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Abstract-When a material which is isotropic with respect to a reference configuration is deformed, it 
is anisotropic with respect to the deformed configuration. The nature of the anisotropy depends on the 
deformation. In this paper, we consider the special case of the change of a reference configuration by 
uniaxial extension. We first discuss the structure of the new material symmetry group, and show that it 
includes non-orthogonal unimodular transformations. Then using the general representation for the 
response functional of an isotropic material, we show how to construct a representation of the new 
response functional which satisfies the restrictions of the new material symmetry group. 

1. INTRODUCTION 

When a material which is isotropic with respect to a reference placement is deformed, it is 
anisotropic with respect to the deformed configuration. The nature of the anisotropy depends 
on the deformation, and No113 theorem (cJ Truesdell and No11 [l]) provides us with the 
method for generating the new material symmetry group. Though Noll’s theorem has long been 
available, it has not been gainfully exploited in determining the new material symmetry groups 
and the corresponding representations for the constitutive functionals. For instance, it is 
commonly assumed that when a material which is isotropic with respect to a reference 
placement is uniaxially extended, it would be transversely isotropic with respect to the 
deformed placement. This common perception is however incorrect.7 An application of Noll’s 
theorem shows that the new material symmetry group includes non-orthogonal transformations 
which are unimodular. In fact, Truesdell [2] anticipated this to be the case in his pictorial 
representation of the various symmetry groups which arise in the study of material symmetry. 

Thus, there is an inherent distinction between a material which is transversely isotropic, and 
one that was initially isotropic and then uniaxially extended. Due to this distinction in the 
material symmetry group, the respresentation for the constitutive functions would be different. 
The correct representation can be obtained by employing the results of Wineman and Pipkin 

PI* 
In this paper, we consider the special case of the change of a reference configuration by 

uniaxial extension for isotropic materials. We discuss the structure of the new material 
symmetry group and how the new constitutive representations for the response functionals are 
deduced. 

To understand the relevance of the proposed study, let us consider a material which is 
isotropic with respect to some reference configuration, and whose constitutive equation is 
known over the entire domain of possible deformations from this configuration. It is possible, 
in this case, that the response of the material can be studied without introducing a new 
reference configuration. The issues discussed in this paper will then play no role in this study. 

However, there may be applications in which it is convenient to change to a new reference 
configuration. For example, in metal plasticity, a stress-free deformed state is often considered 
as a possible new reference configuration. Among other quantities associated with this state, 
one would like to know the yield function, which will depend on the new symmetry group 
associated with this state. The results of this study will then prove useful. 

t More precisely, in addition to (2.14) being satisfied for all G which belong to the material symmetry group 
corresponding to transverse isotropy, it also is satisfied for other G which do not belong to the transverse isotropy 
group, some of which are non-orthogonal. 
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We discuss next, another possible application where the present study may be of use. 
Suppose a material is isotropic with respect to some reference configuration, and its 
constitutive equation is known over only part of the domain of possible deformations from this 
configuration. One may attempt to extend the domain of definition of the constitutive equation 
by first introducing a new reference configuration. A “continuation” of the constitutive 
equation could possibly be constructed for deformations from this new configuration. If this 
“continuation” is developed in a manner consistent with the ideas discussed in this paper, it 
will be a proper continuation of the original continuation of the original constitutive equation. 
Of course, the precise nature of this “continuation” depends on the choice of the class of 
materials under consideration. While these ideas are yet vague and in a nascent state, it is 
important to recognize that the study might provide the basic building blocks for such an 
analysis. 

The underlying concepts associated with a change of reference configuration, and relations 
between response functionals and material symmetry groups, are reviewed in Section 2. The 
most general representation of a constitutive equation for isotropic simple solids is introduced 
in Section 3. Its transformation associated with a change of reference configuration is then 
derived. In Section 4, Nell’s theorem is used to study the structure of the new material 
symmetry group associated with the new configuration. A method is introduced, in Section 5, 
for generating the constitutive response functional appropriate to the new configuration from 
that corresponding to the original one. Using the notion of anisotropic tensors (cJ [4, 5]), it is 
shown that the new constitutive response functional can be written in a manner which is 
formally similar to one for transverse isotropy, and yet meets the restrictions associated with 
the non-orthogonal unimodular transformations of the new symmetry group. These ideas are 
illustrated in Section 6 for a specific class of constitutive functions, namely those for nonlinear 
elasticity. 

2. NOTATION, BASIC RELATIONS 

Let ~(9) denote a reference configuration for an isotropic simple solid, and let K*(B) 
denote a second configuration. In this paper, K*(B) is regarded as any possible configuration of 
the body. It need not coincide with a configuration actually taken by the body. For example, 
K*(B) could represent a state of permanent deformation taken by the solid if the stresses were 
removed. It could also be a base state on which additional deformation is superposed. 

The positions of a given material particle in reference configurations ~(3) and K*(B) are 
denoted by X and X*, respectively. The two reference configurations are related by 

x* = s2(X), where Q = K*oK-~. (2.1) 

If x(r) denotes the position of a particle at time t, its motion is described by expressions of the 
form 

x(r) = x(X, r), X E K(B), (2.2) 

X(t)=X*(X*,Z), x* EK*(a). (2.3) 

The deformation gradients associated with the descriptions (2.2) and (2.3) are denoted, 
respectively, by F(t) and F*(z). Their components with respect to a Cartesian coordinate 
system are given by 

F(T)ij = 8X,(t)/aXj, F*(t)ij = SXi(Z)/SXi** (2.4) 

These are related by 

F(z) = F*(t)P, (2.5) 

where P = i3Q/dX is a transformation whose components are given by 

pii = aX,*/aXj. (2.6) 

The stress o(t) at a material particle at time t is given in terms of the deformation gradient 
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history F(r), --co < r 6 t, by a constitutive equation of the form 

o(t) = % [F $j=] (2.7) 

In relation (2.7), SK denotes a response functional whose definition is associated with the use 
of reference placement ~(%?a). In a similar manner, if the motion is referred to reference 
configuration K*(B), the constitutive equation involves a response functional SK., and 

o(t) = %a[ F* /&]. (2.8) 

For notational convenience, the range of t will no longer be indicated on the response 
functionals. The response functional SK= can be expressed in terms of the response functional 
5, by using relation (2.5) (c$ [l]), 

&.[F*(t)] = *K[F*(t)P]. (2.9) 

In this work, we shall not make any extraneous assumptions, either about the class of 
functions which are admissible as histories, or about the nature of the response functionals SK, 
or SK.. The response functional is to be regarded as any rule of correspondence which specifies 
a(t) when the history F(r), or F*(r) is given. 

It is a consequence of the principle of material frame indifference [l] that the response 
functional 9, can be written in the form 

%JWl = WP~[C(W(9T (2.10) 
where 

C(r) = F(T)~F(~), (2.11) 

and 5Q denotes another functional associated with reference configuration K(B). In a similar 
manner, 

where 

Let g, denote the group 

&.[F*(r)] = F*(t)9&=[C*(r)]F*(t)‘, (2.12) 

C*(r) = F*(t)TF*(t). (2.13) 

of material symmetry transformations associated with reference 
configuration K(B). Then for each transformation-G E g,, 

RJWI = %[W)Gl. 
Similarly, let g,. denote the group of material symmetry 
K*(S). For each transformation G* E g,*, 

sK*[F*(t)] = sK.[F*(t)G*]. 

It has been shown by No11 [l] that 

g,* = Pg,P_‘. 

(2.14) 

transformations associated with 

(2.15) 

(2.16) 

3. ISOTROPIC SIMPLE SOLIDS 

Suppose that the material is isotropic in reference configuration K(B), so that the material 
symmetry group g, is the orthogonal group (full or proper). Then eqn (2.14) must be satisfied 
identically in the history F(r) for each transformation G satisfying the orthogonality condition 

According to the representation 
materials, the response functional 

GTG = GGT = I. (3.1) 

theorem of Wineman and Pipkin [2] applied to isotropic 
%,, related to s’, by eqn (2.10), can be written in the form 

SK = i zi?[J’“‘; I], (3.2) 
a=0 
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where L$’ denotes a functional which depends on a matrix polynomial $4, and on a set of 
invariants I. The functional 6p’,) satisfies the following property in its matrix polymomial 
argument J(? if #ii is a constant matrix, then 

sKa’( $ijJij ; I) = $ijCY~p’[Jij ; I]. (3.3) 

The set of invariants denoted by Z consists of the following: 

Z(l)( I;) = tr C( 5) > 

Z(“‘(~;I, 1;2) = tr C(ClF452), 

z’m(L 1;2, * * . 9 Cp> = tr WhWZ2) - . . CGA p = 1, 2, . . . , 6. (3.4) 

The matrix polynomials .I(“) are defined by 

J(O) = 1 7 

J'"' =! (#) + n’“‘=) 
2 

7 cx = 1, 2, . . . ) 5, 

34” = C(fl)C(52) * * * C(L). (3.5) 

Recall that the response functional SK* associated with reference configuration K*(B) can be 
expressed in terms of SK by means of eqn (2.9). That is, SK. can be constructed from SF, by 
making the substitution defined by eqn (2.5). To this end, we substitute for eqn (2.5) into eqn 
(2.11) and then make use of eqn (2.13) to obtain 

C(r) = PTC*(t)P. (3.6) 

When eqn (3.6) is used in eqns (3.4), the invariants of set Z become of the form 

IqL f2, * * * , &;s> = tr C*(CPOC*(~;~)~~ * - - C*(f‘BP0; p=l, 2,. . . , 6, (3.7) 

where 
$!&J = PPT. (3.8) 

Denote the set of invariants in this form as 1 When eqn (3.6) is substituted into eqns (3.5), the 
matrix polynomials J(“) (a = 1, 2, . . . , 5) become 

J’“’ = p=j(“‘p 7 (3.9) 
where 

j(m) =! (ji’“’ + ji’“‘=) 
2 

(3.10) 

with A’“’ = c*(5;1)~cC*(1;2)% * * * a&*(L). (3.11) 

Let eqns (2.5), (3.2), (3.7) and (3.8) be combined in eqn (2.10) to give 

S,[F*(z)P] = F*(t)P{p;‘[I; I] + 5 cYTe’,“‘[P=j’“‘P; I]}PTF*(t)T. 
a=1 

(3.12) 

Since P, defined by eqn (2.5), is a constant tensor, the properties of L!?iap, defined in eqn (3.3) 
imply that eqn (3.12) can be written as 

&[F*(t)P] = F*(t){Z:‘[PP=; f] + c 2!$w)[PPTj’“‘PPT; f]}F*(QT. 
n=l 

(3.13) 

Finally, by eqns (2.9) and (3.8), we obtain 

~$[F*(z)] = F*(t){%f’[9% I] + i .@~[$44,$“~B,; f]}F*(t)=. 
a=1 

(3.14) 

It will be important in the remainder of this section to recall how the invariants in the set Z 
and the matrix polynomials J ‘(a) depend on C*(t) and !Bo. In order to emphasize the definitions 
in eqns (3.7) and (3.11), we introduce the notation 

I= f(C*, 9Bo), J ‘(4 = pyc*, Bo), ji’“’ = j$qc*, So). (3.15) 
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We now consider the material symmetry transformations associated with configuration 
~*(a). If G* is to be a transformation, it must satisfy eqn (2.15) identically in the history 
F*(t). In order to study the properties of G*, it will be useful to calculate the right-hand side 
of eqn (2.15) by substituting F*(t)G* for F*(t) in eqn (3.14). First note, by eqn (2.13), C* 
becomes G*=C*G*. The invariants in eqn (3.7) can be written as 

I’%, L * * * > Cd = tr C*GF%C*(52)~o - - - C*(C&% (3.16) 

where 
&& = G*B,G*=. (3.17) 

A comparison of eqns (3.7) and (3.16) shows that B0 is replaced by a,,. In terms of the 
notation introduced in eqn (3.15), the result of the substitution can be written as 

f(c*, 8,)+1(c*, 40). 

In a similar manner, we can write for the matrix polynomial ji(“) defined in (3.11) 

ji’“‘(C*, $lI&)+ G*TC*(s;l)~C*(~@&, - - - c&,C*(5;,)G* = G*=ji’“‘(C*, S&,)6* 

By eqns (3.10) and (3. ll), the matrix polynomial argument in eqn (3.14) becomes 

g&JP(c*, 9I$@&) + aOG*=j@)(C*, &)G* $3&, 

It then follows that 

SF,.[F*(r)G*] = F*(t){G*5!$!“[Bo; f(C*, !380)]G*T 

+ i G*L$a)[9JoG*T~(4(C*, do)G*9Bo; I(C*, $381~)]G*~}F*(t). 
a=1 

Since G is a constant tensor, property (3.3) of L@) and eqn (3.17) imply 

S’JF*(t)G*] = F*(t){Z’:)[9&,; @C*, do)] 

+ 5 LZ~p'[&&i(4(C*, do)&,,; f(C*, ~,)]}F*(t)‘. 
a=1 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

A comparison of eqns (3.14) and (3.22) shows that S,JF*(t)G*] is obtained from SF$[F*(t)] 
by replacing B. by ao. If G* is to be a material symmetry transformation associated with 
~*(a), then eqn (2.15) must be satisfied. This will occur if 4$ = B. in eqn (3.17). 

4. UNIAXIAL OR EQUAL BIAXIAL STRETCH 

We now consider the case in which configuration K*(B) is related to configuration ~(3) by a 
deformation of the following form with respect to a Cartesian coordinate system, 

XT=AX1, 

x;=px3. (4.1) 

This corresponds to a unixial stretch along the X,-axis or an equal biaxial stretch in the X,-X, 
plane. By eqn (2.6) A 0 0 

P= 0 A 0 . 

[ 1 (4.2) 
oocl 

The material symmetry group associated with ~*(a) which is induced by the above 
deformation from the material symmetry group of configuration ~(46) can be calculated using 
Noll’s Theorem (2.16). Let G = [Gii] be an orthogonal transformation in the group g,. The 
corresponding symmetry transformation G* of g,., by eqns (2.16) and (4.2), has the matrix 
Es 26:12-F 
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representation 

where 

w = p/n. 

Consider a rotation about, say, the X,-axis, which can be represented by the matrix 

G=[ ::; “: ;], 0~9<2~r. 

Also consider the reflection transformations 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

There are five possible cases of transverse isotropy which can be generated by transforma- 
tions of the form (4.5) together with one or more of the transformations (4.6) (cc Spencer [4]). 
For any G of the form (4.9, or which is the product of the rotation (4.5) with one of the 
transformations (4.6), it is seen from (4.3) that G* = G. 

Now, suppose that G is an orthogonal transformation which is not of the form produced by 
products of (4.5) and (4.6). Some of its components G13, G,, G3i, G32 are non-zero. As seen 
from eqn (4.3), some of the corresponding components of G* are not zero, and are multiplied 
by o. Since, according to (4.1) and (4.4), o # 1, it follows that G* will not satisfy (3.1) and 
therefore will be a unimodular, non-orthogonal transformation. As an example, suppose that G 
is a rotation about the Xi-axis. Then 

G=[; _ck& &]. (4.7) 

By eqn (2.16), the corresponding transformation G* in g,* has the form 

1 0 0 

G* 0 

[ 

cos@ 0-l sin @ 

0 -osinf$ cosfj 1 , (4.8) 
which is clearly non-orthogonal, but unimodular. 

Thus, the symmetry group g,* contains the transformations of transverse isotropy as a 
subgroup, and, in addition, contains unimodular non-orthogonal transformations. It follows 
that a material which is transversely isotropic with reference to a placement is inherently 
different from a material which was originally isotropic with regard to a reference placement 
and subsequently uniaxially extended. This difference must be considered when developing 
representations for constitutive equations in the two cases. 

5. MATERIAL SYMMETRY RESTRICTION ON THE RESPONSE FUNCTIONAL 

Equations (2.14) and (2.15) impose restrictions on the response functionals SK and 9,., 
respectively, due to material symmetry. These functionals must be such that eqns (2.14) and 
(2.15) are satisfied identically in the deformation gradient for each transformation of the 
material symmetry group. The general method for constructing representations for response 
functionals which meet the restrictions of eqns (2.14) and (2.15) has been outlined by Wineman 
and Pipkin [3]. 
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Since the material symmetry group g,* contains the transverse isotropy subgroup, one might 
be tempted, using the method outlined in [3], to write a respresentation for the response 
functional Z#,. for a material which is transversely isotropic. However, the appropriate 
representation for SK0 must also satisfy eqn (2.15) for the unimodular non-orthogonal 
transformations in g, . . This shows that the representation of a response functional with regard 
to the deformed configuration of a material which has been uniaxially extended would be 
different from that employed for a transversely isotropic material. 

From another point of view, the representations for response functionals SK and SK. cannot 
be independent. Equation (2.9) shows that SK. is related to SK, and Zl$ must reduce to SK if 
A = p = 1 in eqn (4.1). The presence of unimodular, non-orthogonal transformations in g,., in 
the example treated here, arises from the connection of g,* to g, by eqn (2.16). By 
incorporating the restrictions associated with the unimodular, non-orthogonal transformations 
in the representation, the response functional SK. will have the proper connection to SK. 

In this section, we establish a method for constructing a representation for 5,. which has the 
same structure as one for transverse isotropy, but which also satisfies the restrictions imposed 
by the unimodular, non-orthogonal symmetry transformations. 

By eqn (4.2) and (3.7) A2 0 0 se,= 0 A2 0 
[ 1 . (5.1) 

0 0 p2 

Let a and I3 be tensors whose components are defined by 

Lyii = g3i 6,, (5.2) 

Bij = 61i 6, + 8z 63 = d,i 6aj, (5.3) 

where the repeated Greek indices indicate summation over the range 1 and 2. Then, $B,, can be 
written as 

460 = A21 + (11” - A2)a 

= A2[I + (02 - l)a], (5.4) 
or in the equivalent form 

9&J = A$ + j.Ar 

= A”[p + 02a], (5.5) 

where o was defined in eqn (4.5). 
Smith and Rivlin [5] have shown that I, a and fi are anisotropic tensors for the transverse 

isotropy group of transformations. That is, 

G*IG*= = I, 

G*aG*= = a, 

G*@G*= = fl, (5.6) 

if G* is any of the transformations (4.5) or (4.6). It follows that when 9l& is given by eqns (5.4) 
or (5.5), 

G*Sg,G*= = s$ (5.7) 

for any transformation of the transverse isotropy group. Then by eqns (3.17) &,, = $!I&,, and 
according to eqns (3.14) and (3.22) 

sK.[F*(t)] = R*[F*(r)G*]. (5.8) 

This demonstrates, in the context of the present example, the result of Noll’s thoerem that the 
transverse isotropy group is a subgroup of g,*. 

Now let G* be the unimodular, non-orthogonal transformation given by eqn (4.8). It is a 
straightforward calculation to show that relations (5.6) are no longer satisfied, but again 
9& = 48,,. Noll’s theorem assures that this will be the case for all of the unimodular 
transformations in g:. Thus &, = Cl&, for all G* in g:. 
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The expansions (5.4) or (5.5) of a0 in terms of the anisotropic tensors I, a and b have an 
important application. Each of these expansions can be used to construct a representation for 
SK. which has the formal structure appropriate to the transverse isotropy subgroup of g,., but 
which also includes the restrictions due to the unimodular non-orthogonal transformations 
of g,*. 

Representation I 

Let !!I&, given by eqn (5.4) be substituted into the invariants defined in (3.7). The result is 

z’fl(51, 5‘2, * * * 9 C-,4 = ~*‘$‘%, tz, . . . , &s> + Af”‘%, L, . . . , L$;s; A) (5.9) 

where 

I’fl(cl> L * - . , &3> = tr C*(~dC*(L) + - - C*(Cp-,); @=1,2,.. . ,6, (5.10) 

A = w2 - 1 and PCs, is a polynomial in A and the expressions 

R*‘%L L, * * * > f;B) = [C*(fl)C*(L) * * * c*G-f3)133 
= c*G)3i*c*mili2 * . * c*(&,3; /3 = 1, 2, . . . , 6. (5.11) 

For notational convenience, denote the set of expressions in (5.10) and (5.11) by K*. 
Upon substitution of $I&,, the matrix polynomial 91J,#aSQ,, (a = 1, 2, . . . , 5) can be written 

in the form 

(5.12) 

where 

R’“‘= c*(&)c*(&) * * * c*(L); (Y = 1, 2, . . . ) 5, (5.13) 

f, is a scalar polynomial in A and the elements of the set K*, and $,), cu=6,. . . ,N,, are 
matrix polynomials which are the symmetric parts of 

&3i &3j 

&[~01)13j; y=1,2,. . . , (Y-1, 

[Tc~y~~]~~[~~yz~]~j~ Yl, Y2 = 1, 2, * . * , a; Y1+Yzs~. (5.14) 

For example, for B = 3 in eqn (3.7), 

~“‘(CI, 5;2> 53) = ~6{~‘3’(C~~ C2, C3) + A[C*(1;1)3jC*(5‘2)jkC*(5;3)k3 

+ C*(~3)3jC*(gl)jkC*(g2)k3 + C*(52)3jC*(r,)j~C*(gl)k31 

+ A2[C*(~,)3jC*(52)j3C*(53)33 + C*(52)3jC*(53)j3C*(~,)33 

+ c*(~3)3jc*(f;l)j3c*(~2)331 + A3c*(5;1)33c*(1;2)33c*(e3)33}, (5.15) 

where A = o2 - 1. Also, for (Y = 2 in eqn (3.11), 

[aOc(f‘l)%~(~2)%]ij = n”{c*(l;l)ipc(C2)pj 

+ A[c*(Cdi3c(C2)j, + 83iC*(Cd3kC*(5;2)/cj + S3jC*(CdipC*(t;2)p3] 

+ A2[S3iC*(~2)3jC*(I;l)33 + bjC*(CAC*(52)33 

+ 6~ bjC*(C&C*(C2)p,] + A3 63i 83jC*(r1)33C*(52)33}. (5.16) 

The scalar polynomials in eqns (5.10) and (5.11) were derived by Adkins [6] as invariants 
associated with transverse isotropy for second order tensors. By comparison with eqn (3.4), it is 
seen that eqns (5.10) are also invariants for isotropy. Thus, the invariants in eqn (5.11) are 
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additional ones arising from transverse isotropy. This set is reducible, but that reduction will 
not be considered here. The matrix polynomials in (5.13) are the same as in eqn (3.5) for 
isotropy. The ones in (5.14) are additional ones which arise from transverse isotropy. 

When eqns (5.4) and (5.12) are substituted into eqn (3.14), and use is made of its property 
(3.3), we obtain 

$&[F*(z)]= F*(+';~[l;K*, A]+ t L@[h; K*, A] 
Lx=1 

+ 5 Z$)[@; K*, A]}F*(t)‘, (5.17) 
LX=6 

where L??$) are new functionals which are expressible in terms of the original functionals Z’p). 
Note that when p = A, i.e. equal triaxial extension A = o* - 1 = 0, and B0 = A*I. Then the 

terms which are associated with transverse isotropy disappear from eqns (5.9) and (5.11). Thus, 
A = (p/n)’ - 1 can be interpreted as a measure of the amount of transverse isotropy which is 
induced by deformation (4.1). The functionals dip,. (a) also satisfy property (3.3). Equation (5.17) 
gives the same form that would be obtained for transversely isotropic materials by the direct 
application of the method outlined in [3]. In that method, the functionals 6p(,“r) depend on 
invariants K* in an arbitrary manner. The response functional would satisfy eqn (2.15) only for 
the transformations of transverse isotropy. When one uses the method presented here, one is 
assured that the new functionals 23) are such that eqn (2.15) is satisfied for all the 
transformations of g,*. 

Representation II 

Let 9&, given by eqn (5.5) be substituted into the invariants (3.7). These can be expressed as 
polynomials in o* and the polynomials of the set 

C&&3,(~2)~ GY(~l)G3(~2)~ 

c$(z,)c~~:,(t*)c,*,(z,), 

C$(t,)Cc2,(z*)C,*,(Z3)C~3:3(t4), (5.18) 

in which the arguments zl, z2, z3, t4 are replaced by various combinations of (I, c2, . . . , &. 
According to Adkins [6] and Spencer [4], set (5.18) is an irreducible set of invariants for 
second-order tensors which is appropriate to transverse isotropy. 

Each matrix polynomial C3B J(49&, can be written in the form 

(5.19) 

where f”* is a scalar polynomial in the elements of the set (5.18), and .?(N, a = 1, M, are 
matrix polynomials which are the symmetric parts of 

giacZ3(z1) sjfJc,*3(T2) 

&i3 sjcxc$3,(zl)c~3(T2) 

8i3 sj~c~~((t,)Cg,(22)Cy*3(t3) 

dimcZ3(zl) sj~c&(z2)cy*3(23)* (5.20) 

The algebra required to express the invariants and matrix polynomials in eqn (3.14) in terms 
of (5.10) and (5.20) is quite tedious. For this reason, no examples are presented here. When 
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eqn (5.5) and (5.19) are substituted into eqn (3.14), we obtain 

S,,.[F*(t)] = F*(t) 5 5f:‘P@(*; K*‘, d]F*(t)=, 
a=1 

(5.21) 

where K*’ denotes the invariants generated by eqn (5.18). The discussion following eqn (5.17) 
also applies here. This is an alternate representation which is completely equivalent to that in 
eqn (5.17). 

6. EXAMPLE: NONLINEAR ELASTICITY 

It will be instructive to illustrate the previous discussion for nonlinear elasticity. In this case, 
the response functional aK in eqn (2.10) has the form (cJ [l]) 

where W denotes the strain energy density function and W = W(C(t)). For notational 
convenience, we suppress the explicit dependence on current time t and write C = C(t). 

If the material is isotropic in reference configuration ~($$a), then W = k!‘(Z,, Z2, I,), where 

Z, = tr C, 

Z 2 = i (Zf - tr C’), 

Z3 = det C. 

The response functional SK in (6.1) becomes 

B,[F(t)] = $,I + @,,C + 6,C2, 
where 

(6.2) 

(6.3) 

and 

(6.4) 

The expression in eqn (6.3) is a special case of the general representation for isotropic 
materials in eqn (3.2) in which 

2:) = &,I, 9;’ = $c, J@ = &2c2 

9:) = 0, #I = 3, 4, 5. (6.5) 

If the material is transversely isotropic in reference configuration ~(%?a), then W = 

w(Z,, Z2,Z3, KI, K2)9 w h ere Zi, Z2, Z3 are defined in eqn (6.2), and 

Kl= C33, 

K2 = (C2)33 = C,,C,,. (6.6) 

When this form of W is substituted into eqn (6.1), and use is made of eqns (6.2) and (6.6), the 
response functional SK has the form 

aK = r&I + &C + 42C2 + C3a + t&D, (6.7) 



Changes in material symmetry 

where a is defined in eqn (5.2) and D has components defined by 

Dij = C?Jj S, + Csj 83j* 

In addition, $@ = &(Z1, I*, Z3, Ki, K& /I = 0, 1, . . . , 4, and 
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(4.8) 

Now, let sK be transformed into SK. by the substitution F = F*P, as defined in eqn (2.9). 
Then ,raC, in eqn (2.10) becomes SF* in eqn (2.12) where by eqn (3.6) and (3.8) the 
corresponding form of &= is given by 

se,. = @&) + ~~~c*~* + ~~~oc*~~c*~o, (6.10) 

When @9& in eqn (6.10) is substituted into eqn (2.12), the result is the special case of (3.14) for 
isotropic nonlinear elastic materials. The arguments of &, /3 = 0, 1, 2 become, by eqn (3.2), 

Z, = tr C*ao, 

‘“=2 1 ’ [12 - tr C*BoC*461,1, 

Z3 = det C* l det Srt,. (6.11) 

Let B?(B) be related to K(B) by a uniaxial extension, as discussed in Section 5. We will now 
show that &. can be rewritten so that it has the same mathematical form as 9& for a 
transversely isotropic material, given by eqn (6.7). This will correspond to Representation I of 
Section 5. To this end, let B0 be given by eqn (5.4). Upon substitution of this form of s$, into 
the expressions for the invariants in eqns (6.10), they can be rewritten in the form 

zi = A2[z: + (w” - l)KF], 

I* = A”[Z,* + (w” - l)(z:Ky - K2*)], 

z, = i1%2z3*. (6.12) 

In eqn (6.12), G, Z$, B, KT, KS are invariants which are defined in eqns (6.2) and (6.6) with C 
replaced by C*. 

The matrices in eqn (6.10) are given by eqn (5.4) and 

B&*5@. = A4[C* + (02 - l)D* + (w” - 1)2qa], (6.13) 

9B&*9&$*9Ba = A6[C*2 + (02- l)E* + (02 - 1)2(KTD* + Kla) + (co2 - 1)3(KT)2a]. (6.14) 

In the above, the components of D* are defined as in eqn (6.8), with C replaced by C*. The 
components of E* are defined by 

Ed = (C*)$6, + (C*)$j ~~~ + C3::C~~ (6.15) 

The matrix E* can be expressed in terms of the other matrices in the following manner. Note 
that 

a(c*)z3 = EF 

3Cij ” 

Recall that by the Cayley-Hilton theorem, 

(6.16) 

(C*)& = (C*)2&r - CgZ2 f Z,*. (6.17) 
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When eqn (6.17) is substituted into eqn (6.16), the result is 

E*=(K; - KTI; + I:)1 + (K: - 1;)C* + (C”)” - ];a + l;D*. (6.18) 

Let eqn (5.4), (6.12), (6.13), (6.14) and (6.18) be combined in eqn (6.10). The resulting 
expression for 3, . can be written as 

a%. = Y;I + rj!~:C* + Y$Cwz + Y:a + Y:D*, (6.19) 

where the scalar coefficients are defined by the expressions 

Y,* = (p,*n2 + @d”(o” - l)(KZ - KTZT + I;), 

YT = (PTA” + ~~~6(~z - l)(KT - ZF), 

Y.$ = Qi2*AW, 

Wf = $$a@” - 1) + f#ITn”(o2 - l)%T 

+ #Q[(w’ - 1)2(K2*)2 + (02 - 1)3(K$ - (w” - 1)12*], 

Y: = #TP(o2 - 1) + $@“[(o” - 1)X? + (02 - l)z;]. (6.20) 

The scalars I$; are defined by the use of eqn (6.12) 

&(ZI, Z2,h) = &WL G, a, KT, K;; A2, @*I, j3 = 0, 1, . . . ,4. (6.21) 

in view of eqns (6.20) and (6.21), it can be seen that 

9; = !l$(Zl*, z;, z;, KT, K;; P, 02). (6.22) 

A comparison of eqns (6.19) and (6.22) with eqn (6.7) shows that SRK. has the same form as 
Se, for a transversely isotropic material. 

Equation (5.8) will be satisfied for transformations G* of transverse isotropy. However, the 
manner of deriving the representation for Se,. ensures that eqn (5.8) will also hold for the 
unimodular non-orthogonal transformations of the symmetry group g,=. 

It is essential to note that if S& is given by eqn (6.19), with arbitrary scalar coefficients, 
Wz= Yz(Z:, Zg, Zj, KT, Kg), then eqn (5.18) will be satisfied only for transformations G* 
associated with transverse isotropy. However, if 9?& . is to be regarded as applicable to the 
deformed configuration of a material which has been uniaxially extended, the scalar coefkients 
must have the form in eqn (6.20). This emphasizes the fact that material which is transversely 
isotropic with respect to a placement is inherently different from a material which was 
originally isotropic with regard to a placement, and was then uniaxially extended. 
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