETe (for complimentary logic) and for npn het- 
erojunction bipolar transistors (HBTs). Work by Jones 
et al2 on the InGaAs/GaAs structure has shown that 
hole masses can indeed be decreased by biaxial compres- 
sive strain. Strained p-MODFETs have been studied by 
Drummond et al3 and Lee et al’ with both groups find- 
ing enhanced device performance due to strain. 

To fully exploit the potential of strained channel 
MODFETs, it is important to develop a formalism to 
study the channel material properties and charge con- 
trol properties of both n-type and p-type devices. An 
accurate formalism tested against relevant experiments 
can then allow an optimization of such devices. In this 
paper, we provide a formalism based upon accurate nu- 
merical techniques to study the full quantum mechan- 
ical problem of the n- and the p-MODFET. The p- 
MODFET requires a formalism which is capable of treat- 
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ing the heavy hole (HH) - light hole (LH) problem self 
consistently with the Poisson equation. Such a formal- 
ism along with the techniques necessary to solve it are 
prerrented as well. 

In the next section, we present the theoretical for- 
malism necessary to understand the charge control pic- 
ture in n- and p-type MODFETs. The results of the 
modeling are presented in section III, after which we 
cohclude in section IV. 

II. THEORETICAL CONSIDERATIONS 

The general strained channel MODFET is shown in 
figure 1 where excess In is added in the channel where 
the two dimensional electron (hole) gas is formed. Be- 
fore the MODFET properties are understood, it is im- 
portant to study the bandstructure of the strained re- 
gion. Once the bandstructure in known, one must solve 
the relevant Schriidinger equation self consistently with 
the Poisson equation. The formalism must be capable 
of dealing with arbitrary layer properties and shapes of 
the potential profile in the well region and, therefore, 
we do not employ the variational technique for solution 
of the Schrijdinger equation which has been employed 
commonly in modeling the lattice matched MODFET. 

In figure 2, we depict the general flowchart of our 
approach to n- and p-type MODFET simulation. We 
now describe the components of our formalism. 

1I.a Bandstructure of the Strained Channel Region 

Formalism for n-MODFET: 

We have used the tight binding method (TBM), in 
order to model the carrier masses in the strained chan- 
nel. The bandstructure is developed first for the un- 
strained channel material by carefully fitting the bandgap, 
effective masses, and intervalley separations. THe ef- 
fects of spin-orbit interaction are included in the tight 
binding formalisms. The virtual crystal approximation 
is employed to model alloys by averaging the tight bind- 
ing matrix elements. This yields a set of tight binding 
matrix elements (and spin-orbit coupling parameters) 
which accurately describe the bandstructure to about 1 
eV away from the bandgap for both the electron and the 
hole states. 

After the tight binding parameter set for the channel 
material is developed, the effects of strain on the tight 
binding bandstructure are considered. Known deforma- 
tion potentials of the material are fit by developing a 
scaling model for the tight binding matrix elements with 
strain-altered interatomic distances. A scaled square law 

buffer 

semi-insulating substrate 
GaAs or InP 

Figure 1: General structure of the pseudomorphic MOD- 
FET. 

rule is used alter the tight binding matrix elements with 
the change in atomic separation’. Our formalism used 
the following relation 

E,dro + 6r) = E,dro) 
1 +a(%+ @$) (l) 

Here p and p’ stand for atomic orbital.3 (s p p p 7 2, Y, I ) 
at sites which in the absence of strain are separated by 
a distance T,. br is the change in the atomic spacing 
and a is a fitting factor used to match the calculated 
deformation potentials for hydrostatic and biaxial defor- 
mation to measured values. Different values for alpha 
were used for first and second nearest neighbor interac- 
tions[**]. This expression, when incorporated into the 
tight binding formalism, allows one to describe the en- 
ergy bandstructure under arbitrary strain conditions. 

Using this formalism, we can determine the band- 
structure of the strained channel for a given model for 
the absorption of the strain by the system. We employ 
the pseudomorphic approximation for strain incorpora- 
tion in the channel material. According to this approx- 
imation, the lattice constant of the regions matched to 
the substrate is unaffected. In the non-matched region, 
the parallel lattice constant is forced to take on the value 
of the lattice constant of the substrate, while the per- 
pendicular lattice constant of the non-matched material 
is then altered according to the Poisson effect. Thus, 
the parallel and perpendicular lattice constants of the 
strained channel become 

ai = a; (2) 
= (1 + E)UZ 

ai = (1 - us)aZ (3) 

where a, represents an unstrained material lattice con- 
stant, the superscript ‘c’ denotes the channel material, 
the superscript ‘s’ denotes the substrate material, and 
(T is Poisson’s ratio for the channel material. 
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D-MODFW. 

Strained channel material proper- 
ties (electron masses) via a tight 
binding formalism 

u 

Schriidinger equation for the one 
band electron states solved self con- 
sistently with the Poisson equation 

u 

Subband levels, carrier density, and 
subband occupation 

397 

p-MODFET 

Deformation potential theory and 
the Kohn Luttinger hamiltonian 

u 
Four band Schriidinger equation for 
hole states solved self consistently 
with the Poisson equation 

u 
Subband levels, hole masses, carrier 
density, and band occupation. 

Figure 2: Flow chart modeling the procedure for n- and 
p-type pseudomorphic MODFETs. 

Table 1: Band gaps of pseudomorphically strained chan- 
nel materials on GaAs and InP substrates. 

Table 2: Effective masses in the perpendicular and par- 
allel direction for pseudomorphically strained channel 
materials on GaAs and InP substrates. 

In,Gar_,As I G A n0.53+r it0.47--r 3 

X %&rained m;strotned miatrained mktrained mibhd mistroined 

0.00 0.0660 0.0660 0.0660 0.0457 0.0457 0.0457 
0.03 0.0648 0.0656 0.0652 0.0446 0.0451 0.0455 
0.06 0.0636 0.0651 0.0646 0.0434 0.0444 0.0453 
0.09 0.0624 0.0647 0.0639 0.0423 0.0437 0.0451 
0.12 0.0612 0.0642 O.OF34 0.0411 0.0429 0.0449 

In tables 1 and 2, we show some calculated values 
of the electron properties in channel materials lattice 
matched to GaAs and InP substrates. Note that ta- 
ble 2 gives values of the effective mass in the parallel 
and the perpendicular directions for the strained chan- 
nel materials. For unstrained materials, the equi-energy 
surfaces for the gamma valley are spherical in the mate- 
rials which we are considering. Strain, however, lowers 
the symmetry of the crystal and changes the shape of 
the equi-energy surfaces to elipsoidal. That is, the bi- 

axially strained gamma valley must be characterized by 
a parallel and a perpendicular effective mass which will, 
in general, be different. 

Formalism for p-MODFET: 

The plan of attack for modeling p-type MODFETs 
must be different then for the n-type devices. This is 
because the hole bands couple to each other, and this 
coupling is effected by the shape of the confining per 
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tential. The inter-band coupling strongly controls the 
k-space dispersion of the bands, and thus alters the ef- 
fective mass in the parallel directions. This is differ- 
ent from the n-type case where we assumed that the 
parallel effective mass was a material property which 
was uneffected be the confining potential in the ‘z’ di- 
,ection. To model the subband dispersion in a p-type 

strained h!ODFET, we use the Kahn Luttinger hamilto- 
nian. This ,r.<:Lhod is useful since it can be directly used 
to set up the Schrodinger equation for the hole envelope 
function in the MODFET geometry. 

Before exaniining confined hole bandstructures, one 
first must understand the Kohn Luttinger model for the 
valence bandstructure in bulk materials. The four band 
hamiltonian describes the bulk hole states quite accu- 
rately up to several hundred meV below the top of the 
valence band. For bulk material, the Kohn Luttinger 
Hamiltonian can be written as’ 

where 

Hhh = -g [( k: + k:)b, + 7s) + n:(7r - 27s)] 0 

fh = -gr( kz + k:)(7r - 72) + kZ(n + 2yz)] 

c = $$7a(k: - k,2) - 2i73k,k,] 

b = g(kz -ik,)73kz 
m, 

(5) 

Here, 7*,7z and 73 are the Luttinger parameters. These 
parameters determine the band interaction, and are gen- 
erally considered to be a material characteristic. Param- 
eters for many different III-V semiconductors are given 
by I+awa&‘. In the case of alloys, we used an aver- 
age of the parameters which Lawaetz listed for the pure 
compounds. 

The effect of biaxial strain OP the, hole bandstructure 
is ,to cause a splitting between the heavy and the light 
hole states. This splitting is given by , 

HeavyHole : EHH = Eo + ;&h - 6hv 

LightHole : ELH = E, - ;&” - shy (6) 

Here 6#h and 6s are the shear and the hydrostatic con- 

tributions to the change in the band energies from the 
unstrained energy, E,, and are given by: 

6 ah = -26 [(cu + ‘cn) /c,J i 

shy = -‘La [Cc,1 - CIZ) /cu] E. (‘7) 

err and cis are the elastic parameters of the channel 
material, E is the strain in the parallel direction, and 
a and b are the material deformation potentials. For 
In,Gai_,As the experimentally measured material prop- 
erties yield a shift of -5.96.e for the heavy hole band and 
-12.4.~ for the light hole bandg. 

To describe the hole states iu a biaxially strained re 
gion, one can simply include the splitting between the 
HH and LH states in the diagonal terms of the Hamil- 
tonian. The inclusion of this splitting alters the extent 
of the coupling between the HH and the LH states, and 
therefore changes the hole masses in the perpendicular 
and the parallel (or the transport) directions. 

1I.b Subband dispersion relations in a MODFET 

The next step in the calculation is to obtain the band 
dispersion relations in the quantum well which confines 
the carriers in the MODFET. This requires a self con- 
sistent solution of the Poisson equation which estab- 
lishes the potential profile in the MODFET, and the 
Schrijdinger equation. 

A technique commonly used to solve the Schrijdinger 
equation is the variational approach. While this is a 
useful technique and can involve considerable savings in 
computer time, it is not possible to apply it to arbi- 
trary shaped potentials with material parameters which 
change considerably across interfaces. We solve the prob- 
lem numerically by casting the Schriidinger equation as 
a finite difference equation which is solved by using stan- 
dard eigen system solution routines commonly available 
in computer mathematics libraries. This is possible since 
we are only interested in bound or quasi bound states. 
Therefore, without loss of generality, we can a.pply the 
boundary condition %‘(-L) = Q(L) = 0. Here, fL is 
the region surrounding the well in which the two dimen- 
sional electron gas is formed. 

The Schrodinger equation for the one band electron 
problem is written as: 

- $&V%,(k,,, 2) + V(z)Q&,> 2) = &‘@n(kt\,z) (8) 

where V(z) represents the confining potential profile 
seen by the electron. In the direction parallel to the 
interface, k is a good quantum number, and the solu- 
tion has a general form 

rk‘:l&O” = ~n(i)U,(T)e~kll.P (9) 
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where @(.z) is the electron envelope functions for the 
nth subband in the one dimensional problem, and uO(r) 
are the zone center Bloch functions. By substituting 
equation (9) into equation (8), we are left with a one 
dimensional Schrijdinger equation for the envelope func- 
tions in which we use the prependicular electron effective 
mass. The eigen energies which result from the solution 
to this equation will be the minima of the subbands 
which are parabolic and character&d by the parallel 
effective mass. Note that the effective mass can change 
across interfaces from one material into another. This ef- 
fect is easily included in the formalism if the Schrijdinger 
equation is solved using finite difference techniques. 

The hole states are much more complicated because 
of the four fold degeneracy at the zone center. The Kohn 
Luttinger hamiltonian can be used to describe the hole 
bands in a confining potential, except k, must be treated 
as an operator (k, = -i&) so that the matrix elements 
listed in equation (5) becomes 

Hhh = (G + $)(n + 72) - (71 - 27*)E 
I 

+V(z) + &h 
Hut = (G + $)(7r - Yz) - (7r + 27*)& 1 

+v(z) - f&h 

Here, &ah is the shear splitting discussed earlier. Anal& 
gously to the electron problem where the perpendicular 
effective mass was varied across interfaces to reflect dif- 
ferent material characteristics, in the hole problem, the 
Kohn Luttinger parameters can also be so varied. 

The general solution to this equation is slightly more 
complicated then for the electron case. In the electron 
case, the ‘z’ dependent part of the wavefunction, which 
we called the envelope function, and the in-plane ra- 
dial portion of the wavefunction are strictly separable. 
Because of this, the envelope function varied with ‘z’, 
the real space dimension perpendicular to the interface, 
but not with kll. This allows us to easily calculate the 
charge distribution along the ‘z’ direction. For the hole 
case, the two variables in Schriidinger’s equation are not 
strictly separable. Because of this, there may be some 
k-space dispersion of the envelope function. The general 
solution for the hole subbands can be written 

Here, #z(kll, z) is the envelope function for the nth band 
which, as was just remarked, can be a function of k as 
well as z. v is an index representing the different angular 
momentum states and, u:(r) are the zone center Bloch 
functions for the Y component of the wavefunction. 

11.~ The Charge Control Model 

The potential profile, V(z), in the above equations 
is obtained from the one dimensional Poisson equation, 

VV(z) = -$ 02) 

As indicated by equation (12), we can account for changes 
in material parameters by changing c across interfaces. 
The charge density, p(z), is the sum of the doping charge, 
the free charge, and the quantum confined charge. This 
can be written as 

p(z) = Nd(Z)-Ar~(Z)--nfree(Z)+Pfree(Z)-_Cni~l(z)~i(r) 
t 

(13) 

where N. and Nd are the doping levels, nfree and pfree 
are the free carrier concentrations calculated by Fermi 
Dirac statistics, and the sum is over i two dimensionally 
confined subbands in which the occupation is ni (or pi 
for the hole case). In equation (13), we have written 
4 as a function of ‘z’ only. As discussed above, this is 
the readily available form of the solution for the electron 
case. For the hole case, however, to be strictly correct 
we would have to integrate over the band occupation in 
all of kll space to obtain the pure z dependence of the 
envelope function. In practice, this would take excessive 
computer time. To get around this problem, we intm 
duce the approximation that after integrating out the k 
dependence of the envelope function, the result would 
be similar to the envelope function at k=O. That is, 

where Ei is the maximum energy in the it* subband, 
f(E) is the Fermi distribution function for holes, 4 has 
been written in terms of energy rather then momentum 
(the relationship coming directly from the subband die- 
persions), and 9; is the subband density of states which 
is given by 

g;(E) = 
1 dAi(E) -- 

4x2 dE 

(11) where A;(E) is the area in k space contained by subband 
i at energy E. 
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Figure 3: k-space dispersion of the squared magnitude 
of the envelope function. Note the small second hump 
towards the front of the figure indicating that the state 
has become mixed and now includes some of the first 
excited state. 

The justification for using the approximation of equa- 
tion (14) comes from the fact that the calculated disper- 
sion of the envelope function does not vary strongly with 
k close to the zone center where most of the carriers will 
be. Figure 3 shows an example of a calculated dispersion 
of the envelope function. Depicted in figure 3 is the dis- 
persion of the lowest @++ subband. The marked change 
in the dispersion comes at a point where the subband 
passes very close to the first excited @ti subband. After 
this point, we can see that a small amount of the first 
excited state is mixed into the band as evidenced by the 
existence of a small second hump in the wave function. 
As can be seen, however, close to the zone center the 
envelope function does not change dramatically. Our 
calculations show that even though the envelope func- 
tions do change dramatically in some places, especially 
where two bands come close to each other in energy or 
cross each other, the total quantum confined charge dis- 
tribution given by the sum in equation (13) is essentially 
unaltered by the approximation. 

In order to determine the subband occupations, ni 
or pi, one has to determine the density of states in each 
subband, and integrate this multiplied by the Fermi dis- 
tribution function. As with everything else, this is much 
easier to do in the electron case. In the electron case, 
the subbands are parabolic and can be characterized by 
a constant effective mass. Because of this, the density 

of states is a constant above the subband minimum en- 
ergy, Ei. The integration of a constant multiplied by the 
Fermi distribution can be carrier out analytically giving 
the occupation in each electron subband to be 

In the hole case, the subbands are very nonparabolic 
and, therefore, the density of states will not be a con- 
stant. Because of this, equation (15) must be used to 
numerically find the density of states in each band. This 
will then have to be numerically multiplied by the Fermi 
distribution function and intergated in order to deter- 
mine the subband occupation. Due to this, the corn- 
puter time involved in the solution of the p-type MOD- 
FET is quite significantly higher then the n-type MOD- 
FET. 

One final aspect of the formalism merits discussion. 
This is the method which we use to account for free 
charge. Away from the quantum well where the carriers 
are not bound, the density of free electron or hole states 
takes on its normal form which is parabolic with en- 
ergy. The density of occupied free carrier states, or the 
density of free carriers, can be calculated by evaluation 
of a half order Fermi integral. Inside of the quantum 
well the states below some confining energy will be two 
dimensional and will have the characteristics described 
above. However, even in the spatial location of the quan- 
tum well, there will be free carrier states with energies 
above the energy of the confining potential. We have ac- 
counted for these states be assuming that the parabola 
of free carrier states begins at the top of the confining 
potential instead of at the conduction band as is does in 
non-confined regions. Figure 4 conceptually shows this 
distribution of free and confined states at a position in- 
side of the quantum well. 

The outcome of the solution of the above equations is 
a full charge control model of the device, and properties 
of the two dimensional carrier gas in terms of masses, 
subband levels, subband occupations, etc. These results 
will be discussed in the following section. 

III. RESULTS 

In order to compare the two popular pseudomorphic 
materials systems in use today, we applied our model for 
a n-type MODFET to two similar structures one with 
a GaAs substrate, (the other with an InP substrate). 
The structure of the devices simulated was as follows : 
a thick buffer of Al,,.sGas.,As (Alc.sJno.,sAs), 4OOA of 
GaAs (Inc,.esGao.r7As), a 1OOA thick layer of In,Gar_lAs 
(Ino.ss+zGa0.47_1.As) in which the excess In fraction, z 
was varied from 0 to 12 percent to simulate different 
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Figure 4: Conduction band profile and density of states 
at a point inside of the wnflning well. The free electron 
states do not appear until above the conlining potential. 

strains, a 1OOA spacer of Ab.sGaarAa (Als.&s.&s), a 
2OOA donor layer of AbsGaurAs ( AlsJns.~As) doped 
at 2. 101s/cm3, a lOOA Als.sGac.rAe (Als.ssIna4sAs) cap 
layer, and then the gate. In both cases, the Schottky 
barrier height was taken to be 0.8 volts, and the band 
offsets were modeled at AEJAE, = 65:35. All of the 
n-type MODFET results presented here were done for 
300°K. 

Our model for the n-type MODFET yields the wn- 
duction band potential profile, the charge profile, for 
both free and two-dimensionally conlined charge, and 
the subband energies. In figures 5 and 6 we show some 
of the results which our model predicts. First, we inves- 
tigated the effects of adding indium to the channel on 
the sheet charge concentration. In figure 5, we show the 
two dimensional sheet charge density as a function of the 
excess indium concentration in the channel of the device 
for MODFETs made on GaAs and InP substrates. As 
can be seen, the increase in the sheet charge wncen- 
tration is modest. These results are supported by the 
experimental work of Ng et al” who fabricated a series 
of devices on an InP substrate which are very similar to 
the structures which we modeled. The measured sheet 
charge densities in these devices showed little variation 
with strain, and varied about 1.33.101s/cms, which is 
very close to the results of our model as shown in figure 
5. 

Another interesting parameter which the model can 
easily model is charge wnfmement. Two typee of wn- 
finement, both of which are related, were studied, wn- 
finement in the lowest energy subbands, and spatial wn- 
finement within the strained channel region. Energy 
confinement is controlled in large part by the difference 

9.oemT . I . I . I . I ' I I 
0.00 0.02 0.04 0.06 0.09 0.10 0.12 

em888 In concentration 

Figure 5: Increasing the Indium concentration in the 
channel increases the two dimensional sheet charge den- 
sity. 
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I 

0.70 - 

0.60.~ m I . I. 1 8. 
0.00 0.02 0.04 0.06 0.08 0.10 0.12 

Figure 6: Increasing the strain in the channel creates a 
potential well into which the the ground state subband 
falls. This increases the confinement of the electrons in 
the ground state. 
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o.oeO 
-1.5 -1.0 -0.5 0.0 0.5 

gate voltage 

Figure 7: Capacitance voltage profile of lattice matched 
and strained MODFETs on an InP substrate. The ad- 
dition of excess In in the channel has not had a large 
effect on the C-V curves. 

state. Spatial confinement can also have a negative ef- 
fect on mobility because the carrier mass is generally 
much lower in the strained channel then it is in the bar- 
rier, or even in the substrate. Figure 6 shows the con- 
finement of the electrons in the lowest energy subband. 
As can be seen, a substantial improvement in carrier 
confinement can be achieved with the addition of ex- 
cess indium into the channel. A careful analysis of the 
model shows that the effect of the strain is to create a 
potential well in which only the first subband will reside. 
Thus, the difference in energy between the bottom of the 
first subband and the second subband is increased with 
added excess indium, and this creates better energy con- 
finement. Spatial confinement is very much related to 
energy confinement as the higher energy subbands will 
be less spatially confined, however, the reduced carrier 
mass brought on by the higher mole fraction of indium 
will act to spread out each of the subbands spatially. 

in energy between the subbands. Both types of con- 
finement can strongly efkt carrier mobility. Mori and 
Ando”, in a theoretical treatment of transport in su- 
perlattices, predicted that mobility will be several times 
less in even the first excited band then it is in the ground 

We also used our model to calculate the C-V char- 
acteristics of a pseudomorphic MODFET at different 
strains. Figure 7 shows the calculated capacitance-voltage 
profile for the InP based device with three different ex- 
cess In concentrations. The effects of strain on the C-V 
profile, as can be seen, are small. Because of this, it may 
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0.070 0.035 0.000 0.035 0.070 0.670 0.635 o.boo 0.635 0.670 
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z[Al 
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<llO> <lOO> 

K[l/A] 
O.l1 
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z[hl 
(b) 

Figure 8: Hole subband dispersions and valence band 
profiles foe a) a lattice matched and b) a strained p- 
type MODFET. The dashed lines in the valence band 

of part b) indicate the effective valence band profile for 
the light and the heavy holes which have been split by 
strain. 
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Temp. 

(“K) 

300 

77 

Table 3: Results of the simul.rtion of lattice matched 
and strained p-type MODFETs. Note the significant 
lowering of the overall effective mass and the improved 
confinement in the strained channel device. 

rubband 

# 
0 
1 
2 
3 
4 
5 
6 
7 

total 
0 
1 
2 
3 
4 
5 
6 
7 

total 

li- GaAs channel 

$11 
2.90 
2.18 
1.44 
1.20 
0.76 
0.68 
0.52 
0.47 
10.15 
4.44 
2.16 
0.94 
0.57 
0.28 
0.24 
0.17 
0.14 
8.97 

* 
mdos 

0.549 
0.411 
0.701 
0.585 
0.444 
0.395 
0.557 
0.506 
0.526 
0.536 
0.261 
1.015 
0.621 
0.388 
0.333 
0.567 
0.481 
0.514 

E, - EP 
(mev) 
-58.7 
-58.7 
-83.9 
-83.9 
-88.7 
-88.7 
-105. 
-105. 

state 

HHO 
HHO 
LHO 
LHO 
HI11 
HHl 
HH2 
HH2 

-1.31 HHO 
-1.31 HHO 
-17.7 LHO 
-17.7 LHO 
-19.4 HHl 
-19.4 HHl 
-25.3 HH2 
-25.3 HH2 

ll- 10.20=% 

l- 

mL 
I! 

.l$l 
3.83 
2.86 
1.61 
1.39 
0.74 
0.68 
0.48 
0.46 
12.05 
4.71 
3.87 
0.79 
0.75 
0.19 
0.18 
0.03 
0.03 
10.58 

.soAs channel 

r 
3tate 

0.199 
0.149 
0.268 
0.230 
0.234 
0.215 
0.271 
0.258 
0.208 
0.125 
0.103 
0.124 
0.118 
0.145 
0.141 
0.271 
0.251 
0.118 

En - EF 
(mev) 
-22.0 
-22.0 
-55.2 
-55.2 
-72.5 
-72.5 
-87.7 
-87.7 

HHO 
HHO 
HHl 
HHl 
HH2 
HH2 
HH3 
HH3 

17.6 HHO 
17.6 HHO 

-3.49 HHl 
-3.49 HHl 
-15.3 HI12 
-15.3 HH2 
-31.9 HH3 
-31.8 HH3 

1 

be difficult to use C-V profiling as a tool to characterize 
strain. 

In the p-MODFET, the inclusion of excess indium 
into the channel can have very different effects then in 
the n-MODFET. In the n-MODFET, strain slightly al- 
tered the bandgap and the effective mass. The biggest 
effect of strain was to create a potential well in which the 
lowest subband rested, and this improved confinement. 
In the p-MODFET, strain splits the heavy and the light 
hole bands. This splitting can significantly affect the 
intersubband coupling, and this can have very large ef- 
fects on the subband effective masses. For the p-type 
MODFET, successful evaluation of our model yields the 
conduction band potential profile, the charge profile, for 
both free and two-dimensionally confined charge, the 
subband energies, and the subband dispersion relation- 
ships, or the effective masses. Figure 8 shows the va- 
lence band profiles and the subband dispersions for a 
strained and a lattice matched p-type device on a GaAs 
substrate. The structure which we chose to model was 
similar to the structure grown earlier and reported by 
Lee et a13. Part a of figure 8 shows the valence band pro- 
file and the subband dispersions for the lattice matched 
system. Notice the flat dispersions of the subbands in- 
dicating heavy effective masses and the small separation 
in energy between the subbands indicating poor confine- 
ment which would further lower mobility. This points 

out the problems associated with attempting to produce 
lattice matched p-type MODFETs. Part b of figure 8 
shows the same plots when the channel is composed of an 
alloy of 20% indium. Note that the strain has split the 
light and heavy hole bands and resulted in much lighter 
hole subbands, which can be seen by the substantially 
higher curvature. Also, the subbands have separated in 
energy, and this should improve carrier confinement and 
increase mobility even further. The dotted lines in the 
valence band profile in part b of figure 8 represent the 
splitting between the light and the heavy hole band in 
the bulk states. Thus, the upper dotted line is the ef- 
fective valence band profile for the heavy hole, and the 
lower dotted line is the effective valence band profile for 
the light hole. A summary of the results of these simula- 
tions is shown in table 3. As can be seen from the table, 
the overall reduction in the density of states effective 
masses can be very significant. Our model predicts that 
the overall effective mass will be 2.5 times lighter in the 
pseudomorphic MODFET at room temperatures, and 
4.3 times lighter at liquid nitrogen temperatures. The 
effect is especially pronounced at lower temperatures be- 
cause the confinement in the uppermost hole subbands 
increases. 

In the pseudomorphic p-type MODFET, the bands 
are very non-parabolic, and tend to be the lightest at 
the center of the Brillouin zone. Because of this, the 
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more holes which are put into the band, the heavier the 
overall (averaged) hole effective mass will be. This may 
have slight detrimental effects on the transconductance 
of the p-type MODFET, but the magnitude of such an 
effect is difficult to estimate without a model of hole 
transport. 

IV. CONCLUSIONS 

In this paper, we addressed the charge control is- 
sues in n- and p-type pseudomorphic MODFETs using 
a versatle numerical formalism. The formalism is ca- 
pable of studying arbitrary shaped potential wells. For 
the p-type MODFET, the formalism includes the effects 
of HH-LH coupling. In the case of n-type MODFETs, 
we find that improvement in carrier mobility can be ex- 
pected due to better charge confinement as the In con- 
tent of the channel is increased. For the lOOA strained 
channel, the sheet charge increase was found to be mod- 
est, although the fraction of carriers in the ground state 
increases considerably. The improved confinement ef- 
fects should result in better overall device performance. 

The p-MODFET simulation show very remarkable 
effects, the most important of which being the dramatic 
decrease in the two dimensional hole gas effective mass 
as the strain in the channel is increased. This effect is 
due to the splitting if the light and the heavy hole bands. 
The effects are in good agreement with the qualitative 
improvements observed experimentally in strained p- 
MODFETs, and the general formalism is expected to 
be useful in understanding and designing strained p- 
MODFETs. 
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