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PRELIMINARIES 

Let [X(t);tzO] denote continuous time, 

n-state semi-Markov process with sto- 

chastic transition matrix P=(pij), state 

residence time distribution function 

matrix W=[wij(z)], and stochastic inter- 

val transition probability matrix 

F=[fij(t)] (i, j=l,...,n). X(t) is the 

state of the process at its most recent 

change of state and element fij(t) of 

F is the conditional probability that 

X(t)=j at time t, given that the initial 

state X(0+) is i. Elements of F are re- 

lated to elements of P and W by a Markov 

renewal equation of the Volterra type 

whose solution can be expressed by con- 

ditioning on the number of changes of 

state of the process prior to time t: 

fij(t)=_gPr[X(t)=j/X(O+)=i,l changes of 
F 

state in (O,t)]x 

xPr[l changes of state in (O,t)/X(O+)= 

i] = 

Jij.hi (t)+pi$jj(z).hj(t-z)drt 

t 
x[j(w. *w *...*w 

0 lql 9192 
*w 

qk-2qk-1 qk-lql 
h. 

.hj(t-z)dz)] 

(i, j=l,...,n) (eqn. 1) 

where: 

s,=j; 

fiwiql*. . .*wqk_lqli (~1 .hj (t-z)dz, 

an l-fold convolution density convolved 

with hj (t), is multiplied by the proba- 

bility (pi, . .p 
1 . . . qk-lql 

) that the l- 

step sequence of changes of state 

(i,ql:...; q,_,,q,=j) occurs: 
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hi(t)=l-zpik.wikW ; 
k =I 

state j is assumed to bereachable from 

state i so that there is at least one 

l-step sequence with positiveprobatility. 

When P is upper or lower diagonal the 

infinite sum on the right hand side of 

eqn.(l) terminates for l>n+l. 

Let C denote a discrete population in 

which the behavioral states of indivi- 

duals are in one-to-one correspondence 

with the states of [X(t)]. Let S=(l?,W,F) 

denote the system governing movement of 

individuals among behavioral states once 

they enter S from external sources. The 

conditional probability that an indivi- 

dual is in state j at time t>O, given 

that it initially entered S at time 

z (Ocz<t) in state i is fij(t-z). Once 

inside S individuals are assumed to be- 

have independently unless otherwise spe- 

cified. 

Subsets of states, aggregated into K 

non-overlapping and exhaustive subsets 

G1,.-., GK are called compartments 

(K=2 ,...,n-1). The probability fiG (t-z) 
k 

that an individual entering state i at 

time z>O is in compartment Gk at time 

t7z is: 

f iG (eqn. 2) 
k 
(t-z) = statezj fij@_Z) 

l_n 
'k 

Let Yij(t) (i,j=l,...,n) be random vari- 

ables denoting numbers of individualsin 

states l,... n at time t>O whose initial 

entry into S is through state i. 

The number YiG (t) of individuals in 
k 

compartment Gk at time t is: 
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YiG (t) = 
K 

stats Yij (t) 
(eqn. 3) 

in G 
k 

The mean and variance of yiG (t) is de- 
K 

termined for different assumptionsabout 

processes of arrivals to S from external 

sources. 

INDIVIDUAL POISSON ARRIVALS 

Assume a Poisson stream of individual 

arrivals to S. Given that Ni arrivals 

occur in (O,t) to initial state i the 

joint p-f. of numbers in states1 ,...,n 

at time t is multinomial withparameters 

Ni,fil(t),...,fin(t). Multiplying the 

joint p.f. by the Poisson probability 

of Ni arrivals in (0,t) conditional on 

the arrival times of the first Ni ar- 

rivals being distributed as the order 

statistics of Ni independent samples 

from the d.f. on (0,t) having density 

r;(z)/ {x;(z) dz (Ocz<t) the resulting 

joint p.f. is a product of n indepen- 

dent Poisson probabilities that 

Yil'..'IYin individuals are in states 

1 I***, n at time t: 

’ [Yil (t)'Yil,...,yin(t)=yin,Niarrivals] 

= c ( Jiz).fij (t-z)dz)Yij 
*=I ? 

. 

Yij! 

t 
-l&(z) .fii(t-z)dz 

.e O 
(eqn. 4) 

(yil+. . .+yin=Ni) 

As shown by eqn. (4) the Yij(t)'s are 

mutually independent Poisson distri- 

buted r.v.'s Moreover: 

i) the arrival stream to state j 

is Poisson distributed with intensity 

a 
I 
(t) which satisfies the integral 

equation: 

z)dz; (j=l,.. .n) 

ii) the expectation of Y. 
+ 

ij(t) is: 

E[Yij(t))= b-+z).fij(t-z)dz eqn.(5) 
(j=l,...n) 

Equations (5) when combined with equa- 

tions (1) provide the basis for con- 

structing families of regression models 

of inputs to the system S as well asin- 

puts and outputs among states within 

S, from which parameters can beesti- 

mated. Maximum likelihood estimates of 

parameters can be obtained from eqn. (4). 

The r.v.'s yiG (t) are independent and 
k 

Poisson distributed with Poisson arrival 

intensities a. IG (t) and expectations: 
k 

E [YiG (t)l = jtQZ).fiG (t-z)dz = 
k C k 

= i?(z) .dz.state5 fij(t-z) eqn.(6) 

in G k 
(k=l,...K) 

BATCH POISSON ARRIVALS 

Individuals arrive at initial state i 

in batches, at random (Poisson arrivals) 

where the mean and variance of the i.i. 

d. batch sizes are mi and virespective- 

lY- The intensity of arrivals is A$t). 

The marginal d.f. of Yij(t) in thiscase 

is not Poisson unless v,=O and m,=l. 

The mean 

HtYij(t) I 

and: 

I I 

and variance of Yij(t) are: 

= mi. f4Jz).fij(t-z)dz 

(j=l,...,n) eqn.(7) 

t 
VartYij (t)] = mi .@Z).fij (t-z) * 

-[l-fij (t-z)ldz + 

+ (m:+vi) 
b: 

. j A$z).[fij(t-z)] 2dz + 
0 

+ vi . f..(t-z)dz12 
- 13 

eqn. (8) 

(j=l,...n) 

Equation (8) i s demonstrated by first 

decomposing Yij(t) into the random sum 

of "clusters" of sizes 1,2,...,B: 

Yij(t) = l.Dil(t) + 2.Di2(t)+.,+B.DiB(t) 

eqn. (9) 
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where : 

Dik(t) is a Poisson distributed I.". 

with expectation: 

EIDik(t)l = !&(z)*(;). Ifij(+ --dz. 

- I1-fij(t-Z)lB-k 
(k=1,2,...,B) 

For a batch of given size B arriving at 

initial state i at time z a cluster of 

k-out-of-B of the arriving individuals 

will be in state j (t-z) time units 

later with binomial probability: 

p. [fij (t-z)lk . [l_fij (t-z)]B-k 

Combining the relation: 

Var[Yij (t)l=EIVar(Yij(t)/B)l+Var[E(Yij(t)/B)l 

with eqn.(9), eqn (8) is obtained. The 

distribution of the number of clusters 

in state j at time t without regard to 

the cluster size for fixed size B of 

arriving batches is Poisson distri- 

buted with expectation: 

j$) .dz. r&3. [fij&Z)'. [l-fij(t-z)]B-r 

Members of a given cluster have not 

necessarily been in residence in state 

j for the same length of time, however. 

The mean and variance of the number of 

individuals in compartment Gk at time 

t are obtained by substituting f. 
=ck (t-z) 

for fij(t-z) in equations 7 and 8. 

ARBITRARY BUT FIXED INTERVALS 
BETWEEN ARRIVALS OF BATCHES 

Batches of individuals, where batch 

sizes are i.i.d. random variables with 

mean m. 1 and variance vi arrive at ini- 

tial state i at arbitrary but fixed 

times tl,t2,... For a batch arriving 

at time tU and of conditional size BU 

the joint p.f. of numbers in states 

1,2,. ..,n at time t7tu is multinomial 

with parameters Bu,fil(t-tu),...,fin(titu). 

The marginal p-f. of the number Yij(t) 

of individuals in state j at time t due 

only to the arriving batch at initial 

state i at time t of random size B 
U U 

has a compound form with mean and vari- 

ante: 

E Pij (t) /tUl 

and: 

=m. . 1 fij (t-tu) eqn.(lO) 

=mi.fij(tiJ.[l-fij (t-tJ t 

3 
+ vi . [fij (t-tu) I’ eqn.(ll) 

If batch size is a fixed constant mithen 

equation 11 is modified by setting vi 

equal to zero. 

The mean and variance of YiG (t) are ob- 
k 

tained by substituting fiG (t-z) for 
K 

fij(t-z) into equations 10 and 11. 

The mean and variance of the marginal 

d.f. of the number of individuals in 

compartment Gk due to all arriving 

batches at times O<tl,...,tuct is, as- 

suming independence of all movements of 

individuals entering upon S: 

E[YiG 
k 
(t)/tl,...,tul =?,E[Y. 

+'rl iGk 
(t) /t,1 

(k=l,...,K) eqn. 

and: 

VarPz (tV%, . . . , 
k 

tul = $,br[YiE (t) /t r 1 

12) 

(k=l,...,K) eqn.(l3) 

As with equations 5, equations 6, 7, and 

12 can be used as the basis ofconstrucP 

ing regression estimates of parameters 

of the system S. 

SUB AND SUPER SYSTEMS OF S 

The system S=(P,W,F) may be decomposable 

into subsystems Sl,_..,SK identified 
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with compartments Gl,...,GK or it may 

itself be a subsystem of a laryersuper- 

system of states in which S is identi- 

fied with a compartment GS. In either 

case it is important to maintain stoch- 

asticity of the state transition ma- 

trices and the interval transition ma- 

trices corresponding to each subcollec- 

tion of states that are to be identified 

with a subsystem. 

Let Gl,..., GK denote a collection of 

compartments of S and arrange the 

transition matrix P into the form: 

’ = (PG.G. ) (i,j = 1,2,...,K) 
17 

where: 

the submatrix PG,G has row and column 
i j 

dimension equal, respectively, to the 

number of states in compartments Gi 

and G.. 
7 

Main diagonal submatrices contain state 

transition probabilities governing 

movements of individuals among states 

within compartment (Gi(i=l,...,K). 

Either advance or return to states in 

Gj from states in Gi is restricted by 

the number and locations of positive 

entries in off-diagonal submatrices 

'G.G: If no positive entries occur 
17 

in P G,G, for all indices i and j then 
iI 

the system S consists of K independent 

subsystems. Each submatrix PG,G, is 
13 

stochastic as well as the submatrix 

F G,G, of interval transition probabili- 
11 

ties describing the time rate of move- 

ment of individuals among states of 

compartment Gi. Equations l-13 are 

valid for each subsystem S1,...,SK in 

this case. 

submatrix PG,G, then submatrix PG,G, is 
13 11 

not stochastic and movements of indivi- 

duals within compartment Gi cannot be 

analyzed independent of other states of 

S. By joining Gi to one additional 

absorbing state accounting for movements 

of individuals out of Gi and assigning 

transition probabilities into the ap- 

pended absorbing state equal to one 

minus the row sums PG G, for each row 
ii 

in the submatrix, the compartment Gi can 

be analyzed in either one of two ways: 

i) as a subsystem in which arrivals 

are from other states of S or 

ii) as a subsystem in which arrivals 

are assumed to occur withoutre- 

ference to prior movements in S. 

If the system S is composed of states 

which are themselves a compartment of a 

supersystem, then S functions independ- 

ently of other compartments or else S 

contains an absorbing state as described 

above so that movements of individuals 

within S can be analyzed independently 

of their movements within other compart- 

ments. 

If compartments Gi and Gj are linked 

by positive entries in off-diagonal 


