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Abstract--The paper investigates the transient behaviour and stability of  a system consisting of two 
thermally conducting elastic rods in contact on their end faces, the other ends of  the rods being built-in 
to two rigid walls which are maintained at different temperatures. It is assumed that there is a thermal 
resistance at the interface between the rods which is a known function of  contact pressure or gap. 

A perturbation method is used to analyse the stability of  the system and it is shown that there is a 
range o f  conditions under which the steady-state solution is unique but unstable. A finite difference 
method is then used to model the transient behaviour; it shows that under such conditions the system 
always tends to a steady oscillatory state in which the contact pressure varies periodically with time, 
possibly with periods of separation. 

1. I N T R O D U C T I O N  

It is well known that mathematical difficulties can arise in the solution of steady-state 
thermoelastic contact problems if conventional idealized boundary conditions are applied 
[1-31. Difficulties over existence of solution can be circumvented by postulating a more 
physically realistic boundary condition involving a pressure or gap dependent thermal 
resistance at the interface [4, 5], but multiple solutions are still possible with this formulation. 

The stability of the steady-state solutions has been investigated for various one- 
dimensional systems which exhibit multiple solutions, using perturbation methods [6-8"1. In 
all cases, it was found that when the steady-state solution was unique, it was also stable, 
whereas when multiple solutions were obtained, they were alternately stable and unstable. 
Furthermore, in each case a variational statement of the stability criterion could be 
formulated which was mathematically equivalent to that prescribed by the perturbation 
solution, but it proved impossible to justify the variational formulation from first principles 
in view of the non-conservative nature of the system. 

More recently, an investigation into the stability of the two dimensional contact of two 
half-planes [9] has shown that the behaviour is considerably more complex than previous 
results suggested. The problem was solved by examining the conditions under which a 
sinusoidal perturbation in the contact pressure can grow with time, following techniques 
developed by Dow and Burton [10"1 and Richmond and Huang [11"1. As in the one- 
dimensional cases cited above, a characteristic equation is obtained whose zeros correspond 
to the exponential growth rates of physically admissible perturbations. However, in contrast 
to the previous solutions, the characteristic equation involves the thermal diffusivities of the 
two materials as well as the 'steady-state' properties such as conductivity and thermal 
expansion coefficient. It is therefore possible to envisage material combinations for which the 
steady-state solution---determined by steady-state properties--is unique, but unstable. 

The transient behaviour in such cases remains to be determined, but the most likely 
possibility would seem to be some kind of non-linear oscillation about the unstable steady 
state. This conclusion has important consequences for the interpretation of previous 
solutions of steady-state thermoelastic contact problems, such as the classical thermoelastic 
Hertz problem [12"1, which have always been implicitly assumed to be stable. 

If one of the half-planes in I-9] is replaced by a non-conducting rigid body, the 
characteristic equation reduces to a simpler form and the stability criterion shares many of 
the features of those from earlier one-dimensional analyses. We therefore conclude that the 
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possibility of a unique but unstable steady state requires that the two contacting bodies 
should both be thermal conductors. In fact, the instability can be directly traced to a 
difference in the thermal diffusivities of the materials, which govern the rate at which they 
separately respond to perturbations in boundary conditions. 

In the present paper we shall demonstrate that the same features can be obtained in a one- 
dimensional system consisting of two contacting rods, for which the transient problem is 
sufficiently tractable numerically to permit the resulting oscillatory behaviour to be 
investigated. In fact, this system is closer to that originally proposed by Comninou and 
Dundurs [13] as an appropriate model for the investigation of stability problems in 
thermoelastic contact. One of the present authors [J.R.B.] must take responsibility for 
making the further idealization to a single rod model [6], thereby delaying the discovery of 
the present more complex behaviour by seven years! 

2. T H E  M O D E L :  S T E A D Y * S T A T E  S O L U T I O N  

The system is illustrated in Fig. 1. Two perfectly conducting rigid walls, separated by some 
distance, are maintained at temperatures T1 and T 2. Two uniform elastic rods of lengths LI 
and L2 are built into the respective walls, leaving a gap go between the free ends when the 
temperature everywhere is zero. The thermal conductivity, diffusivity and coefficient of 
thermal expansion of the rod materials will be denoted by K~, k~ and ~ (i = 1, 2) respectively. 

Heat flow can occur between the free ends of the two rods across a thermal resistance R, 
whose value is assumed to be some function of the contact pressure or the gap. No 
assumption is made at this stage about the nature of this function, although on physical 
grounds it is expected to fall monotonically as the gap is reduced or the contact pressure 
increased. The resistance function is discussed in more detail in section 5.2 below. 

The steady-state analysis is very similar to that for the one-rod model, enabling some of the 
elementary steps to be omitted here. The reader is referred to [6] for details. In the steady 
state, the temperature varies linearly along each rod and the system essentially consists of 
three thermal resistances in series. Thus, if the contact resistance, R, is known, the 
temperature T O of the free ends of the rods can be determined from continuity of heat flux, 
giving 

T O = R T i + R I T 2 + R 2 T I  (1) 
R + S  

where R~ = Li/K~ is the thermal resistance of rod i and S = R1 + R 2 .  

The free thermal expansion is then 

ul h = ½:(,L,(T~ + T °) (2) 

and the gap is reduced to 

0 = g o - U ]  h - u ~  h. 

Substituting for u~ h and T O from equations (1) and (2), we obtain 

( e )  -1 _ g - g l  2~2L2 
f ( g ) =  1 + ~  ½otL(T, - T2) ~L ' 

(3) 

(4) 

T= 1 • =~'K~ 'kl 'E' " 

L~ 

==,K=,k=,E=. ~/. 1"= 

FJ•. 1. Geometry of the two rod system. 
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where 
01 = if0 - (~XlL1 +cx2L2)Tl (5) 

is the gap which would occur if T2 = T~ and 

ctL -~ (o t tL iR1  - ~2L2R2) /S .  (6) 

As in previous papers [6-8], the above analysis can be generalized to the case of contact by 
defining 

9 = -  + ~  p; p > 0 , 9  <0 ,  (7) 

where p is the contact pressure. 
In equation (4), we note that the contact resistance R is a positive, monotonically increasing 

function of 9, in both contact and separation regions. The function f is therefore also a 
monotonic but decreasing function in the range of 0 < f < 1. 

An equation of similar form to (4) was found to govern the steady-state solutions of  
previous one-dimensional thermoelastic contact systems 1-6-8]. In particular, we recall 
that multiple solutions will be predicted when the straight line defined by the right hand 
side of equation (4) has a sufficiently large negative slope, corresponding to a critical value of 
~tL(Tz - T1). The direction of heat flow needed to permit multiple solutions depends on the 
sign of ctL and hence on the relative lengths of the rods [see equation (6)]. In particular, we 
note that the solution will always be unique if 

~tL(TI - T2) > 0. (8) 

3. STABILITY ANALYSIS: THE TRANSIENT SOLUTION 

As in previous cases we investigate the stability of the steady state by examining the 
conditions under which a small perturbation in the temperature field can grow exponentially 
with time. Such a perturbation will generally only be possible for certain eigenvalues of  the 
exponential growth rate. Stability will be maintained if the growth rates of  all such 
perturbations are non-positive. In cases where complex growth rates are possible, the real part 
should be non-positive. Otherwise the system will be unstable. 

3.1. T e m p e r a t u r e  d i s t r ibu t ion  in the  rods  

The perturbation in temperature which satisfies both the heat conduction equation and the 
boundary conditions of constant wall end temperatures is [6]: 

where 
Ti(xi)  = Bie"' sinh ( ) . i xy  i = 1, 2, (9) 

(10) 

and xi (i = 1, 2) is measured in each case from the fixed end. 
The perturbation in the temperature difference between the free ends of the rods is then 

AT = e "t {B1 sinh ( y l ) -  B2 sinh (yz)}, (11) 

where y~ = ).iL~, and the corresponding perturbation in heat flux is 

A Q  = - B I K I ) . 1 e  "t cosh (Yl) = B2K2).2 ea~ cosh (Y2)  (12) 

from considerations of continuity. 
The perturbation in the gap, 9, is then obtained by integrating the free thermal expansion 

of the rods as 

Blcfl e"' {cosh 1} B2ct2 AO (YI ) -  - e"' {cosh ( y z ) -  1}. (13) 
).l ).2 
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3.2. Contact resistance equation 
The relation between the heat flux, Q, and the temperature difference, T, at the interface can 

be written 

Tf 
Q - 1141 

S(1 - f )  

using equation (4), and hence small linear perturbations about  the steady state are related by 
the equation 

f A T  Tf'A9 
AQ - + - -  ~15) 

S(I - f )  S(1 - f )  2 
i.e., 

S(1 - f ) A Q  = f A T +  (T, - TE)f'Ag, (16) 

where we have used the fact that, in the steady state, the temperature difference T = T~1 ~ - T O 
= (1 - f ) ( T 1  - T z )  f rom equations (1) and (4). 

3.3. Characteristic equation 
Finally, substituting equations (1 !)-(13) into (16), we obtain the characteristic equation 

(T, - T2jf '{~ , L,R ,  oo(yl ) - ~:2LzRzoJ(y2)', = S(l - f )  + f { R ,  ff)(y, ) + R2~b(y2) ' , , (17} 

where 
cosh (y) - 1 tanh (y) 

c o ( y ) -  y2 c o s h ( y  ) , ~b(y) - Y (18j 

Instability will be predicted whenever equation (17) has one or more zeros corresponding 
to values of  a with positive real part. It can be shown that there are no such zeros when 
T~ = T2, i.e. when the temperatures o f  the two walls are the same. If we start f rom this 
condition, in which all the zeros of  (17) are therefore in the negative half-plane for a, and 
slowly vary the temperature difference, (T~ - T2), the stability boundary  will be defined by the 
condit ion when the first zero crosses the imaginary axis, or reaches the positive real axis by 
passing through the origin. 

Unfortunately,  the authors  have been unable to solve for this condit ion in closed form in 
the general case, but some insight into the behaviour o f  the system can be obtained by 
examining some special cases. 

3.4. Real zeros 
We first examine the conditions under which equation (17) permits a real positive solution 

for a, in which case y~, Y2 will be real and positive. There is no loss o f  generality in choosing 
the notat ion in such a way that 

y~ L 1 ~/k~ 
r _ - > 1. (19) 

Y2 L2 

The functions eJ(y), 4~(y) take the values 0.5, 1 respectively at y = 0 and decrease 
monotonical ly  with y, approaching zero as y ~ ~ .  l f a  is very small and positive, yl ,  3"2 ~ 1 
and equation (17) can be approximated by the condition 

½~L(T 1 - T2) f '  = 1. (20) 

Equation (20) defines the limiting value of  the temperature difference, (T~ - T2), at which a 
zero passes through the origin onto  the positive half-line. It is the first derivative with respect 
to 9 o f  the steady-state equation (4) and, as in previous one-dimensional models, it can be used 
to conclude that when there are three steady-state solutions, the middle one will be unstable. 
The reader is referred to reference [6] for more details o f  this argument. 

The derivativef '(0) < 0, in view of  the assumed monoton ic  variation of  contact resistance, 
R, with 9. It therefore follows that instability can only be precipitated by a zero passing into 
the unstable half-plane through the origin if the direction o f  heat flow is such that 

otL(Tl - T 2 )  < 0. (21) 
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This is also the direction required for the existence of  multiple solutions [see condition (8)]. 
However, we shall now demonstrate that zeros can appear on the real axis for the opposite 
direction of  heat flow under certain conditions. 

To demonstrate this, we write equation (17) in the form 

S (1 - f )  + f  {Rt gb (Yl) + R2 t~ (Y2)} 
T1 - T2 = f ,  {0~1 L1 R1 co(y1) - o~2L2R2(o(y2)} " (22) 

The denominator of  the right hand side of  this equation tends to zero as a --* ~ ,  but it will 
also be zero at some finite value of a if 

~O(yl) ~ 2 L 2 R 2  
- (23) 

to (y2)  ~ I L I R 1  

Now it can be shown from the properties of  the function co(y) that the ratio ~o(yl)/~o(y~) 
varies monotonically between 1 and (l/r  2) as a varies from zero to infinity. Thus, there will 
always be a single solution of equation (23) if (~2L2R2/ot1L1R1) lies in the range 

0t2L2R 2 1 
1 > > (24) 

~IL~RI r 2" 

The conditions (24) are equivalent to the two inequalities 

c t l L 2 R 2  < °tILIRI;  T2 > ) '1, (25) 

where 7 = or~pc is a material property with dimensions (stress) -1. We note that the 
dimensionless parameter H = ET/(I -v) ,  which arises in the formulation of transient 
thermoelastic contact problems [14-16], is found to be of  the order unity for many 
engineering materials [14]. Thus, 7 is generally of  the order E - 1. Values of  7 and H for some 
typical engineering materials are given in Table 1. 

If  the conditions (24) and (25) are satisfied, equation (22) will define a curve of the form 
shown in Fig. 2, in which ao corresponds to the root of  equation (23). In particular, note that 
there is some critical value, B, such that for (T1 - / ' 2 )  > B, there are two positive real roots of  
the characteristic equation, indicating that the steady-state solution is unstable, despite the 
fact that it must be unique for this direction of heat flow [see condition (8)]. 

Furthermore, these zeros of  the characteristic equation cannot reach the real axis by 
passing through the origin, in view of  equation (20), and hence must cross the imaginary axis, 
implying the existence of  growing oscillatory solutions in part of  the range 0 < (TI - T2) 
< B .  

TABLE 1. PROPERTIES OF SOME METALS AND CERAMICS 

E ct K k ,/ 
Material (GPa) v ( ° C - I x l 0 - 6 ) ( W m - ~ ° C  l) mm 2s 1 T P a - I  H 

Aluminium alloy 72 0.32 22 173 67.2 8.5 0.90 
Copper 121 0.33 17 381 101.9 4.6 0.82 
Cast iron (gray) 103 0.26 12 50 12.9 3.1 0.43 
Cast iron (nodular) 168 0.31 14 49 16.1 4.5 1.10 
Magnesium alloy 45 0.35 26 95 45.1 12.4 0.86 
Nickel alloy 207 0.30 13 21 5.1 3.4 1.00 
Alloy steel 207 0.30 11 38 10.7 3.1 0.92 
Stainless steel 190 0.30 14 21 5.9 3.9 1.07 
Titanium alloy 114 0.33 9 12 5.5 4.1 0.70 
Partially stabilized Zirconia 205 0.23 11 2 0.8 4.6 1.23 
Alumina 407 0.20 8 34 8.5 1.9 0.98 
SiC sintered 400 0.16 4 110 35.5 1.4 0.68 
SiN hot pressed 310 0.28 3 33 18.8 1.5 0.64 
SiN reaction bonded 180 0.24 3 10 8.0 2.3 0.55 



696 J .R .  BARBER and RONGGANG ZHANG 

). 8 . . . . . . .  

0 IF% a 

FIG. 2. Form of the r.h.s, of equation (22) as a function of a, for the case when equation (23) has a zero 
at a = ao. 

Somewhat  similar arguments  can be applied if the lengths of  the rods lie in the range 

°~L2R" r 2. 
1 < : - ~ -  < ( 2 6 )  

~ I L , R ,  

In this case, there is no zero in the denominator  of  the right hand side of  equation (22), but 
it does exhibit a maximum absolute value at some finite a, and hence there will be a minimum, 
B, for the expression in the range 0 < B < 2/:tLf' ,  where we note that this time ¢tL < 0 [ f rom 
equation (26)] and f '  < 0. 

We conclude that in the range defined by equation (26), there will be zeros on the positive 
real axis for temperature differences in the range B < (T1 - T2) < 2/~LJ", i.e. at values lower 
than that required to produce a zero at the origin. As before, we deduce that these zeros 

must reach the real axis through unstable complex values, corresponding to unstable 
oscillatory behaviour, under which conditions the steady state solution is unique but 
unstable. 

3.5. Complex zeros 
Exponentially growing oscillatory behaviour is obtained if the zeros of  equation (17) reach 

the unstable half-plane by crossing the imaginary axis. We can therefore explore the stability 
criterion in such cases by postulating the occurrence o f  a solution a = i{, corresponding to 
Yl = (1 +i)rx ,  Y2 = (1 +i )x ,  where r is given by (19). The real variable, x, can be taken to 
be positive without loss of  generality, since the symmetries of  the characteristic equation 
guarantee that zeros will occur simultaneously at symmetric positions on the four lines 
z = _+(1 + i )x  in the y plane. 

Substituting for y],  Y2 in equation (17), expanding and equating real and imaginary paris, 
we obtain the simultaneous equations 

• "t ) ~ - R )  
i f ( T ,  - T 2 )  ( ? R )  ~_ S ( I  - - / ) + j . t . * 2  ) .  

. /"(T1 T , ) '  ,z-.I ,) _ l" ? I )  
- -  - t - ~ l  - - J ~ "  2 ) ,  

where 

(27) 

(28) 

(29) 

(30) 

.~1 = c~l LI R1 o~(rx + irx} - ~2 L 2 R  2 to(x  + ix) 

.?2 = RI ¢(rx  + irx) + R2qSIx + ix) 

and the superscripts R and I denote real and imaginary parts, respectively. 
Solutions o f  these equations can be investigated numerically by solving for J i f ' ,  obtaining 

S,Y~ 
.1= (31) 

" "  2 o "  I r ~ , - /  1 

f , ( T  1 _ 7"2 ) = f ( . f ~  :~7]). (32) 

We can now evaluate equations (31) and (32) as x traverses the range 0 < x < ~_, 
remembering that physically meaningful results require that 0 < . f <  1. 
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4. S U M M A R Y  OF STABILITY B E H A V I O U R  

An extensive numerical investigation of  the conditions for real zeros [-equation (22)] and 
complex zeros [-equations (31) and (32)] shows that the system exhibits one of  four distinct 
categories of  behaviour, depending upon the value of  the ratio 

n = L ~  • 

These categories are described qualitatively in the following sections and illustrated 
graphically for the case of  rods of  stainless steel (~1 = 14 x 10-6°C -1, K1 
= 21 W m  1°C-1, kl = 5.9minEs -1, 71 = 3.93TPa -1) and aluminium (e2 = 22 
x l O - 6 ° C  1, K 2 = 1 7 3 W m  l o c - t , k 2 = 6 7 m m 2 s - t , 7 2 = 8 . 5 2 T P a - l ) . W h e n p a r t i c u l a r  
materials are under consideration, it is convenient to redefine the notation such that 71 < )'2. 
This is achieved if rod 1 is of  stainless steel and rod 2 is of  aluminium, in which case 7~/72 
= 0.46. 

4. l. (71/Y2) 0'25 <~ n < l 
In this case, there is some critical value o f f (  = f*),  below which the uniqueness and stability 

criteria exactly coincide--i.e, the steady-state solution is either unique and stable or non- 
unique and unstable, depending on the value o f f ' ( T  1 -Tz) .  

I f f  > f* ,  first complex and then real zeros of  the characteristic equation are obtained for 
temperature differences of  the same sign but lower magnitude than that required for non- 
uniqueness. 

The critical value, f* ,  can be found by expanding equation (22) about the point y = 0 and 
examining the sign of the second term. If  this function is concave towards the axis at small 
values of  y, there must be real roots for temperature differences smaller than that given by 
equation (20). This criterion gives 

f ,  = 5 ( n 4 7 2 - y x ) ( R 2  + R 1 )  

4(n272 --71) (n2R2 + R1) '  (34) 

With rod 1 of  stainless steel and rod 2 of  aluminium, this behaviour is obtained when 2.78 
< (LE/L1) < 3.37. Figure 3 shows the case L1 = 0.1 m, L 2 = 0.29 m, for which f *  = 0.417 
and the condition for non-uniqueness isf'(T1 - T2) < - 3.20 x 106 °C m -  1, bounded by the 
straight line U in Fig. 3. The curves R and C define the boundaries of  real and complex 
unstable zeros respectively and hence the steady-state solution is unique, but unstable for 
points between the lines C and U. 

We note from equation (34) that f *  --. 0 as n ~ (71/72) 0.25 and f *  ~ 1.25 as n --* 1. Thus, 
there will be a limiting value of n, above which f *  > 1 and the uniqueness and stability criteria 
coincide for all physically acceptable values o f f  This occurs for stainless steel and aluminium 
in the range 3.20 < (L2/L1) < 3.37. 

0 

? 
'o_ 
p, 

i 
I - - -  

- 3  

f 

' 0 1 2  ' 0 1 4  , 016 o[s 

i" u 

FIo. 3. Stability (C, R)and uniqueness (U) boundaries for L l = 0.1 m (stainless steel), L2 = 0.29 m 
(aluminium). 
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4.2. (71/y2) °'5 < n < (~1/Y2) 0'25 

This range cor responds  to 2.23 < (L2/L1) < 2.78. Figure  4 shows the co r respond ing  
bound ing  curves for the case L1 = 0.1 m, L2 = 0.25 m, for which non-uniqueness  occurs 
whenf ' (T1  - 7"2) < - 9.69 × 106 °C m -  1. Curves C and R now fall above  U for all values of  Jl 
thus defining a domain  o f  unique unstable  s teady-state  solutions.  

As n -~ (71/y2) °5,  the line U tends to - ~ ,  but the curves C, R remain in the finite domain.  

4.3. 0 < n < (71/72) °S 
In this range, 0 < (L2/L1) < 2.23 and mult ip le  solut ions  require  the oppos i te  direct ion of  

heat  flow (T 2 > T1) as i l lustrated in Fig. 5 for the case LI = 0.1 m, L2 = 0.2 m. Mul t ip le  
solut ions  occur for f ' ( T l  -7"2) > 7.49 x 106 ° C m  

The cr i ter ion for real roots  defines two b o u n d a r y  lines, deno ted  by RAand RBin Fig. 5 and 
corresponding to the points A and B respectively in Fig. 2. The uniqueness boundary, U, 
coincides with R A. The solut ion is unique and  stable in the region between the curves C and 
U. Beyond C it is unstable  and unique, whereas beyond  U it is unstable and non-unique.  

4.4. n > l  
F o r  rods  o f  stainless steel and  a luminium,  this condi t ion  is satisfied if (L2/LI) > 3.37. No  

complex  roots  are ob ta ined  and the lowest real roo t  coincides with the cr i ter ion for non- 
uniqueness.  Thus the s teady-s ta te  solut ion is ei ther unique and stable or  non-unique  arid 
unstable,  as in the more  e lementary  one rod  models  [6-8] .  

FIG. 4. Stability and 

f 
0.2 0.4 06 0.8 1.0 ° / . . . . . . . . .  

_~ _ 6 ~ ~  - t -  R 

+A 

-8 1 

_lOi U 

uniqueness boundaries for L~ = O . l m  (stainless steel), L2 = 0 . 2 5 m  
(aluminiumt. 

1 
I'--- 

0 

-I0 

U,R. 

f 
012 0 1 4  ' 0 6  ' 018 

FIG. 5. Stability and uniqueness boundaries for L~ =0.1 m (stainless steel), L2 = 0 . 2 0 m  
laluminium). 
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1 R mt*C/kW 

0 Experimental doto 
from [22] 

z'o io o z 4 6 a 
g ~.m p MPa 

FIG. 6. Relation between thermal resistance, R, and contact pressure, p, or gap, g. 

5. N U M E R I C A L  I N V E S T I G A T I O N  O F  T R A N S I E N T  B E H A V I O U R  

The foregoing analysis is based on a linear perturbation of the system and is valid only in 
the immediate vicinity of the steady state. It therefore enables us to determine the stability of 
the various steady-state solutions but not to predict the subsequent transient behaviour in 
cases of instability. This is a question of particular interest when the system has a unique 
steady-state solution which is unstable, for which the long term behaviour must presumably 
be either periodic and regular or quasi-chaotic. 

5.1. The finite difference algorithm 
The full transient problem is not analytically tractable, but, being one-dimensional, it is a 

fairly straightforward matter to model its behaviour numerically using the finite difference 
method. 

The instantaneous temperature field in each rod is represented by the temperatures at N 
equally spaced points, including the end points. The instantaneous values of these 
temperatures can then be used to calculate the free thermal expansion of the rods and hence 
the gap or contact pressure between the free ends. 

The heat flux, Q, across the interface is then calculated on the assumption that the interface 
thermal resistance, R, is a given function of contact pressure or gap (see section 5.2 below). 
This heat flux is taken to be constant during the subsequent small time increment, thus 
permitting an explicit algorithm to be used for updating the temperature values. 

The temperatures at interior points are updated using equations (4) and (5) of Ref. [17], 
§ 18.3, and the temperatures at the fixed ends of the rods are the prescribed wall temperatures 
T1 and T2. The flux boundary condition at the interface ends of the rods is satisfied using 
Schmidt's method [see [ 17], § 18.4, equation (4)], in which a fictitious point is defined beyond 
the end of each rod. 

5.2. The contact resistance function 
The interface resistance for two bodies in contact has been the subject of extensive 

experimental and theoretical study [18-23]. It is known to be very sensitive to contact 
pressure, at least when the nominal contact pressure is small in comparison with the material 
hardness, so that the ratio between actual and nominal contact area is small. It is also affected 
by the roughness of the contacting surfaces and the thermal properties of the contacting 
bodies and the intervening gas. 

For  the present study, we investigate the contact of rods of  aluminium and. stainless steel, 
for which appropriate experimental data are given by Thomas and Probert [22]. The 
corresponding surface condition for these data is given in Table 1 of Ref. [22] (specimens 
AL3 and EM13. 

Experimental data are not available for the case where a gap exists between the surfaces, 
but a reasonable estimate can be obtained in the form 

R(g) = R(O) + g/Kai r, (35) 
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where R(0) is the thermal resistance corresponding to contact at zero pressure and Kai r 
(=  2.43 x 10 -2 Wm ~ °C 1) is the conductivity of air, which is taken to occupy the space 
between the surfaces. The value R(0) is obtained by extrapolation from the data at finite 
pressure. 

Figure 6 shows the resulting relation between resistance and contact pressure or gap, 
including the experimental data points from [22]. We note in particular the sensitivity of 
resistance to pressure in lightly loaded contacts (e.g. 0 < p < 4 M Pat. 

5.3. Choice of time step 
The accuracy and numerical stability of the algorithm depends upon the use of a 

sufficiently small time step. However, the usual criterion for numerical stability in the finite 
difference method [condition (7), [17], ~18.3] proved to be inadequate here because of the 
extreme sensitivity of the interface resistance to small changes in pressure and hence 
temperature. The resulting numerical instabilities are characterized by divergent oscillations 
in time on the scale of the discretization. In other words, the temperature at one or more 
points near the interface alternately increases and decreases in successive time increments 
with increasing amplitude. 

This difficulty can be overcome by using an extremely small time step, but the resulting 
volume of computations becomes prohibitive in many cases. Fortunately, numerical 
instabilities associated with variations in contact resistance are only generated at certain 
stages during the evolution of the system. It was therefore possible to develop a more efficient 
algorithm in which the results are monitored for the onset of numerical instability and 
adaptive changes in the time step are made as required. 

The three previous values of temperature at each point are stored, and if two consecutive 
reversals of temperature gradient are detected at any point, the system is set back to its state 
before the instability began and the time step is reduced. A reduction in time step is also 
triggered if the temperature at any point changes by more than 1 '~il in any time increment. A 
related mechanism permits the time step to increase gradually during periods of stable 
computation. 

The threshold values for this adaptive time step variation were chosen so as to ensure 
convergence of the results on a unique system history within 0.1 !'~,. The satisfaction of this 
criterion was demonstrated for an extensive range of system parametersmindeed, in most 
circumstances, convergence accuracy was better than 0.01 !!;, at all temperatures. 

6. NUMERICAL RESULTS 

Initially the system was set at a steady state, for which the temperature variation along the 
rods is linear and can be calculated from the equations given in section 2. A small temperature 
perturbation was then applied to induce a transient response. Typically the temperature at 
one interior node near the interface in each rod was changed from the steady-state value by a 
small quantity of the order (IT2 - T I 1/1000). 

In the initial evolution of the system it is far from obvious whether the behaviour is stable 
or unstable. It is therefore advantageous to choose an initial perturbation which minimizes 
the time taken to return to the steady state in cases of stability. This can be done by ensuring 
that the increase in the total heat stored in one rod is balanced by a corresponding decrease in 
heat stored in the other. In other words, the total heat stored in the two rods after the 
perturbation is the same as in the steady state. If a net change in total heat stored were 
introduced, the system could only return to the steady state when the excess heat had had time 
to flow through the rods. to one or other of the walls. 

The analysis of stability summarized in section 4 above shows that instability is more likely 
to occur whenf '  is large--i.e, when the initial gap, 9o, is chosen so as to give a steady state in 
the range where the interface resistance is very sensitive to small changes in pressure or gap. 
This is typically the case when the steady state involves contact at low pressure {see Fig. 6). 
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6.1. Convergence on stable solutions 
Several tests of the program were made with parameter values for which the steady-state 

solution was predicted to be stable. In all cases, the temperatures returned monotonically to 
the steady state after the initial perturbation as anticipated. 

A more interesting case arises when the steady-state solution is non-unique. Figure 7 shows 
the development of the temperature of the free ends of  the rods for the case L~ = 0.1 m, 
L2 --- 0.29 m, T~ = 0°C, 7"2 = 350°C. With a suitable choice of go, these values correspond 
to a point below the line U in Fig. 3 and hence to an unstable but non-unique initial condition. 
The system diverges initially, passes through one cycle of oscillation, but eventually converges 
on one of the other two steady states, both of which can be shown to be stable by the criteria 
of section 4, since they correspond to conditions in which the contact resistance is less 
sensitive to variations in pressure and gap respectively and hence to lower values of ( - f '  ). 
The initial perturbation used in this case (5 × 10- 5 °C) is too small to make a measurable 
difference at t = 0 in Fig. 7. 

6.2. Oscillatory behaviour 
When the system parameters correspond to a condition in which the steady-state solution 

is unstable but non-unique, the system always exhibits a non-linear oscillatory behaviour. 
Typical results are shown in Fig. 8 for the case L~ = 0.1 m, L2 = 0.25 m, T~ = 0°C, T2 
= 400°C, corresponding to the point A in Fig. 4. With a small initial perturbation, the system 
takes about 10 minutes to diverge sensibly from the initial steady state, but after one or two 
cycles it settles into a very reproducible oscillatory state with a period of 35 minutes. This 
period is of the same order as that taken for a thermal disturbance to propagate to the walls 
from the interface. Thus, defining a Fourier number, 

Fo = kt/L 2, (36) 

we find that Fo = 1 would correspond to times of  28 seconds and 15 seconds for the steel and 
aluminium rods respectively. 
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FIG. 7. T e m p e r a t u r e s  a t  the  free ends  o f  the rods  for  L~ = 0.1 m, L :  = 0.29 m, T~ = 0°C, T2 = 350 ~ C. 
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FIG. 8. T e m p e r a t u r e s  a t  the free ends  o f  the rods  for  L~ = 0.1 m, L 2 = 0.29 m, T~ = 0~C, T2 = 400~C 
(poin t  A o f  Fig. 4). 
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The corresponding variation in contact pressure and gap at the interface is shown in Fig. 9 
and we note that the discontinuity in slope in Fig. 8 (point A) is associated with the transition 
from separation to contact. 

If the temperature T2 is reduced, the corresponding point in Fig. 4 moves towards the 
stability boundary and the amplitude of the temperature oscillation is reduced. Figures 10 
and 11 show respectively the free end temperatures and the contact pressure/gap for T2 
= 200°C, corresponding to the point B in Fig. 4. The period of the oscillations is increased 
slightly to 44 minutes, but there is a more substantial increase in the time taken to establish 
the steady oscillatory behaviour. This is to be anticipated, since the closer we approach the 
stability boundary, the slower will be the exponential growth rate of the corresponding 
perturbation. 

This causes numerical difficulties when conditions are chosen to be very close to the 
stability boundary, since the changes in temperature in one time step at the beginning of the 
process may be less than the rounding error, thus causing the system to lock into a spurious 
numerically-generated steady state. This difficulty can be alleviated by using a larger initial 
perturbation or by starting the system in a non-steady state, but in general the numerical 
algorithm is not well suited to conditions in which the changes in temperature are very 
gradual. 
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FIG. 9. Variation of  contact pressure, p, and gap, (4, for the conditions of Fig. 8. 
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10. Temperatures  at the free ends of  the rods for L L = 0.1 m, L 2 = 0.29 m, T~ = 0 C 
T2 = 200cC (point B of  Fig. 4). 
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FIG. 11. Variation of contact pressure, p, and gap, g, for the conditions of  Fig. 10. 
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7. C O N C L U S I O N S  

It is clear from the present paper that the stability behaviour of systems involving the 
contact of  two thermoelastic bodies is considerably more complex than had been suspected 
from earlier analyses involving a single body and a rigid wall. In particular, it is not possible to 
define the stability criterion in terms of the minimization of an energy function, since stability 
now depends upon the thermal diffusivities of the materials as well as those properties like 
thermal conductivity, which govern the steady-state solutions. 

A substantial range of conditions is found in which the system has a unique steady-state 
solution which is unstable. A numerical analysis of the system demonstrates that in such 
conditions it always tends to a steady oscillatory state in which the contact pressure varies 
periodically with time, possibly with periods of separation. 

These conclusions have important implications for the classical steady-state solutions to 
two- and three-dimensional thermoelastic contact problems such as the Hertzian contact of 
spheres at different temperatures [12]. Since the uniqueness of such solutions cannot now be 
regarded as a guarantee of stability, their stability needs to be re-examined. In particular, we 
must accept the possibility that a steady oscillatory state exists. The possibility of oscillatory 
behaviour in thermoelastic contact has been discussed ever since difficulties with existence 
were first discovered with the classical boundary conditions [1]. Indeed, Clausing [24] 
reported slow periodic variations in experimental measurements of thermal contact 
resistance which may be attributable to this mechanism. Thus, this paper opens up an 
extensive field for further investigation of the phenomenon of thermoelastic contact. 
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