VIBRATIONAL ANALYSIS OF CRYSTALLINE TRIGLYCINE*

T. SUNDIUS**, J. BANDEKAR and S. KRIMM
Biophysics Research Division and Department of Physics, University of Michigan, Ann Arbor, MI 48109 (U.S.A.)

(Received 31 January 1989)

ABSTRACT

Abstract

We have refined vibrational force fields for polypeptides that permit excellent reproduction of the normal mode frequencies of such molecules. This is demonstrated in the present study, in which 80 IR and Raman bands of crystalline triglycine between 1800 and $200 \mathrm{~cm}^{-1}$ are reproduced with an average error of $6 \mathrm{~cm}^{-1}$. A deuterated sample is shown by normal mode analysis to have remained protonated at the C-terminal peptide group. Such results show that normal mode analysis can now provide a rigorous base for spectral studies of conformation in peptides and proteins.

INTRODUCTION

Normal mode analyses of the vibrational spectra of small peptides of known structure are useful in validating force fields developed for polypeptides [1] and in providing convincing support for predictions of related unknown structures. As an example of this, our satisfactory analysis of the parallel-chain β structure in crystalline Val-Gly-Gly [2] enhances our confidence in the predictions of the vibrational spectrum of the general parallel-chain β-sheet [3]. Such studies also provide a rigorous base for using the observed spectra in further structural studies of these small peptides, and they help to analyze spectral details that need to be understood in order to permit the development of more complete force fields.
In this paper we present an analysis of the vibrational spectrum of a specific antiparallel-chain β-structure of crystalline triglycine, Gly ${ }_{3}$ [4]. Previous structure studies on this molecule [5-8] have shown that it adopts at least two different crystal forms, probably corresponding to different molecular conformations. We have ascertained that our spectra are derived from the same kind of crystals on which the crystal structure analysis was done [4]. This avoids

[^0]

Fig. 1. IR spectra of triglycine (upper curve) and the deuterated derivative (lower curve).

Fig. 2. Raman spectra of triglycine (upper curve) and the deuterated derivative (lower curve). (The intensity scale is for the protonated molecule. For the deuterated molecule, the intensity scales are: 0.4E05-3.2E05 (25-100 cm^{-1}), 4.2E03-1.2E04 (100-1800 cm^{-1}), and 0.1E03-4.2E04 $\left(2300-3500 \mathrm{~cm}^{-1}\right)$.)
the complications of previous solid state IR studies [9], in which it was noted that different spectra were obtained from different forms, as well as of earlier solid state Raman studies [10], in which the sample was poorly defined.

Previous vibrational studies of Gly ${ }_{3}$ have been based on a crude Urey-Bradley force field [11], and, for analysis of the conformation in aqueous solution [12], on a valence force field for diglycine. This analysis is based on our force field for polyglycine I [13], extending this to include force constants for the end groups by a refinement of the normal modes of crystalline diglycine. A preliminary report of the results has been presented [14].

EXPERIMENTAL

Triglycine was obtained as a powder sample from Sigma. Small crystals were grown from this material by slow evaporation of an aqueous methanol solution at room temperature. Tiny crystals were formed by rapid crystallization in vacuo. The spectra recorded from these three kinds of sample were significantly different, indicating differences in local molecular structure. The crystals formed by slow evaporation from methanol solution were found by X-ray diffraction [15] to correspond to those for which the crystal structure was determined [4], and these or tiny crystals grown on a watch-glass (which gave similar spectra) were used in our studies. Crystals of of N -deuterated Gly_{3} were prepared in a similar manner, following three successive treatments with $\mathrm{CH}_{3} \mathrm{OD} / \mathrm{D}_{2} \mathrm{O}$ followed by freeze-drying. (The freeze-drying procedure on normal samples gave our standard spectra.) As will be seen below, a specific pattern of deuteration resulted from this treatment.

Infrared spectra were obtained in KBr discs, at room and liquid nitrogen temperatures, using a Bomem DA3 FTIR spectrometer operating at a resolution of $2 \mathrm{~cm}^{-1}$. Raman spectra were obtained from the crystals in a capillary tube, using a Spex 1403 spectrometer and $5145 \AA$ excitation. The laser power was 500 mW , and a spectral band width of $2 \mathrm{~cm}^{-1}$ was used. Infrared spectra of Gly_{3} and its deuterated derivative are given in Fig. 1, and Raman spectra are presented in Fig. 2.

NORMAL MODE CALCULATIONS

The unit cell of our form of Gly ${ }_{3}$ is triclinic, space group $P \overline{1}$, with $a=11.656$ $\AA, b=14.817 \AA, c=4.823 \AA, \alpha=88.45^{\circ}, \beta=95.96^{\circ}, \gamma=105.42^{\circ}$, and $Z=4$, two molecules comprising the asymmetric unit (our labels A and B correspond to I and II [4], respectively). The unit cell is shown in Fig. 3, and the asymmetric unit is shown in Fig. 4. The conformations of the two molecules in this unit are very similar, except around the NH_{3}^{+}groups, and they both have fully extended trans-planar structures (the $\mathrm{C}^{\alpha}-\mathrm{C}^{\alpha}$ repeat distances are $7.27 \AA$ (A) and $7.18 \AA(\mathrm{~B})$, compared to $7.044 \AA$ in polyglycine I [16]). The backbone

Fig. 3. Unit cell of triglycine (after ref. 4).
torsion angles are [4] A: $\psi_{1}=-150^{\circ}, \omega_{1}=-176^{\circ}, \phi_{2}=178^{\circ}, \psi_{2}=-172^{\circ}$, $\omega_{2}=-179^{\circ}, \phi_{3}=173^{\circ}$, and $\psi_{3}=-173^{\circ}$; B: $\psi_{1}=-162^{\circ}, \omega_{1}=176^{\circ}, \phi_{2}=-166^{\circ}$, $\psi_{2}=175^{\circ}, \omega_{2}=-176^{\circ}, \phi_{3}=173^{\circ}$, and $\psi_{3}=-169^{\circ}$. The hydrogen-bonding pattern is quite complicated, involving bifurcated hydrogen bonds in some cases (see Table 6 of ref. 4). The peptide hydrogen bonds differ for the A and B molecules, with some being very weak ($d(\mathrm{H} \cdots \mathrm{O}$) $>2.28 \AA$, compared for example to $d(\mathrm{H} \cdots \mathrm{O})=1.75 \AA$ in polyglycine II and β-poly (L-alanine), $1.88 \AA$ in α-poly (L-alanine), and $2.12 \AA$ in polyglycine I [1]). The hydrogen bonds between end groups also differ for the A and B molecules. Table 1 presents the

Fig. 4. Asymmetric unit of two molecules in unit cell of triglycine. Dotted lines show hydrogen bonds included in normal mode calculations (cf. Table 1).

TABLE 1

Hydrogen bond parameters and force constants used in normal mode calculations of Gly_{3}

Designation $^{\text {a }}$	$d(\mathrm{H} \cdot \mathrm{O})^{\mathrm{b}}$	$f(\mathrm{H} \cdot \cdot \mathrm{O})^{\mathrm{c}}$
$\mathbf{1}$	2.07	0.0755
2	2.12	0.0640
3	2.20	0.0450
4	2.28	0.0270
5	1.98	0.0960
6	1.86	0.1240
7	1.71	0.1509
8	1.77	0.1470
$9^{\text {d }}$	2.34	0.0010
10	2.18	0.0500
11	1.99	0.0940

${ }^{\text {a }}$ See Fig. 4. ${ }^{\text {b }}$ In \AA. ${ }^{\text {c In }}$ mdyn \AA^{-1}. ${ }^{\mathrm{d}} \mathrm{CH} \cdot \cdot \mathrm{O}$ bond; f set to 0.001 .
hydrogen bonds that were included in the calculation (cf. Fig. 4), viz., intermolecular bonds with $d(\mathrm{H} \cdots \mathrm{O})<2.28 \AA$, and the force constants associated with them.
In order to transfer our polyglycine I (PGI) force field [13] as a first approximation to Gly_{3}, we have used standard geometry for the peptide group [1]. The observed ϕ, ψ were used, and the actual hydrogen bond lengths were the basis for obtaining interpolated or extrapolated values of $f(\mathrm{H} \cdots \mathrm{O})$, using PGI and PGII values from ref. 1. The geometric parameters of the end groups were the same as those used for Val-Gly-Gly [2], except that we took d (N$\left.\mathrm{H}^{+}\right)=1.04 \AA$, in accordance with neutron diffraction results on diglycine [17,18]. The CO_{2}^{-}wagging coordinate was defined as previously [2].
The changes made in the main chain force constants from PGI were as follows. While we took $f\left(\mathrm{C}_{1}=0\right)_{\mathrm{A}}=f\left(\mathrm{C}_{2}=0\right)_{\mathrm{A}}=f\left(\mathrm{C}_{1}=\mathrm{O}\right)_{\mathrm{B}}=f(\mathrm{C}=0)_{\mathrm{PGI}}=9.882$, we set $f\left(\mathrm{C}_{2}=0\right)_{\mathrm{B}}=9.750$, since this bond is $0.006 \AA$ longer than the mean value of the other three $\mathrm{C}=\mathrm{O}$ bonds ($1.228 \pm 0.001 \AA$). Since the $d(\mathrm{H} \cdots \mathrm{O})$ vary significantly, we chose values of the $f(\mathrm{NH})$ to reflect the hydrogen-bond strength, using as a first approximation the $f(\mathrm{NH})-d(\mathrm{~N} \cdots \mathrm{O})$ relationship obtained from ab initio studies [19]. We took $f\left(\mathrm{C}_{2}^{\alpha} \mathrm{H}\right)$ equal to the PGI value of 4.564 but we set $f\left(\mathrm{C}_{3}^{\alpha} \mathrm{H}\right)=4.820$, since this group next to CO_{2}^{-}gives rise to frequencies over $3000 \mathrm{~cm}^{-1}$ in diglycine, and we set $f\left(\mathrm{C}_{1}^{\alpha} \mathrm{H}\right)=4.640$, to account for the relatively high ($\sim 2960 \mathrm{~cm}^{-1}$) frequency for this group in diglycine (these changes required setting $f\left(\mathrm{C}^{\alpha} \mathrm{H}, \mathrm{C}^{\alpha} \mathrm{H}\right)=0$, compared to its value of 0.01 in PGI, and adjusting $f\left(\mathrm{CC}^{\alpha} \mathrm{H}\right)$). The values of $f\left(\mathrm{C}^{\alpha} \mathrm{NH}\right)$ and $f(\mathrm{CNH})$ had to be adjusted slightly (from 0.527 to 0.487) to account for the amide II modes, probably a result of the difference in hydrogen bonding strengths between PGI and Gly_{3}. The amide V modes presented a bigger problem, undoubtedly related to the significantly different hydrogen bond strengths in the A and B molecules; we tried to compensate in part for this situation by keeping $f(\mathrm{NH} \text { ob })_{\mathrm{B}}$ and $f(\mathrm{NH}$ $\mathrm{ob}, \mathrm{CN} \mathrm{t})_{\mathrm{B}}$ at the PGI values and increasing the A counterparts to account for their stronger hydrogen bonds.

The main chain force constants are given in Table 2. The changes from PGI can only be considered approximations to the optimum modifications, since we have not undertaken a detailed force field refinement for the Gly_{3} structure; the complexity in the hydrogen-bonding pattern is undoubtedly reflected in sensitive differences in force constants. At this stage, we chose only a minimal adjustment in a few force constants so that the most salient features of the spectra are reproduced. The broader problem of the detailed dependence of force field on hydrogen bonding and geometry will probably have to be dealt with through theoretical studies, such as our ab initio analysis of the glycine dipeptide [20]. The end group force constants are from our diglycine analysis, which was based on a refinement of initial values taken from a valence force field for the free molecule [21], and are also given in Table 2.

Infrared intensities and frequency shifts of some of the amide modes were calculated by dipole derivative coupling (DDC) [2], using dipole derivatives
TABLE 2
Adjusted peptide group and end-group force constants for Gly_{3}

Peptide group			End group					
Force constant ${ }^{\text {a }}$	Gly_{3}	PGI	$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{CO}_{2}{ }^{-}$		
			Force const. ${ }^{\text {a }}$	Gly_{3}	PGI	Force const. ${ }^{\text {a }}$	Gly_{3}	PGI
$f\left(\mathrm{~N}_{2} \mathrm{H} \mathrm{A}\right)$	5.904	5.840	$f(\mathrm{NH})$	5.350	5.840	$f\left(\mathrm{C}^{\alpha} \mathrm{C}\right)$	4.409	4.409
$f\left(\mathrm{~N}_{2} \mathrm{HB}\right)$	5.943	5.840	$f\left(\mathrm{NC}^{\alpha}\right)_{\mathrm{A}}$	4.500	5.043	$f(\mathrm{CO})$	9.500	9.882
$f\left(\mathrm{~N}_{3} \mathrm{HA}\right)$	5.889	5.840	$f\left(\mathrm{NC}^{\alpha}\right)_{\mathrm{B}}$	4.700	5.043	$f\left(\mathrm{C}^{\alpha} \mathrm{CO}\right)$	1.109	1.246
$f\left(\mathrm{~N}_{3} \mathrm{HB}\right)$	6.032	5.840	f (HNH)	0.590		$f(\mathrm{OCO})$	2.033	
$f\left(\mathrm{C}_{2}=0\right)_{\mathrm{B}}$	9.750	9.882	$f\left(\mathrm{HNC}^{\alpha}\right)$	0.770		$f(\mathrm{CO}$ ob)	0.636	0.587
$f\left(\mathrm{C}_{1}^{\alpha} \mathrm{H}\right)$	4.640	4.564	$f\left(\mathrm{NC}^{\alpha} \mathrm{H}\right)$	0.715	0.715	$f\left(\mathrm{C}^{\alpha} \mathrm{C}\right.$ t)	0.294	0.037
$f\left(\mathrm{C}_{3}^{\alpha} \mathrm{H}\right)$	4.820	4.564	$f\left(\mathrm{NC}^{\alpha} \mathrm{C}\right)$	0.819	0.819	$f\left(\mathrm{C}^{\alpha} \mathrm{C}, \mathrm{CO}\right)$	1.439	0.500
$f\left(\mathrm{C}^{\alpha} \mathrm{H}, \mathrm{C}^{\alpha} \mathrm{H}\right)_{1,3}$	0.000	0.010	$f\left(\mathrm{NC}^{\alpha} \mathrm{t}\right)$	0.200	0.037	$f(\mathrm{CO}, \mathrm{CO})$	1.200	
$f\left(\mathrm{CC}^{\alpha} \mathrm{H}\right)$	0.715	0.684	$f\left(\mathrm{NC}^{\alpha}, \mathrm{C}^{\alpha} \mathrm{C}\right)$	0.300	0.300	$f\left(\mathrm{C}^{\alpha} \mathrm{C}, \mathrm{OCO}\right)$	0.519	0.450
$f\left(\mathrm{C}^{\alpha} \mathrm{NH}\right)$	0.487	0.527	$f\left(\mathrm{NC}^{\alpha}, \mathrm{C}^{\alpha} \mathrm{NH}\right)$	0.144	0.294	$f\left(\mathrm{CO}, \mathrm{C}^{\alpha} \mathrm{CO}\right)$	0.509	0.450
$f(\mathrm{CNH})$	0.487	0.527	$f\left(\mathrm{NC}^{\alpha}, \mathrm{HNH}\right)$	-0.150		$f\left(\mathrm{CO}, \mathrm{C}^{\alpha} \mathrm{CO}^{\prime}\right)$	-0.509	
$f\left(\mathrm{NH} \mathrm{ob}_{\mathrm{A}}\right.$	0.159	0.129	$f\left(\mathrm{NC}^{\alpha}, \mathrm{NC}^{\alpha} \mathrm{H}\right)$	0.517	0.517	$f(\mathrm{CO}, \mathrm{OCO})$	-0.135	
$f(\mathrm{NH} \mathrm{ob,} \mathrm{CN} \mathrm{t})_{\mathrm{A}}$	-0.1477	-0.1677	$f\left(\mathrm{NC}^{\alpha}, \mathrm{CC}^{\alpha} \mathrm{H}\right)$	0.026	0.026	$f\left(\mathrm{CO} \mathrm{ob}, \mathrm{HC}^{\alpha} \mathrm{C}\right)$	-0.093	
			$f\left(\mathrm{NC}^{\alpha} \mathrm{C}, \mathrm{C}^{\alpha} \mathrm{C}\right)$	0.300	0.300	$f\left(\mathrm{CO}\right.$ ob, $\left.\mathrm{H}^{\alpha} \mathrm{C}^{\alpha} \mathrm{C}\right)$	-0.093	
			$f\left(\mathrm{NC}^{\alpha} \mathrm{C}, \mathrm{NC}^{\alpha} \mathrm{H}\right)$	-0.031	-0.031	$f(\mathrm{CO} \cdot \cdot \mathrm{H})$	0.050	
			$f\left(\mathrm{HNC}^{\alpha}, \mathrm{NC}^{\alpha} \mathrm{H}\right)$	-0.012				
			$f\left(\mathrm{HNC}^{\alpha}, \mathrm{NC}^{\alpha} \mathrm{H}^{\alpha}\right)$	0.012				
			$f\left(\mathrm{HNC}^{\alpha}, \mathrm{HNC}^{\alpha}\right)$	-0.040				

[^1]for the peptide group obtained from ab initio studies of hydrogen-bonded N methylacetamide [22].

RESULTS AND DISCUSSION

The observed and calculated frequencies of Gly_{3} are given in Table 3, together with the potential energy distribution (PED) for each mode. For amide I, II and V modes, calculated IR intensities are given with the PEDs.
On examination of the spectra of the N -deuterated Gly_{3}, it became evident that the molecule was not completely deuterated; this is most clearly seen in the presence of an NH stretch mode at $3280 \mathrm{~cm}^{-1}$, VS, in the IR. As we shall see, the evidence is strong that NH_{3}^{+}is converted to ND_{3}^{+}and that only one of the peptide nitrogens is deuterated. The results of normal mode calculations on both possible structures favor the $\mathrm{N}_{1} \mathrm{D}_{3}^{+} \mathrm{N}_{2} \mathrm{DN}_{3} \mathrm{H}$ structure (see discussion below). In Table 4, we present the calculated modes for this structure and our assignments of the observed bands. The reason for this pattern of deuteration is not apparent; it could be that the N_{3} hydrogen is difficult to exchange, or, on the other hand, that it exchanges very readily and was subject to re-exchange on handling. In any event, this unusual pattern of deuteration has provided an interesting challenge to our predictive capabilities.

The NH stretch(s) modes, despite being perturbed by Fermi resonances [23], reveal a pattern that is undoubtedly related to the relative hydrogenbond strengths, which would result in a frequency order of $\nu\left(\mathrm{N}_{3 \mathrm{~A}} \mathrm{H}\right)<\nu\left(\mathrm{N}_{2 \mathrm{~A}} \mathrm{H}\right)<\nu\left(\mathrm{N}_{2 \mathrm{~B}} \mathrm{H}\right)<\nu\left(\mathrm{N}_{3 \mathrm{~B}} \mathrm{H}\right)$. (This is not modified by taking Fermi resonance into account, using reasonable assignments of the ν_{B} values [23] in the, admittedly complex, $\sim 3100 \mathrm{~cm}^{-1}$ region.) Four bands are observed, at $3284,3298,3315$, and $3322 \mathrm{~cm}^{-1}$ in the IR, that can be assigned to these respective modes on the basis of relative $f(\mathrm{NH})$ force constants determined from an ab initio $f(\mathrm{NH})-d(\mathrm{~N} \cdots \mathrm{O})$ relationship [19]. (We have matched the calculated with the observed $3284 \mathrm{~cm}^{-1}$ frequency and allowed the others to be determined by the $f(\mathrm{NH})-d(\mathrm{~N} \cdots \mathrm{O})$ relationship [19]; this is mainly for illustrative purposes, since we have not undertaken a Fermi resonance analysis of the $3100 \mathrm{~cm}^{-1} \nu_{\mathrm{B}}$ region). These assignments are further confirmed by the pattern resulting from deuteration: the highest and lowest frequency bands remain, the original bands shifting down to 3280 and $3313 \mathrm{~cm}^{-1}$, while the two middle bands disappear, to be replaced by a pair of bands at 2424 and 2408 cm^{-1} (these two are well resolved and of reversed intensity ratio at liquid nitrogen temperature). The $2468 \mathrm{~cm}^{-1}$ band is probably amide B , its higher value than amide A being similar to the situation in poly (L-alanine-ND) [23]. The presence of bands near the values predicted for $\mathrm{ND}_{3}^{+}\left(\sim 2360-2200 \mathrm{~cm}^{-1}\right)$ supports our assertion that deuteration of this end group has occurred. Thus, the patterns of NH s and ND s modes are consistent with the deuterated molecule being $\mathrm{N}_{1} \mathrm{D}_{3}^{+} \mathrm{N}_{2} \mathrm{DN}_{3} \mathrm{H}$.

TABLE 3
Observed and calculated frequencies (in cm^{-1}) of Gly_{3}

Observed ${ }^{\text {a }}$		Calculated	Potential energy distribution ${ }^{\text {b }}$
Raman	IR	g u	
3320MS	3322 W	33133313	$\mathrm{N}_{3} \mathrm{H} \mathrm{sB}$ (99)
	3315 VS	32953293	$\mathrm{N}_{2} \mathrm{H}$ sB (99)
3297W	3298S	32863286	$\mathrm{N}_{2} \mathrm{H}$ sA (99)
3285M	3284 S	32833284	$\mathrm{N}_{3} \mathrm{H}$ sA(99)
		31833177	H_{3} as1B (66), H_{3} as2B (31)
		31753175	H_{3} as2 $\mathrm{B}(67), \mathrm{H}_{3}$ as 1B (31)
		31723170	H_{3} as1A(72), H_{3} as2A (26)
		31623161	H_{3} as2A(72), H_{3} as 1 A (26)
3101W	3102MW		amide B
3088 VW	3088MW		amide B
		30753069	$\mathrm{H}_{3} \mathrm{ssB}$ (97)
		30563056	$\mathrm{H}_{3} \mathrm{ssA}$ (98)
3030sh	3030 VVW	30103010	$\mathrm{C}_{3} \mathrm{H}_{2}$ asB (100)
3024M	3022VVW	30103010	$\mathrm{C}_{3} \mathrm{H}_{2}$ asA (100)
3002VVW			
2986W			
2962VS	2963VW	29572957	$\mathrm{C}_{1} \mathrm{H}_{2}$ asA (99)
2954 S	2950W	29562956	$\mathrm{C}_{1} \mathrm{H}_{2}$ asB (99)
2930S		29362936	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{ssB}$ (99)
		29362936	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{ssA}$ (99)
	2925W	29282928	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{asB}$ (99)
2916sh		29272927	$\mathrm{C}_{2} \mathrm{H}_{2}$ asA (99)
2876M	2878W*	28812881	$\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{ssB}$ (99)
	2878 W	28812881	$\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{ssA}$ (99)
2866M	2862W*	28612861	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{ssB}$ (99)
	2862 W	28612861	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{ssA}(99)$
	$\begin{aligned} & \text { 1685MS } \\ & \text { 1680MS } \end{aligned}$	1686	$\mathrm{C}_{2} \mathrm{OsA}(54), \mathrm{C}_{1} \mathrm{OsA}(19), \mathrm{C}_{2} \mathrm{NsA}$ (14) [14.7]
1682sh		1682	$\mathrm{C}_{1} \mathrm{O} \mathrm{sB}(66), \mathrm{C}_{1} \mathrm{NsB}(18), \mathrm{C}_{1}^{\alpha} \mathrm{CN} \mathrm{dB}(10)$
		1679	$\mathrm{C}_{2} \mathrm{OsA}(60), \mathrm{C}_{2} \mathrm{NsA}(16), \mathrm{C}_{1} \mathrm{OsA}(14)$
1666VS		1663	$\mathrm{C}_{2} \mathrm{OsB}(72), \mathrm{C}_{2} \mathrm{NsB}(20), \mathrm{C}_{2}^{\alpha} \mathrm{CN} \mathrm{dB}(11)$
	1661sh	1661	$\mathrm{C}_{1} \mathrm{O} \mathrm{sA}(53), \mathrm{C}_{2} \mathrm{OsA}(20), \mathrm{C}_{1} \mathrm{~N}$ sA(15) [4.7]
	1657 W	1668	$\mathrm{C}_{1} \mathrm{O} \mathrm{sB}(72), \mathrm{C}_{1} \mathrm{NsB}(20), \mathrm{C}_{1}^{\alpha} \mathrm{CN} \mathrm{dB}(11)$ [9.0]
1645MW		1647	$\mathrm{C}_{1} \mathrm{O} \mathrm{sA}(54), \mathrm{C}_{1} \mathrm{NsA}(15), \mathrm{C}_{2} \mathrm{O}$ sA(13)
	1644VS	1648	$\mathrm{C}_{2} \mathrm{O} \mathrm{sB}$ (72), $\mathrm{C}_{2} \mathrm{NsB}(20), \mathrm{C}_{2}^{\alpha} \mathrm{CN} \mathrm{dB} \mathrm{(11)} \mathrm{[16.1]}$
	1630sh	16391639	$\mathrm{H}_{3} \mathrm{ab} 2 \mathrm{~A}(52), \mathrm{H}_{3} \mathrm{ab} 1 \mathrm{~A}(32), \mathrm{H}_{3} \mathrm{r} 1 \mathrm{~A}$ (12)
	1623sh	16181618	$\mathrm{H}_{3} \mathrm{ab} 1 \mathrm{~B}(83), \mathrm{H}_{3} \mathrm{r} 2 \mathrm{~B}(10)$
		16101610	$\mathrm{H}_{3} \mathrm{ab} 2 \mathrm{~B}(83), \mathrm{H}_{3} \mathrm{rlB}(10)$
		16081608	$\mathrm{H}_{3} \mathrm{ab1A}$ (57), $\mathrm{H}_{3} \mathrm{ab} 2 \mathrm{~A}$ (34)
1607W		15811581	O_{2} asB(104)
1583W	1593W	15761576	O_{2} asA (104)
		1574	$\mathrm{N}_{2} \mathrm{HibB}(21), \mathrm{H}_{3} \mathrm{sbB}(13), \mathrm{C}_{1}^{\alpha} \mathrm{C} \mathrm{sB}(10), \mathrm{C}_{1} \mathrm{NsB}(9)$
1554VW		1565	$\mathrm{N}_{2} \mathrm{HibA}(21), \mathrm{C}_{1}^{\alpha} \mathrm{C} \mathrm{sA}(12), \mathrm{C}_{1} \mathrm{NsA}(11), \mathrm{H}_{3} \mathrm{sb}$ (9)

TABLE 3 (continued)

Observed ${ }^{\text {a }}$		Calculated	Potential energy distribution ${ }^{\text {b }}$
Raman	IR	g u	
1535W	1553MS	1551	$\mathrm{N}_{2} \mathrm{H}$ ibA (22), $\mathrm{C}_{1}^{\alpha} \mathrm{C} \mathrm{sA}(13), \mathrm{C}_{1} \mathrm{~N} \mathrm{sA}(11), \mathrm{H}_{3} \mathrm{sbA}(10)$ [1.3]
			$\mathrm{H}_{3} \mathrm{sbB}(17), \mathrm{N}_{3} \mathrm{HibB}(17), \mathrm{C}_{2} \mathrm{NsB}(10), \mathrm{C}_{2}^{\alpha} \mathrm{C} \mathrm{sB}(9)$ [11.2]
		1550	
	1548VW*	1542	$\mathrm{N}_{2} \mathrm{H} \mathrm{ibB}(21), \mathrm{H}_{3} \mathrm{sbB}(14), \mathrm{C}_{1}^{\alpha} \mathrm{C} \mathrm{sB}(11), \mathrm{C}_{1} \mathrm{~N} \mathrm{sB}(10)$ [0.4]
		1538	$\mathrm{H}_{3} \mathrm{sbB}(20), \mathrm{N}_{3} \mathrm{H} \operatorname{ibB}(18), \mathrm{C}_{2} \mathrm{~N} \mathrm{sB}(10), \mathrm{C}_{2}^{\alpha} \mathrm{C} \mathrm{sB}(10)$
	1538S	1528	$\mathrm{N}_{3} \mathrm{H} \mathrm{ibA}(18), \mathrm{C}_{2}^{\alpha} \mathrm{C} \mathrm{sA}(11), \mathrm{C}_{2} \mathrm{~N} \operatorname{sA}(10), \mathrm{H}_{3} \mathrm{sbA}(9)$ [8.8]
1523W	1522sh	1526	$\mathrm{N}_{3} \mathrm{H} \operatorname{ibA}(19), \mathrm{C}_{2}^{\alpha} \mathrm{C} \mathrm{sA}(11), \mathrm{H}_{3} \mathrm{sbA}(11), \mathrm{C}_{2} \mathrm{~N}$ sA(11)
		15151516	$\mathrm{H}_{3} \mathrm{sbB}(55), \mathrm{N}_{2} \mathrm{H} \mathrm{ibB}$ (12)
		15051505	$\mathrm{H}_{3} \mathrm{sbA}(65), \mathrm{N}_{2} \mathrm{H}$ ibA (9)
1467W	1465sh	14661466	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{bA}(18), \mathrm{C}_{1} \mathrm{H}_{2} \mathrm{bA}(14), \mathrm{C}_{2} \mathrm{H}_{2}$ wA(11)
			$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{bA}(10), \mathrm{O}_{2} \mathrm{ssA}(10)$
		14661466	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{bB}(20), \mathrm{C}_{1} \mathrm{H}_{2} \mathrm{bB}(18), \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{bB}(12)$
1459M		14481449	$\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{bB}(39), \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{bB}(24), \mathrm{O}_{2} \mathrm{ssB}(10), \mathrm{N}_{2} \mathrm{H}$ ibB (5)
1452M	1453 VW	14481448	$\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{bA}(37), \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{bA}(23), \mathrm{O}_{2} \mathrm{ssA}(12), \mathrm{N}_{2} \mathrm{H}$ ibA (6)
	1446W	14401440	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{bB}(63), \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{bB}(14)$
1440VW	1437MS	14351434	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{bA}(63), \mathrm{C}_{1} \mathrm{H}_{2} \mathrm{bA}(14)$
1425W	1427VW	14151415	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{bA}(43), \mathrm{O}_{2} \mathrm{ssA}(17), \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{wA}(12), \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{bA}(11)$
	1416sh	14121412	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{bB}(41), \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{wB}(19), \mathrm{O}_{2} \mathrm{ssB}(11)$
1410VS	1402S	14101409	$\begin{aligned} & \mathrm{O}_{2} \mathrm{ssA}(31), \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{wA}(17), \mathrm{C}_{3}^{\alpha} \mathrm{CsA}(15), \\ & \mathrm{O}_{2} \mathrm{bA}(13), \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{bA}(12), \mathrm{N}_{3} \mathrm{HibA}(7) \end{aligned}$
		14001400	$\mathrm{O}_{2} \mathrm{ssB}(34), \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{wB}(19), \mathrm{O}_{2} \mathrm{bB}(14),$ $\mathrm{C}_{3}^{\alpha} \mathrm{C} \mathrm{sB}(13) \mathrm{N}_{3} \mathrm{HibB}(7)$
1377VW		13781378	$\mathrm{C}_{3} \mathrm{H}_{2}$ wA(37), $\mathrm{C}_{1} \mathrm{H}_{2}$ wA(10)
1369VW		13721373	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{wB}(32), \mathrm{C}_{1} \mathrm{H}_{2} \mathrm{wB}(18), \mathrm{C}_{3}^{\alpha} \mathrm{C} \mathrm{sB}(11), \mathrm{O}_{2} \mathrm{ssB}(10)$
1360W	1361W	13501350	$\mathrm{C}_{1} \mathrm{H}_{2}$ wA(49), $\mathrm{C}_{2} \mathrm{H}_{2}$ wA(12), $\mathrm{N}_{2} \mathrm{H}$ ibA (5)
1332sh	1330 VW	13491349	$\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{wB}(38), \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{wB}(19), \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{wB}(12)$
1319W	1317W		
1303MS	1298W	12841284	$\mathrm{C}_{2} \mathrm{H}_{2}$ twA (48), $\mathrm{C}_{1} \mathrm{H}_{2}$ twA (22)
	1293M	12761276	$\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{twB}(54), \mathrm{N}_{2} \mathrm{H}$ ibB (7)
1277sh		12721272	$\mathrm{C}_{1} \mathrm{H}_{2}$ twA (50), $\mathrm{C}_{2} \mathrm{H}_{2}$ twA (39)
1269VW	1265 VW	12651265	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{twB}(32), \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{twB}$ (32), $\mathrm{N}_{3} \mathrm{HibB}$ (6)
		12611261	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{twB}(48), \mathrm{C}_{1} \mathrm{H}_{2} \mathrm{twB}$ (28)
		12591260	$\mathrm{C}_{3} \mathrm{H}_{2}$ twA (59), $\mathrm{N}_{3} \mathrm{H}$ bA (6)
	1248W	12431243	$\mathrm{N}_{2} \mathrm{H} \mathrm{ibB}(24), \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{twB}(15), \mathrm{NC}_{2}^{\alpha} \mathrm{sB}(10)$
1244M		12361237	$\mathrm{N}_{2} \mathrm{H} \mathrm{ibA}(26), \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{twA}(14), \mathrm{H}_{3} \mathrm{r} 2 \mathrm{~A}(7)$
1228VS	1231MW	12271226	$\mathrm{C}_{3} \mathrm{H}_{2} \operatorname{twB}(33), \mathrm{N}_{3} \mathrm{H}$ ibB (26), $\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{wB}(11)$
1224 W	1223 VW	12181218	$\mathrm{N}_{3} \mathrm{H}$ ibA (29), $\mathrm{C}_{3} \mathrm{H}_{2}$ twA (22), $\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{wA}$ (13)
	1218sh*	12071207	$\mathrm{H}_{3} \mathrm{r} 2 \mathrm{~A}(62), \mathrm{C}_{1} \mathrm{H}_{2} \mathrm{rA}(11)$
1195sh		11921192	$\mathrm{H}_{3} \mathrm{r} 2 \mathrm{~B}(66), \mathrm{C}_{1} \mathrm{H}_{2} \mathrm{rB}(16), \mathrm{H}_{3} \mathrm{ablB}(5)$
	1162W	11641164	$\mathrm{H}_{3} \mathrm{rlB}(66)$
1153M	1153W	11551155	$\mathrm{H}_{3} \mathrm{r} 1 \mathrm{~A}(71), \mathrm{H}_{3} \mathrm{ab} 2 \mathrm{~A}(8)$
1132W	1127M	11401139	$\mathrm{NC}_{2}^{\alpha} \mathrm{sB}(28), \mathrm{NC}_{3}^{\alpha} \mathrm{sB}(28)$

TABLE 3 (continued)

Observed ${ }^{\text {a }}$		Calculated	Potential energy distribution ${ }^{\text {b }}$
Raman	IR	g u	
1110W	1107W	11101110	$\mathrm{NC}_{2}^{\alpha} \mathrm{sA}(48), \mathrm{NC}_{3}^{\alpha} \mathrm{sA}(17)$
1085W	1080W	10851085	$\mathrm{NC}_{3}^{\alpha} \mathrm{sB}(37), \mathrm{NC}_{1}^{\alpha}{ }_{\text {s }} \mathrm{SB}(21), \mathrm{NC}_{2}^{\alpha} \mathrm{sB}$ (16)
1043sh	1043VW	10401040	$\mathrm{NC}_{3}^{\alpha} \mathrm{sA}(45), \mathrm{NC}_{1}^{\alpha} \mathrm{sA}$ (29)
1032W	1025 VW	10211021	$\mathrm{NC}_{1}^{\alpha} \mathrm{sB}(60), \mathrm{NC}_{2}^{\alpha} \mathrm{sB}(19)$
1000VS	1001W	10011002	$\mathrm{NC}_{1}^{\alpha} \mathrm{sA}(45), \mathrm{NC}_{2}^{\alpha} \mathrm{sA}(14), \mathrm{NC}_{3}^{\alpha} \mathrm{sA}(11)$
992M	994MS	994993	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{rB}$ (77)
974W	972 VW	977976	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{rA}(27), \mathrm{C}_{3}^{\alpha} \mathrm{C} s \mathrm{~s}(21)$
		966966	$\mathrm{C}_{3}^{\alpha} \mathrm{CsB}(34), \mathrm{O}_{2} \mathrm{bB}(15)$
	965W	965965	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{rA}(51), \mathrm{C}_{3}^{\alpha} \mathrm{C} \mathrm{sA}(10)$
952MW	950sh	946945	$\mathrm{C}_{2}^{\alpha} \mathrm{CsA}(18)$
		941941	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{rB}$ (19), $\mathrm{C}_{2}^{\alpha} \mathrm{C} \mathrm{sB}(13)$
923W	926MW	937937	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{rA}$ (75)
		935934	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{rB}$ (66)
909M	911sh*	922922	$\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{rB}(67), \mathrm{H}_{3} \mathrm{r} 2 \mathrm{~B}(14)$
	908MW	918918	$\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{rA}(68), \mathrm{H}_{3} \mathrm{r} 2 \mathrm{~A}(11)$
890W	887M	904905	$\mathrm{C}_{1}^{\alpha} \mathrm{CsA}(20)$
		902903	$\mathrm{C}_{1}^{\alpha} \mathrm{C} s \mathrm{~B}$ (17), $\mathrm{C}_{1} \mathrm{~N}$ sB (11)
878 VW			
753 VW	$755 \mathrm{sh}{ }^{*}$	759758	$\mathrm{O}_{2} \mathrm{bA}(19)$
746 W	744 W	744744	$\mathrm{O}_{2} \mathrm{bB}(21), \mathrm{C}_{2}^{\alpha} \mathrm{CsB}(10), \mathrm{C}_{2} \mathrm{O} \mathrm{ibB}(10)$
717 VW	718W	718720	$\mathrm{C}_{2} \mathrm{NtA}$ (41), $\mathrm{N}_{3} \mathrm{H}$ obA (17) [0.4]
703sh		697	$\mathrm{C}_{1} \mathrm{~N}$ tA (21), $\mathrm{O}_{2} \mathrm{bA}(16), \mathrm{C}_{2} \mathrm{NtA}(16)$, $\mathrm{N}_{2} \mathrm{HobA}(14), \mathrm{C}_{3}^{\alpha} \mathrm{C} s \mathrm{~A}(11), \mathrm{N}_{\mathrm{B}} \mathrm{H}$ obA (6)
	706MS	690	$\mathrm{C}_{1} \mathrm{NtA}(18), \mathrm{C}_{2} \mathrm{NtA}(16), \mathrm{O}_{2} \mathrm{bA}(15)$,
			$\mathrm{N}_{2} \mathrm{H}$ obA(13), $\mathrm{C}_{3}^{\alpha} \mathrm{C} \mathrm{sA}(10), \mathrm{N}_{3} \mathrm{H}$ obA (6) [1.7]
683W	689sh*	688688	$\mathrm{O}_{2} \mathrm{bB}(15), \mathrm{C}_{3}^{\alpha} \mathrm{CsB}(13), \mathrm{C}_{1} \mathrm{O} \mathrm{ibB}(12), \mathrm{C}_{1}^{\alpha} \mathrm{C} \mathrm{sB}(11)$
695W	695 S	672680	$\mathrm{C}_{1} \mathrm{~N}$ tA (53), $\mathrm{N}_{2} \mathrm{H}$ obA (20) [2.3]
648W	648MW	643643	$\mathrm{C}_{2} \mathrm{O} \mathrm{ibA}(26), \mathrm{C}_{1} \mathrm{O} \mathrm{ibA}(13), \mathrm{N}_{2} \mathrm{HobA}(5)$ [0.2]
		640640	$\mathrm{C}_{1} \mathrm{O}$ obB (29), $\mathrm{C}_{2} \mathrm{O} \mathrm{ibB}(15), \mathrm{C}_{2} \mathrm{O} \mathrm{obB}(11)$
634 VW		632	$\mathrm{C}_{1} \mathrm{NtB}(16), \mathrm{C}_{1} \mathrm{O} \mathrm{ibB}(13), \mathrm{C}_{2} \mathrm{O} \mathrm{ibB}(11), \mathrm{C}_{1} \mathrm{O}$ obB(10)
		630630	$\mathrm{O}_{2} \mathrm{wB}$ (70)
		6296	$\mathrm{O}_{2} \mathrm{WA}(82)$
			$\mathrm{C}_{1} \mathrm{O} \mathrm{ibB}(15), \mathrm{C}_{1} \mathrm{O}$ obB (15), $\mathrm{C}_{1} \mathrm{NtB}(14), \mathrm{C}_{2} \mathrm{OibB}(10)$
		613613	$\mathrm{C}_{2} \mathrm{O}$ obB (37), $\mathrm{C}_{2} \mathrm{NtB}(16), \mathrm{C}_{1} \mathrm{O}$ obB(12)
606 S	602sh*	612612	$\mathrm{C}_{2} \mathrm{O}$ obA (23), $\mathrm{C}_{1} \mathrm{O}$ obA (20), $\mathrm{C}_{2} \mathrm{O}$ obB(11), $\mathrm{C}_{1} \mathrm{O} \mathrm{ibA}(10)$
609 S	607 S	600609	$\mathrm{C}_{2} \mathrm{NtB}(53), \mathrm{N}_{3} \mathrm{H}$ obB(41) [1.6]
	589sh*	592590	$\mathrm{C}_{2} \mathrm{O}$ OhA (37) , $\mathrm{C}_{2} \mathrm{~N}$ tB (22),
			$\mathrm{N}_{3} \mathrm{H}$ obB(15), $\mathrm{C}_{1} \mathrm{O}$ obA(10) [0.5]
582S	578M	580581	$\mathrm{O}_{2} \mathrm{rA}(26), \mathrm{C}_{2}^{\alpha} \mathrm{CN} \mathrm{dA}(21)$
572sh	573M	579580	$\mathrm{O}_{2} \mathrm{rB}(23), \mathrm{C}_{2}^{\alpha} \mathrm{CNdB}(21)$
555W	555 W	554563	$\mathrm{C}_{1} \mathrm{NtB}(99), \mathrm{N}_{2} \mathrm{H}$ obB (49) [1.5]
531 VW	534sh		
496VW			

TABLE 3 (continued)

TABLE 3 (continued)

Observed ${ }^{\text {a }}$		Calculated	Potential energy distribution ${ }^{\text {b }}$	
Raman	IR	g u		
90 VW		89	$\mathrm{H} \cdot \cdot \mathrm{O} \mathrm{sl}(27), \mathrm{N}_{3} \mathrm{H}$ obA(6)	
		88	$\mathrm{C}_{3}^{\alpha} \mathrm{CtA}(8)$	
82VW		8780$76 \quad$	$\mathrm{N}_{3} \mathrm{H}$ obA (14)	
		$\mathrm{H} \cdot \mathrm{O} \mathrm{s} 2(26)$		
		$\mathrm{H} \cdot \mathrm{O} \mathrm{O} 3(15)$		
		75	$\mathrm{NC}_{3}^{\alpha} \mathrm{tB}(20), \mathrm{C}_{2}^{\alpha} \mathrm{CtB}(14), \mathrm{N}_{3} \mathrm{HobB}(7)$	
70 VW			73	$\mathrm{NC}_{3}^{\alpha} \mathrm{tB}(19), \mathrm{N}_{3} \mathrm{H}$ obB (6)
		70	$\mathrm{H} \cdot \mathrm{O} \mathrm{s} 1(22), \mathrm{H} \cdots \mathrm{Os} 2(18)$	
65 VW			63	$\mathrm{NC}_{2}^{\alpha} \mathrm{tB}(10)$
		$\begin{array}{r} 62 \\ \\ 56 \end{array}$	$\mathrm{C}_{1}^{\alpha} \mathrm{C} \operatorname{tB}(25), \mathrm{H} \cdot \cdot \mathrm{O} s 5(16)$	
			$\mathrm{NC}_{3}^{\alpha} \mathrm{tA}(19)$	
			$\mathrm{C}_{1}^{\alpha} \mathrm{CtB}(24)$	
		53		
50VW		53	$\mathrm{NC}_{2}^{\alpha} \operatorname{tB}(14), \mathrm{N}_{2} \mathrm{H} \text { obB(11), } \mathrm{C}_{2} \mathrm{NtB}(19)$	
		51	$\mathrm{CO} \cdot \mathrm{H}$ b5 (18), $\mathrm{H} \cdot \mathrm{O}$ s10(16), $\mathrm{NC}_{3}^{\alpha} \mathrm{tA}(10)$	
50 W		4450	$\mathrm{C}_{1}^{\alpha} \mathrm{CtB}(23)$	
			$\mathrm{H} \cdot \cdot \mathrm{O} \mathrm{~s} 3(19), \mathrm{NH} \cdot \cdot \mathrm{Ob} 3(19), \mathrm{N}_{2} \mathrm{H} \text { obB (8) }$	
		44	$\mathrm{CO} \cdot \cdot \mathrm{H} 55(10)$	
		41	$\mathrm{H} \cdot \mathrm{O} \mathrm{~s} 8(9)$	
		$36 \quad 37$	$\mathrm{H} \cdot \mathrm{O} \mathrm{~s} 10(16), \mathrm{H} \cdot \cdot \mathrm{O} 5(12)$	
37sh			$\mathrm{CO} \cdot \cdot \mathrm{H}$ b4(14), $\mathrm{NC}_{3}^{\alpha} \mathrm{tB}(13), \mathrm{CO} \cdot \cdot \mathrm{H}$ b1(10)	
		$32 \quad 34$	$\mathrm{H} \cdot \mathrm{O} \mathrm{~s} 4(12), \mathrm{N}_{2} \mathrm{H} \text { obB(11) }$	
			$\mathrm{C}_{2}^{\alpha} \mathrm{CtA}(13), \mathrm{C}_{1}^{\alpha} \mathrm{CtA}(11)$	
		30^{31}	$\mathrm{H} \cdot \mathrm{O} 7(16), \mathrm{H} \cdot \mathrm{O} 8(12), \mathrm{C}_{2}^{\alpha} \mathrm{C} \mathrm{tA}(11)$	
			$\mathrm{H} \cdot \mathrm{O} \mathrm{~s} 8(11), \mathrm{H} \cdot \mathrm{O} \mathrm{~s} 10(11)$	
		26	$\mathrm{H} \cdot \mathrm{O} 2(7), \mathrm{N}_{2} \mathrm{H} \text { obB(7) }$	
		23	$\mathrm{NH} \cdot \mathrm{Ot}$ t(10)	
		23	$\mathrm{NC}_{2}^{\alpha} \mathrm{CtB}(13), \mathrm{N}_{2} \mathrm{H}$ obB(10)	
		21	$\mathrm{NH} \cdot \mathrm{O}$ b2(15), $\mathrm{CO} \cdot \cdot \mathrm{H} \mathrm{b} 2(13), \mathrm{N}_{2} \mathrm{H}$ obA (6)	
		17	$\mathrm{CO} \cdot \cdot \mathrm{HtB}(9), \mathrm{N}_{2} \mathrm{H}$ obB (9)	
		15	$\mathrm{C}_{2}^{\alpha} \mathrm{tB}(18), \mathrm{NH} \cdot \mathrm{Ob} 9(10), \mathrm{N}_{3} \mathrm{H}$ obB (7)	
		12	$\mathrm{NC}_{3}^{\alpha} \mathrm{tA}(9), \mathrm{N}_{2} \mathrm{H}$ obB (7)	
		9	$\mathrm{CO} \cdot \mathrm{H}$ b5 (15), $\mathrm{NC}_{2}^{\alpha} \mathrm{tA}(11), \mathrm{N}_{2} \mathrm{HobB}$ (6)	
		8	$\mathrm{H} \cdot \cdot \mathrm{O} 4(12), \mathrm{NH} \cdot \cdot \mathrm{Otl}(12), \mathrm{CO} \cdot \cdot \mathrm{Hb} 7$ (12)	
			$\mathrm{CO} \cdot \mathrm{H} \mathrm{b} 8(12), \mathrm{CO} \cdots \mathrm{Hb} 6(10)$	

[^2]TABLE 4
Observed and calculated frequencies (in cm^{-1}) of N_{1}, N_{2}-Deuterated Gly ${ }_{3}$

Observed ${ }^{\text {a }}$		Calculated		Potential energy distribution ${ }^{\text {b }}$
Raman	IR	g	u	
3312W	3313sh	3313	3313	$\mathrm{N}_{3} \mathrm{H}$ sB(99)
3280MW	3280 VS	3283	3284	$\mathrm{N}_{3} \mathrm{H}$ sA (99)
	3095MW			Amide B
	3015W	3010	3010	$\mathrm{C}_{3} \mathrm{H}_{2}$ asB(100)
3008MW		3010	3010	$\mathrm{C}_{3} \mathrm{H}_{2}$ asA(100)
3000 sh	2995W			
2976 VW	2972 VW			
2960VS		2957	2957	$\mathrm{C}_{1} \mathrm{H}_{2}$ asA (99)
		2956	2956	$\mathrm{C}_{1} \mathrm{H}_{2}$ asB (99)
2933S	2936M	2936	2936	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{ssB}$ (99)
		2936	2936	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{ssA}$ (99)
		2928	2928	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{ssB}$ (99)
		2927	2927	$\mathrm{C}_{2} \mathrm{H}_{2}$ as ${ }^{\text {(}}$ (99)
2875 VW		2881	2881	$\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{ssB}$ (99)
		2881	2881	$\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{ss}$ A (99)
	2855 W	2861	2861	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{ssB}$ (99)
	2855W	2861	2861	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{ssA}(99)$
2474W	2468MW			Amide B
2431W	2424 S	2421	2421	$\mathrm{N}_{2} \mathrm{DsB}$ (97)
	2408M	2417	2417	$\mathrm{N}_{2} \mathrm{DsA}$ (97)
	2362W*	2355	2355	D_{3} as $1 \mathrm{~B}(67), \mathrm{D}_{3}$ as2B (30)
		2350	2350	D_{3} as $1 \mathrm{~A}(78), \mathrm{D}_{3}$ as 2 A (19)
	2345W*	2350	2350	D_{3} as 2 B (67), D_{3} as 1 B (30)
2331VW		2342	2342	D_{3} as2A (79), D_{3} as $1 \mathrm{~A}(19)$
	2230 VW	2207	2207	$\mathrm{D}_{3} \mathrm{ssB}(97)$
	2180 VW	2191	2191	$\mathrm{D}_{3} \mathrm{ssA}(98)$
1687MW		1680		$\mathrm{C}_{1} \mathrm{OsB}(73), \mathrm{C}_{1} \mathrm{NsB}(20), \mathrm{C}_{1}^{\alpha} \mathrm{CN} \mathrm{dB}(10)$
	1674S		1677	$\mathrm{C}_{1} \mathrm{O}$ sA (65), $\mathrm{C}_{1} \mathrm{NsA}(17), \mathrm{C}_{1}^{\alpha} \mathrm{CN} \mathrm{dB}(10)$, [13.3]
		1674		$\mathrm{C}_{1} \mathrm{OsA}(69), \mathrm{C}_{1} \mathrm{~N}$ sA(18), $\mathrm{C}_{1}^{\alpha} \mathrm{CN}$ dA (10)
	1665sh*		1666	$\mathrm{C}_{2} \mathrm{OsA}(65), \mathrm{C}_{2} \mathrm{~N}$ sA(17), $\mathrm{C}_{2}^{\alpha} \mathrm{CN} \mathrm{dA}(10)$ [6.0]
1658VS		1662		$\mathrm{C}_{2} \mathrm{OsB}(72), \mathrm{C}_{2} \mathrm{NsB}(20), \mathrm{C}_{2}^{\alpha} \mathrm{CN} \mathrm{dB}(11)$
			1655	$\mathrm{C}_{1} \mathrm{OsB}(72), \mathrm{C}_{1} \mathrm{NsB}(20), \mathrm{C}_{1}^{\alpha} \mathrm{CN} \mathrm{dB} \mathrm{(10)} \mathrm{[8.8]}$
1650sh		1652		$\mathrm{C}_{2} \mathrm{O} \mathrm{sA}(70), \mathrm{C}_{2} \mathrm{NsA}(18), \mathrm{C}_{2}^{\alpha} \mathrm{CN}$ dA (10)
	1643 VS		1646	$\mathrm{C}_{9} \mathrm{O} \mathrm{sB}(72), \mathrm{C}_{2} \mathrm{~N} \mathrm{sB}(20), \mathrm{C}_{9}^{\alpha} \mathrm{CN} \mathrm{dB}(11)$ [17.3]
1601W	1602VS	1581	1581	O_{2} asB (104)
1583 VW	1580sh	1576	1576	O_{2} asA (104)
1557VW		1554		$\mathrm{N}_{3} \mathrm{HibB}(24), \mathrm{C}_{2} \mathrm{~N} \mathrm{sB}(14), \mathrm{C}_{2}^{\alpha} \mathrm{C} \mathrm{sB}(14), \mathrm{N}_{3} \mathrm{H} \mathrm{ibA}(7)$
	1554sh		1544	$\mathrm{N}_{3} \mathrm{HibB}(23), \mathrm{C}_{2} \mathrm{NsB}(14), \mathrm{C}_{2}^{\alpha} \mathrm{C} \mathrm{sB}(14), \mathrm{N}_{3} \mathrm{HibA}(8)$ [8.4]
1529W		1537		$\mathrm{N}_{3} \mathrm{H}$ ibA (22), $\mathrm{C}_{2}^{\alpha} \mathrm{C} \mathrm{sA}(15), \mathrm{C}_{2} \mathrm{NsA}(13), \mathrm{N}_{3} \mathrm{H}$ ibB (8)
	1525W		1531	$\mathrm{N}_{3} \mathrm{HibA}(21), \mathrm{C}_{2}^{\alpha} \mathrm{C} s \mathrm{sA}(14), \mathrm{C}_{2} \mathrm{NsA}(13), \mathrm{N}_{3} \mathrm{H}$ ibB (8) [0.6]
1484VW	1495sh	1500	1500	$\mathrm{C}_{1}^{\alpha} \mathrm{C} \mathrm{sA}(31), \mathrm{C}_{1} \mathrm{H}_{2} \mathrm{wA}(20), \mathrm{C}_{1} \mathrm{~N} \mathrm{sA}(16)$, $\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{bA}(14), \mathrm{C}_{1} \mathrm{O} \mathrm{ibA}(12), \mathrm{C}_{1} \mathrm{O} \mathrm{sA}(10)$

TABLE 4 (continued)

Observed ${ }^{\text {a }}$		Calculated		Potential energy distribution ${ }^{\text {b }}$
Raman	IR	g	u	
1475MW	1478MS	1496	1496	$\begin{aligned} & \mathrm{C}_{1}^{\alpha} \mathrm{CsB}(29), \mathrm{C}_{1} \mathrm{H}_{2} \mathrm{wB}(17), \mathrm{C}_{1} \mathrm{~N} \mathrm{sB}(15), \\ & \mathrm{C}_{1} \mathrm{H}_{2} \mathrm{bB}(15), \mathrm{C}_{1} \mathrm{OibB}(12), \mathrm{C}_{1} \mathrm{O} \mathrm{sB}(12), \mathrm{N}_{2} \mathrm{DibB}(5) \end{aligned}$
		1463	1463	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{bA}(27), \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{bA}(15), \mathrm{O}_{2} \mathrm{ssA}(15),$
1459W	1458sh			$\mathrm{C}_{3} \mathrm{H}_{2}$ wA (11), $\mathrm{C}_{2} \mathrm{H}_{2}$ wA (10)
		1462	1462	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{bB}(31), \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{bB}(20), \mathrm{O}_{2} \mathrm{ssB}(10)$
1442VS		1444	1444	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{bB}$ (27), $\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{bB}$ (27), $\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{bB}$ (21)
		1440	1441	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{bA}(36), \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{bA}(19), \mathrm{C}_{1} \mathrm{H}_{2} \mathrm{bA}(19), \mathrm{N}_{3} \mathrm{H}$ bA (6)
	1432sh	1436	1436	$\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{bB}(56), \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{bB}$ (19)
		1432	1432	$\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{bA}(63), \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{bA}$ (14)
1429 S	1426M	1414	1414	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{bA}(46), \mathrm{O}_{2} \mathrm{ssA}(30), \mathrm{O}_{2} \mathrm{bA}(12)$
1421sh		1411	1411	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{bB}(44), \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{wB}(19), \mathrm{O}_{2} \mathrm{ssB}$ (18)
1406S		1405	1404	$\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{bA}(24), \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{wA}(22), \mathrm{O}_{2} \operatorname{ssA}(19), \\ & \mathrm{C}_{3}^{\alpha} \mathrm{CsA}(14), \mathrm{C}_{3} \mathrm{H}_{2} w \mathrm{w}(14), \mathrm{N}_{3} \mathrm{H} \operatorname{ibA}(8) \end{aligned}$
1386VW	1388W	1394	1394	$\begin{aligned} & \mathrm{O}_{2} \mathrm{ssB}(32), \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{wB}(23), \mathrm{C}_{3}^{\alpha} \mathrm{C} \mathrm{sB}(17), \\ & \mathrm{O}_{2} \mathrm{bB}(14), \mathrm{N}_{3} \mathrm{H} \operatorname{ibB}(10), \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{bB}(10) \end{aligned}$
1376VW	1376S	1368	1368	$\mathrm{C}_{3} \mathrm{H}_{2}$ wA(33), $\mathrm{C}_{2} \mathrm{H}_{2}$ wA (29)
1365VW		1362	1362	$\mathrm{C}_{1} \mathrm{H}_{2}$ wB (29), $\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{wB}(23), \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{wB}(20)$
1352 VW	1354sh	1355	1355	$\mathrm{C}_{1} \mathrm{H}_{2}$ wA(57), $\mathrm{C}_{1} \mathrm{~N}$ sA(14)
1337W	1337VW	1353	1353	$\mathrm{C}_{1} \mathrm{H}_{2}$ wB (39), $\mathrm{C}_{2} \mathrm{H}_{2}$ wB (15), $\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{wB}(13)$
1316W				
1302MW	1305MS	1278	1278	$\mathrm{C}_{2} \mathrm{H}_{2}$ twA (86)
1281 VW	1285sh*	1270	1270	$\mathrm{C}_{1} \mathrm{H}_{2}$ twB (64), $\mathrm{C}_{2} \mathrm{H}_{2}$ twB (24)
1272sh	1276W	1267	1267	$\mathrm{C}_{1} \mathrm{H}_{2}$ twA (80)
		1264	1264	$\mathrm{C}_{3} \mathrm{H}_{2}$ twB (35), $\mathrm{C}_{2} \mathrm{H}_{2}$ twB (26), $\mathrm{N}_{3} \mathrm{H}$ ibB (6)
1260S	1261W	1260	1260	$\mathrm{C}_{2} \mathrm{H}_{2}$ twB (43), $\mathrm{C}_{3} \mathrm{H}_{2}$ twB (23), $\mathrm{C}_{1} \mathrm{H}_{2}$ twB (18)
1245 W	1244W	1258	1258	$\mathrm{C}_{3} \mathrm{H}_{2}$ twA (67)
1238 S		1227	1227	$\mathrm{C}_{3} \mathrm{H}_{2}$ twB (38), $\mathrm{N}_{3} \mathrm{H}$ ibB (27), $\mathrm{C}_{3} \mathrm{H}_{2}$ wB (11)
1228W		1219	1219	$\mathrm{N}_{3} \mathrm{H}$ ibA (33), $\mathrm{C}_{3} \mathrm{H}_{2}$ twA (28), $\mathrm{C}_{3} \mathrm{H}_{2}$ wA (14)
1188sh	1186sh	1174	1174	$\mathrm{D}_{3} \mathrm{ab} 2 \mathrm{~A}(56), \mathrm{D}_{3} \mathrm{ab} 1 \mathrm{~A}(27), \mathrm{D}_{3} \mathrm{r} 1 \mathrm{~A}$ (8)
$1173 W$	1175 MW	1162	1162	$\mathrm{D}_{3} \mathrm{sbB}(61), \mathrm{NC}_{1}^{\alpha} \mathrm{sB}(36)$
1158VW		1157	1157	$\mathrm{D}_{3} \mathrm{ab} 1 \mathrm{~B}(79)$
		1152	1152	$\mathrm{D}_{3} \mathrm{ab} 1 \mathrm{~A}(63), \mathrm{D}_{3} \mathrm{ab} 2 \mathrm{~A}(22), \mathrm{D}_{3} \mathrm{sbA}(6)$
		1151	1151	$\mathrm{D}_{3} \mathrm{ab} 2 \mathrm{~B}(85)$
1148M	1144VW	1139	1139	$\mathrm{D}_{3} \mathrm{sbA}(70), \mathrm{NC}_{1}^{\alpha} \mathrm{sA}(31), \mathrm{D}_{3} \mathrm{ab} 2 \mathrm{~A}$ (12)
1132 VW	1136sh*	1133	1133	$\mathrm{NC}_{2}^{\alpha} \mathrm{sB}$ (36), $\mathrm{NC}_{1}^{\alpha} \mathrm{sB}(20), \mathrm{D}_{3} \mathrm{sB}$ (15)
1118MW	1113W	1103	1102	$\mathrm{NC}_{1}^{\alpha} \mathrm{sA}(44), \mathrm{NC}_{2}^{\alpha} \mathrm{sA}(20), \mathrm{D}_{3} \mathrm{sbA}(6)$
1083W	1085W	1077	1077	$\mathrm{NC}_{2}^{\alpha} \mathrm{sB}$ (27), $\mathrm{NC}_{1}^{\alpha} \mathrm{sB}(23), \mathrm{C}_{1} \mathrm{H}_{2} \mathrm{rB}(12), \mathrm{D}_{3} \mathrm{sB}$ (5)
1056VW	1060 VW	1050	1050	$\mathrm{NC}_{2}^{\alpha} \mathrm{sA}(25), \mathrm{C}_{1} \mathrm{H}_{2} \mathrm{rA}(24), \mathrm{D}_{3} \mathrm{r} 2 \mathrm{~A}(14), \mathrm{N}_{2} \mathrm{D}$ ibA (10)
1050sh		1041	1041	$\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{rB}(21), \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{rB}(13), \mathrm{N}_{2} \mathrm{D} \mathrm{ibB}(12), \mathrm{D}_{3} \mathrm{r} 2 \mathrm{~B}$ (11)
1037MW	1037MS	1030	1030	$\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{rB}$ (27), $\mathrm{N}_{2} \mathrm{D}$ ibB (15), $\mathrm{D}_{3} \mathrm{r} 2 \mathrm{~B}(13), \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{rB}$ (10)
1031VW	1028sh*	1023	1024	$\mathrm{N}_{2} \mathrm{D}$ ibA (25) , $\mathrm{C}_{1}^{\alpha} \mathrm{C}$ sA(11)
1017VS	1019sh*	1018	1018	$\mathrm{NC}_{2}^{\alpha} \mathrm{sA}(21), \mathrm{C}_{1} \mathrm{H}_{2} \mathrm{rA}(20), \mathrm{NC}_{1}^{\alpha} \mathrm{sA}(15), \mathrm{D}_{3} \mathrm{r} 2 \mathrm{~A}(15)$
991 VS		1002	1002	$\mathrm{NC}_{1}^{\alpha} \mathrm{sB}(34), \mathrm{D}_{3} \mathrm{r} 1 \mathrm{~B}(16), \mathrm{D}_{3} \mathrm{sbB}(9)$
	985MW	989	989	$\mathrm{NC}_{1}^{\alpha} \mathrm{sA}(29), \mathrm{D}_{3} \mathrm{rlA}(16), \mathrm{D}_{3} \mathrm{sbA}(7)$

TABLE 4 (continued)

Observed ${ }^{\text {a }}$		Calculated		Potential energy distribution ${ }^{\text {b }}$
Raman	IR	g	u	
979sh		977	977	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{rB}(49), \mathrm{N}_{2} \mathrm{D} \mathrm{ibB}(7)$
972sh		976	976	$\mathrm{C}_{3}^{\alpha} \mathrm{C} \mathrm{sA}(23), \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{rA}$ (21)
		962	963	$\mathrm{C}_{3}^{\alpha} \mathrm{C}$ sB $(32), \mathrm{O}_{2} \mathrm{bB}(15)$
951W		960	961	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{rA}(49)$
			941	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{rA}(26), \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{r} \mathrm{B}(10), \mathrm{D}_{3} \mathrm{rlB}(6)$
939W		941		$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{rB}(21), \mathrm{D}_{3} \mathrm{r} 1 \mathrm{~B}(11)$
933VW		941		$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{rA}(39)$
			941	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{rA}(18), \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{rB}(17), \mathrm{D}_{3} \mathrm{r} 1 \mathrm{~B}(6)$
923W		934	934	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{rB}(58), \mathrm{D}_{3} \mathrm{r1B}(7)$
915MW	918 S	933	933	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{rA}(37), \mathrm{D}_{3} \mathrm{rlA}(7)$
900M	896sh*	905	907	$\mathrm{N}_{2} \mathrm{D}$ ibB(27), $\mathrm{C}_{2}^{\alpha} \mathrm{C} \mathrm{sB}(13), \mathrm{C}_{2} \mathrm{NsB}$ (10)
879S	881 W	904	903	$\mathrm{N}_{2} \mathrm{D}$ ibA (32)
846 VW	845W	854	854	$\mathrm{D}_{3} \mathrm{r} 1 \mathrm{~B}(29), \mathrm{C}_{1} \mathrm{NsB}$ (3)
835 VW	835 VW	843	844	$\mathrm{D}_{3} \mathrm{r} 1 \mathrm{~A}(30), \mathrm{C}_{1} \mathrm{~N}$ sA(10)
825 VW		808	808	$\mathrm{D}_{3} \mathrm{r} 2 \mathrm{~A}(56), \mathrm{C}_{1} \mathrm{H}_{2} \mathrm{rA}(30)$
788W	792W	803	803	$\mathrm{D}_{3} \mathrm{r} 2 \mathrm{~B}(59), \mathrm{C}_{1} \mathrm{H}_{2} \mathrm{rB}(26)$
752 VW	749W	746	746	$\mathrm{O}_{2} \mathrm{bA}(24), \mathrm{C}_{2} \mathrm{NtA}(16), \mathrm{O}_{2} \mathrm{ssA}(10), \mathrm{N}_{3} \mathrm{H}$ obA (8)
738 VW	$734 \mathrm{sh}^{*}$	734	733	$\mathrm{O}_{2} \mathrm{bB}(27), \mathrm{O}_{2} \mathrm{ssB}(11), \mathrm{C}_{2}^{\alpha} \mathrm{C} \mathrm{sB}(11), \mathrm{C}_{3}^{\alpha} \mathrm{C} \mathrm{sB}$ (11)
	725 VS	711	711	$\mathrm{C}_{2} \mathrm{NtA}(46), \mathrm{N}_{3} \mathrm{H}$ obA (18) [0.7]
		675	676	$\mathrm{O}_{2} \mathrm{bA}(17), \mathrm{C}_{3}^{\alpha} \mathrm{C} \mathrm{sA}(14), \mathrm{D}_{3} \mathrm{rlA}(6)$
		672	671	$\begin{aligned} & \mathrm{C}_{3}^{\alpha} \mathrm{C} \mathrm{sB}(13), \mathrm{C}_{2} \mathrm{O} \text { ibB(12), } \mathrm{O}_{2} \mathrm{bB}(12), \mathrm{C}_{1}^{\alpha} \mathrm{C} \mathrm{sB}(12), \mathrm{D}_{3} \\ & \mathrm{r} 1 \mathrm{~B}(7) \end{aligned}$
		638	637	$\mathrm{C}_{1} \mathrm{O}$ obA (30), $\mathrm{C}_{2} \mathrm{O}$ ibA (17)
		633	632	$\mathrm{O}_{2} \mathrm{wB}(31), \mathrm{C}_{1} \mathrm{O} \mathrm{obB}(27), \mathrm{C}_{2} \mathrm{O} \mathrm{obB}$ (12)
		629		$\mathrm{O}_{2} \mathrm{wA}(65), \mathrm{O}_{2} \mathrm{wB}(19)$
			629	O_{2} wA(91)
		629		$\mathrm{O}_{2} \mathrm{wB}(38), \mathrm{O}_{2} w \mathrm{~A}(26)$
	615sh*		629	O_{2} wB (48), $\mathrm{C}_{1} \mathrm{O}$ obB (13) , $\mathrm{N}_{3} \mathrm{H}$ obB (7)
	611 M	614	613	$\mathrm{C}_{2} \mathrm{O}$ obB (44), $\mathrm{C}_{2} \mathrm{NtB}$ (20)
606 MW	$607 \mathrm{M}^{*}$	609	608	$\mathrm{C}_{1} \mathrm{O}$ obB (27), $\mathrm{C}_{1} \mathrm{O} \mathrm{ibB}(19), \mathrm{C}_{1}^{\alpha} \mathrm{sB}(11)$
	607 M	606	607	$\mathrm{C}_{2} \mathrm{O}$ obA (49), $\mathrm{N}_{3} \mathrm{H}$ obB (8), $\mathrm{N}_{3} \mathrm{H}$ obA (6) [1.7]
$\begin{aligned} & 587 \mathrm{MW} \\ & 598 \mathrm{MW} \end{aligned}$	586 S	600	605	$\mathrm{C}_{2} \mathrm{NtB}(54), \mathrm{N}_{3} \mathrm{H}$ obB(40) [0.6]
		597		$\mathrm{C}_{2} \mathrm{O}$ obA (21), $\mathrm{C}_{1} \mathrm{O}$ obA (19), $\mathrm{C}_{1} \mathrm{O}$ ibA (14), $\mathrm{C}_{2} \mathrm{NtB}$ (13), $\mathrm{N}_{3} \mathrm{H}$ obB(8)
583MW			586	$\begin{array}{lll} \mathrm{C}_{2} \mathrm{O} & \text { obA }(21), \mathrm{C}_{1} \mathrm{O} & \text { obA }(20), \mathrm{C}_{1} \mathrm{O} \end{array} \quad \mathrm{ibA}(14), \mathrm{C}_{2} \mathrm{~N}$
557W	544MS	572	573	$\mathrm{O}_{2} \mathrm{rA}(26), \mathrm{C}_{2}^{\alpha} \mathrm{CNdA}$ (19)
524W	533 MS	571	572	$\mathrm{O}_{2} \mathrm{rB}(24), \mathrm{C}_{2}^{\alpha} \mathrm{CN} \mathrm{dB}(20)$
499sh	509W	501	501	$\mathrm{C}_{1} \mathrm{NtA}(78), \mathrm{N}_{2} \mathrm{D}$ obA (43)
481 M		455		$\mathrm{C}_{1}^{\alpha} \mathrm{CN} \mathrm{dA} \mathrm{(18)}, \mathrm{O}_{2} \mathrm{rA}$ (17)
	475S*		455	$\mathrm{O}_{2} \mathrm{rB}(27), \mathrm{C}_{1}^{\alpha} \mathrm{CN} \mathrm{dB}(24)$
474 M		454		$\mathrm{O}_{2} \mathrm{r} \mathrm{B}(19), \mathrm{C}_{1}^{\alpha} \mathrm{CN} \mathrm{dB}(17)$
	472S*		453	$\mathrm{C}_{1}^{\alpha} \mathrm{CN} \mathrm{dA}(25), \mathrm{O}_{2} \mathrm{rA}(24)$
374MW		414	413	$\mathrm{C}_{1} \mathrm{NtB}(120), \mathrm{N}_{2} \mathrm{D}$ obB (46)
321 M		323	323	$\mathrm{C}_{2}^{\alpha} \mathrm{CN} \mathrm{dB}(19), \mathrm{NC}_{1}^{\alpha} \mathrm{tB}(12), \mathrm{C}_{1}^{\alpha} \mathrm{CN} \mathrm{dB}(10), \mathrm{O}_{2} \mathrm{rB}$ (19)
302 VW		317	318	$\mathrm{C}_{2}^{\alpha} \mathrm{CN} \mathrm{dA}(21), \mathrm{O}_{2} \mathrm{rA}(12), \mathrm{C}_{1}^{\alpha} \mathrm{CN} \mathrm{dA}(11), \mathrm{NC}_{1}^{\alpha} \mathrm{tA}(10)$

TABLE 4 (continued)

TABLE 4 (continued)

${ }^{\text {a }}$ Bands marked with an asterisk are evident at low temperature. ${ }^{\mathrm{b}_{\mathrm{s}} \text {, stretch; as, antisymmetric }}$ stretch; ss, symmetric stretch; b, bend; ib, in-plane bend; ob, out-of-plane bend; d, deformation; w, wag; tw, twist; r, rock; t,torsion. See Fig. 4 for designation of atoms, molecules and bonds. $\left(\mathrm{D}_{3}=\mathrm{ND}_{3}{ }^{+}, \mathrm{O}_{2}=\mathrm{CO}_{2}{ }^{-}, \mathrm{C}_{x} \mathrm{H}_{2}=\mathrm{C}_{x}^{\alpha} \mathrm{H}_{2}\right.$.) Contributions $>10 \%$ are shown except for NH modes for which contributions $>5 \%$ are shown. Numbers in brackets are calculated IR intensities. For differences in PEDs between g and u species of $<4 \%$, average is given.

The assignments of $\mathrm{CH}_{2} \mathrm{~s}$ modes are reasonable, although we must leave open the possibility of some uncertainties because of Fermi resonances occurring as well in this region [24]. Nevertheless, the frequencies of the different CH_{2} groups seem to segregate themselves and be reasonably well identified (our assignments for $\mathrm{C}_{1} \mathrm{H}_{2}$ follow those in diglycine [25], where bands are observed at 2960 and $2874 \mathrm{~cm}^{-1}$, and similarly for $\mathrm{C}_{3} \mathrm{H}_{2}$ [25], where bands are observed at 3014 and $2926 \mathrm{~cm}^{-1}$).
The amide I modes are quite well reproduced by the DDC calculation, in both frequencies and relative IR intensities, particularly when we consider that the unperturbed frequencies are predicted at about $1674,1673,1672$, and 1662 cm^{-1} for both the A and B molecules (we do not have an explanation for the

IR doublet at $1685,1680 \mathrm{~cm}^{-1}$). The changes on deuteration are also reasonably well explained. The $\mathrm{N}_{1} \mathrm{D}_{3}^{+} \mathrm{N}_{2} \mathrm{HN}_{3} \mathrm{D}$ structure gives similar frequencies, so the amide I region does not provide a basis for distinguishing between the two kinds of deuterated molecules.

The NH_{3}^{+}antisymmetric bend (ab) modes at 1630 and $1623 \mathrm{~cm}^{-1}$ are not well defined in the spectrum (in contrast to the case of Val-Gly-Gly [2], where they are observed at $\sim 1610 \mathrm{~cm}^{-1}$, MS, in the IR). Nevertheless, they are absent in the spectra of the deuterated Gly_{3}, and the appearance of the $1175 \mathrm{~cm}^{-1}$ ND_{3}^{+}symmetric bend (sb) mode (in a clear region of the Gly_{3} spectrum) again shows that this group was deuterated. The presence of weak bands near 1607 R and $\sim 1588 \mathrm{R}$, IR cm ${ }^{-1}$ assignable to CO_{2}^{-}antisymmetric stretch (as) makes the assignment of the very strong band at $1602 \mathrm{~cm}^{-1}$ in deuterated Gly_{3} to this mode seem strange, but a similar result was found in Val-Gly-Gly [2]: a very weak band at $1580 \mathrm{~cm}^{-1}$ (seen only at low temperature) was replaced on deuteration by a medium intensity band at $1589 \mathrm{~cm}^{-1}$.

As can be seen from Table 3 there are no "pure" amide II modes, but NH inplane bend (ib) is mixed with NH_{3}^{+}sb. The unperturbed modes are calculated in the range $1547-1530 \mathrm{~cm}^{-1}$, but DDC spreads these over the range 1574$1526 \mathrm{~cm}^{-1}$. The frequency agreement with observed bands is quite good, and the strong IR bands at 1553 and $1538 \mathrm{~cm}^{-1}$ are well predicted by the intensity calculations (if not in the observed intensity ratio). The frequencies in the deuterated molecule are reasonably well predicted, although the relative intensities are not. This is probably a result of not having accurate enough eigenvectors at this, relatively unrefined, stage of the force field. In this case, the $\mathrm{N}_{1} \mathrm{D}_{3}^{+} \mathrm{N}_{2} \mathrm{HN}_{3} \mathrm{D}$ structure predicts a different pattern of amide II modes: $1562(\mathrm{~g}), 1551(\mathrm{~g}), 1546(\mathrm{u})$, and $1536(\mathrm{u}) \mathrm{cm}^{-1}$; the observed pattern is in better agreement with the $\mathrm{N}_{1} \mathrm{D}_{3}^{+} \mathrm{N}_{2} \mathrm{DN}_{3} \mathrm{H}$ structure.

In the region of $\sim 1470-1330 \mathrm{~cm}^{-1}$, we find that there is significant mixing of CO_{2}^{-}symmetric stretch (ss) and CH_{2} wag (w) with CH_{2} b, so that it is difficult to speak of relatively pure modes. The calculations give a reasonable explanation of the observed bands of Gly ${ }_{3}$. They also indicate that many of the modes change character on deuteration, which can account for the observed frequency as well as intensity changes. In particular, except for the observed bands at 1361 and $1416 \mathrm{~cm}^{-1}$, the six frequency downshifts, the one essentially unchanged frequency ($1415 \mathrm{~cm}^{-1}$) and the one frequency upshift ($1349 \mathrm{~cm}^{-1}$) predicted on deuteration are seen in the behavior of the observed bands.

In the $\sim 1300-1220 \mathrm{~cm}^{-1}$ region, we find CH_{2} twist (tw) mixed differentially with NH ib: CH_{2} tw dominates above $1260 \mathrm{~cm}^{-1}$ while NH ib predominates below. As a result, deuteration has a non-trivial effect above $1260 \mathrm{~cm}^{-1}$ (cf. the significant changes in calculated modes at 1284,1276 and $1261 \mathrm{~cm}^{-1}$, and the associated changes in observed frequencies and intensities) in addition to the changes seen below $1260 \mathrm{~cm}^{-1}$ associated with $\mathrm{N}_{2} \mathrm{H}$ to $\mathrm{N}_{2} \mathrm{D}$ conversion. In the latter case it is important to note that, while the $\mathrm{N}_{2} \mathrm{H}$ ib component of the
$1244 \mathrm{~cm}^{-1}$ Raman band probably contributes to its significant intensity in Gly_{3}, this band does not disappear on deuteration since the CH_{2} twist contribution to the original mode is expected to persist (and be enhanced) at about the same frequency in the deuterated molecule. In the $\mathrm{N}_{1} \mathrm{D}_{3}^{+} \mathrm{N}_{2} \mathrm{HN}_{3}$ D structure the predominant $\mathrm{N}_{2} \mathrm{H}$ ib modes are predicted at 1243 and $1234 \mathrm{~cm}^{-1}$, which are in better agreement with the observed bands than that given by the $\mathrm{N}_{1} \mathrm{D}_{3}^{+} \mathrm{N}_{2} \mathrm{DN}_{3} \mathrm{H}$ structure.
The NH_{3}^{+}rock (r) modes are predicted in the $1210-1150 \mathrm{~cm}^{-1}$ region, and seem to be well assigned to observed bands. As expected, these disappear on deuteration, but are replaced in this region by ND_{3}^{+}ab and sb modes. Thus, the apparent shift of the $1153 \mathrm{~cm}^{-1}$ Raman band to $1148 \mathrm{~cm}^{-1}$ in the deuterated molecule is in fact a replacement of an $\mathrm{NH}_{3}^{+} \mathrm{r}$ mode by an ND_{3}^{+}sb mode.

The NC^{α} s modes are expected to contribute in the 1100 to $\sim 1000 \mathrm{~cm}^{-1}$ region, and the match between observed and calculated frequencies is quite good. The strong Raman band observed at $1000 \mathrm{~cm}^{-1}$ is predicted to shift up by $17 \mathrm{~cm}^{-1}$ on deuteration, probably as a result of the admixture of $\mathrm{ND}_{3}^{+} \mathrm{r}$, and such a shift is indeed observed. Other NC^{α} s modes are predicted to mix with $\mathrm{ND}_{3}^{+} \mathrm{r}$ to shift down, to 1002 and $989 \mathrm{~cm}^{-1}$, and a very strong band at $991 \mathrm{~cm}^{-1}$ in the Raman and a new band at $985 \mathrm{~cm}^{-1}$ in the IR are assignable to these modes. It might seem that from its position, the medium intensity Raman band at $992 \mathrm{~cm}^{-1}$ should be assigned to a skeletal rather than to a $\mathrm{C}_{2} \mathrm{H}_{2}$ r mode. However, we are inclined to accept the present assignment by analogy with the situation in Val-Gly-Gly [2], where $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{r}$ modes are also predicted at 994 and near $965 \mathrm{~cm}^{-1}$, namely $972 \mathrm{~cm}^{-1}$, although the strong Raman band is observed near the lower frequency, namely at $965 \mathrm{~cm}^{-1}$. For the $\mathrm{N}_{1} \mathrm{D}_{3}^{+} \mathrm{N}_{2} \mathrm{HN}_{3} \mathrm{D}$ structure, the agreement in this frequency region is generally poorer, with particularly bad agreement for $\mathrm{N}_{3} \mathrm{D}$ modes, calculated at 1018 and $1017 \mathrm{~cm}^{-1}$, compared to 1030 and $1024 \mathrm{~cm}^{-1}$ in the present case.

The region down to $\sim 720 \mathrm{~cm}^{-1}$ contains $\mathrm{CH}_{2} \mathrm{r}$ modes, in some cases combined with $\mathrm{NH}_{3}^{+} \mathrm{r}$, and $\mathrm{CO}_{2}^{-} \mathrm{b}$ modes. The small observed downward shifts of the latter on deuteration are well predicted. So is the upward shift of the 909 cm^{-1} Raman band to $915 \mathrm{~cm}^{-1}$, with the appearance of a new strong $918 \mathrm{~cm}^{-1}$ IR band, probably mainly as a result of the replacement of $\mathrm{NH}_{3}^{+} \mathbf{r}$ by $\mathrm{ND}_{3}^{+} \mathbf{r}$. New bands at 900 and $879 \mathrm{~cm}^{-1}$ in the Raman are well assigned to $\mathrm{N}_{2} \mathrm{Dib}$, and the four new bands in the $\sim 850-790 \mathrm{~cm}^{-1}$ region correspond reasonably to expected $\mathrm{ND}_{3}^{+} \mathrm{r}$ modes.

The amide V mode is composed mainly of CN torsion (t) and NH out-ofplane bend (ob), and its frequency is particularly sensitive to the strength of the hydrogen bond [1]. In $\mathrm{Gly}_{3} \mathrm{NH}$ ob is associated with bands calculated at $720,690,680,643,609$, and $563 \mathrm{~cm}^{-1}$, and assignable bands of appropriate IR intensity are observed at $718,706,695,648,607$, and $555 \mathrm{~cm}^{-1}$, respectively. The frequency and intensity agreement, while not good for some bands, is acceptable at this stage in view of the lack of refinement of $f(\mathrm{NH} \mathrm{ob})$ and $f(\mathrm{NH}$ $\mathrm{ob}, \mathrm{CN} \mathrm{t}$). Upon deuteration, most of the observed bands disappear or shift,
and the new frequencies are reasonably well predicted by the calculation. A comparison with calculated values for $\mathrm{N}_{1} \mathrm{D}_{3}^{+} \mathrm{N}_{2} \mathrm{HN}_{3} \mathrm{D}$ also favors the $\mathrm{N}_{1} \mathrm{D}_{3}^{+} \mathrm{N}_{2} \mathrm{DN}_{3} \mathrm{H}$ structure. The $720 \mathrm{~cm}^{-1}$ mode is predicted to decrease to 711 cm^{-1}; in fact, it is observed to increase from 718 to $725 \mathrm{~cm}^{-1}$ and to intensify (although more than computed). However, for $\mathrm{N}_{1} \mathrm{D}_{3}^{+} \mathrm{N}_{2} \mathrm{HN}_{3} \mathrm{D}$ no band is predicted in this region. The $\mathrm{N}_{2} \mathrm{H}$ obA modes observed at 706 and $695 \mathrm{~cm}^{-1}$ disappear, as expected, on deuteration, with $\mathrm{N}_{2} \mathrm{D}$ obA being predicted at 501 and a new band observed at $509 \mathrm{~cm}^{-1}$; for the alternate deuteration possibility $\mathrm{N}_{2} \mathrm{H}$ obA is predicted to contribute to strong bands at 687 and $673 \mathrm{~cm}^{-1}$, where no IR bands are observed. The $\mathrm{N}_{3} \mathrm{H}$ obB mode calculated at $609 \mathrm{~cm}^{-1}$, with a suitably strong band being observed at $607 \mathrm{~cm}^{-1}$, is predicted to split into two modes at 607 and $605 \mathrm{~cm}^{-1}$; two bands are assignable to these new modes, at 607 and $586 \mathrm{~cm}^{-1}$, although their relative intensity is reversed. For $\mathrm{N}_{1} \mathrm{D}_{3}^{+} \mathrm{N}_{2} \mathrm{HN}_{3} \mathrm{D}$, a small contribution of $\mathrm{N}_{3} \mathrm{D}$ obB is predicted at $610 \mathrm{~cm}^{-1}$ (the main contribution being CO ob), with the next lower ob mode being $\mathrm{N}_{2} \mathrm{H}$ obB at $555 \mathrm{~cm}^{-1}$. Finally, the $\mathrm{N}_{2} \mathrm{H}$ obB mode calculated at 563 and observed at 555 cm^{-1} is predicted to shift down to $414 \mathrm{~cm}^{-1}$, to which the $374 \mathrm{~cm}^{-1}$ Raman band may be assignable. For $\mathrm{N}_{1} \mathrm{D}_{3}^{+} \mathrm{N}_{2} \mathrm{HN}_{3} \mathrm{D}, \mathrm{N}_{3} \mathrm{D}$ obA is predicted at $520 \mathrm{~cm}^{-1}$, with the only other such mode over $300 \mathrm{~cm}^{-1}$ being $\mathrm{N}_{3} \mathrm{D}$ obB at $441 \mathrm{~cm}^{-1}$.

Several conclusions emerge from these results. First, an NH group still remains on deuteration: there can be no other explanation for the strong 725 cm^{-1} band. Second, although this part of the force field needs further refinement, the spectral data strongly favor $\mathrm{N}_{1} \mathrm{D}_{3}^{+} \mathrm{N}_{2} \mathrm{DN}_{3} \mathrm{H}$ over $\mathrm{N}_{1} \mathrm{D}_{3}^{+} \mathrm{N}_{2} \mathrm{HN}_{3} \mathrm{D}$ for this species; this is in agreement with deductions from the NH s region. Third, a major puzzle remains: the CO_{2}^{-}modes calculated at 581 and $580 \mathrm{~cm}^{-1}$, and satisfactorily assigned to bands at ~ 580 and $573 \mathrm{~cm}^{-1}$, respectively, are predicted to shift down to 573 and $572 \mathrm{~cm}^{-1}$ on deuteration; the bands appear to shift by much more, to 544 and $533 \mathrm{~cm}^{-1}$. If this assignment is correct, it may indicate that some force constants associated with the CO_{2}^{-}group need further refinement, or that the structure changes slightly on deuteration (which might also explain some of the large discrepancies in NH ob modes).
For bands below $400 \mathrm{~cm}^{-1}$, reasonable assignments can be made for both the protonated and deuterated molecules, though these will clearly need additional confirmation. As might be expected, in this region there are no significant differences predicted between the $\mathrm{N}_{1} \mathrm{D}_{3}^{+} \mathrm{N}_{2} \mathrm{DN}_{3} \mathrm{H}$ and $\mathrm{N}_{1} \mathrm{D}_{3}^{+} \mathrm{N}_{2} \mathrm{HN}_{3} \mathrm{D}$ structures. It is noteworthy, however, that frequency shifts in this region are also consistent with the existence of a partially deuterated molecule.

CONCLUSIONS

We have done normal coordinate analyses of the unit cell structures of crystalline Gly_{3} [4], containing an asymmetric unit of two molecules, and of a
partially deuterated derivative corresponding to (as indicated by a comparison of analyses of the different possible structures) $\mathrm{N}_{1} \mathrm{D}_{3}^{+} \mathrm{N}_{2} \mathrm{D} \mathrm{N}_{3} \mathrm{H}$. We used our polyglycine I force field [13] for these calculations.

For the protonated molecule, the agreement between observed and calculated frequencies, as well as IR intensities for some of the amide modes, is quite good: the average discrepancy for 80 convincingly assignable observed frequencies between 1800 and $200 \mathrm{~cm}^{-1}$ is $6.3 \mathrm{~cm}^{-1}$, with there being two above $20 \mathrm{~cm}^{-1}$, five above $15 \mathrm{~cm}^{-1}$, and seventeen above $10 \mathrm{~cm}^{-1}$. For the deuterated molecule, as expected, the average discrepancy in this range is larger, being 8.7 cm^{-1}. Since the force field was transferred without complete refinement, we believe that these results are quite satisfactory.

When we consider the above results in the context of the complexity of the structure of Gly_{3}, it is evident that the present force fields [1] are substantively capable of reproducing in significant detail the normal modes of peptide molecules. This shows that such analyses can provide a rigorous base for the IR and Raman study of the conformations of peptides and proteins.

ACKNOWLEDGEMENTS

This research was supported by NSF grants DMB-8816756 and DMR8806975. One of us (T. S.) wishes to acknowledge support from the Macromolecular Research Center of The University of Michigan, an ASLA-Fulbright Research Grant, and the Finnish Society of Sciences and Letters. We are indebted to Dr. R. Parthasarathy for X-ray analyses of our crystals.

REFERENCES

1 S. Krimm and J. Bandekar, Adv. Protein Chem., 38 (1986) 181.
2 J. Bandekar and S. Krimm, Biopolymers, 27 (1988) 885.
3 J. Bandekar and S. Krimm, Biopolymers, 27 (1988) 909.
4 T. Srikrishnan, N. Winiewicz and R. Parthasarathy, Int. J. Peptide Protein Res., 19 (1982) 103.

5 J.D. Bernal, Z. Kristallogr., 78 (1931) 363.
6 F.V. Lenel, Z. Kristallogr., 81 (1932) 224.
7 E.W. Hughes and W.J. Moore, Acta Crystallogr., 3 (1950) 313.
8 H.I. Yakel and F.W. Hughes, Acta Crystallogr., 5 (1952) 847.
9 A. Theorét, Y. Grenié and C. Garrigou-Lagrange, J. Chim. Phys. Physiochim. Biol., 66 (1969) 1196.

10 M. Smith, A.G. Walton and J.L. Koenig, Biopolymers, 8 (1969) 29.
11 H.S. Randhawa and C.N.R. Rao, J. Cryst. Mol. Struct., 3 (1973) 309.
12 C. Destrade and C. Garrigou-Lagrange, J. Mol. Struct., 31 (1976) 301.
13 A.M. Dwivedi and S. Krimm, Macromolecules, 15 (1982) 177.
14 T. Sundius and S. Krimm, Proc. IXth Int. Conf. Raman Spectroscopy, Tokyo, Japan, 1984, p. 602.

15 R. Parthasarathy, private communication.

16 B. Lotz, J. Mol.Biol., 87 (1974) 169.
17 H.C. Freeman, G.L. Paul and T.M. Sabine, Acta Crystallogr., Sect. B, 26 (1969) 925.
18 A. Kvick, A.R. Al-Karaghouli and T.F. Koetzle, Acta Crystallogr., Sect. B, 33 (1977) 3796.
19 T.C. Cheam and S. Krimm, J. Mol. Struct., 146 (1986) 175.
20 T.C. Cheam and S. Krimm, J. Mol. Struct., (1988), 193 (1989) 1.
21 C. Destrade, E. Dupart, M. Joussot-Dubien and C. Garrigou-Lagrange, Can. J. Chem., 52 (1974) 2590.

22 T.C. Cheam and S. Krimm, J. Chem. Phys., 82 (1985) 1631.
23 S. Krimm and A.M. Dwivedi, J. Raman Spectrosc., 12 (1982) 133.
24 R.G. Snyder, S.L. Hsu and S. Krimm, Spectrochim. Acta, Part A, 34 (1978) 395.
25 P. Lagant, G. Vergoten, M.H. Loucheaux-Lefebvre and G. Fleury, Biopolymers, 22 (1983) 1267.

[^0]: *This paper is number 40 in a series on "Vibrational analysis of peptides, polypeptides, and proteins," of which ref. 3 is paper 39.
 **Present address: Department of Physics, University of Helsinki, SF-00170 Helsinki, Finland.

[^1]: ${ }^{\text {a }}$ Units: mdyn \AA^{-1} for stretch and stretch stretch constants; mdyn for stretch, bend constants; mdyn \AA for all others.

[^2]: ${ }^{\text {a }}$ Bands marked with an asterisk are evident at low temperature.
 ${ }^{\text {bs}}$, stretch; as, antisymmetric stretch; ss, symmetric stretch; b, bend; ib, in-plane bend; ob, out-ofplane bend; d, deformation; w, wag; tw, twist; r, rock; \mathbf{t}, torsion. See Fig. 4. for designation of atoms, molecules and bonds. ($\mathrm{H}_{3}=\mathrm{NH}_{3}^{+}, \mathrm{O}_{2}=\mathrm{CO}_{2}^{-}, \mathrm{C}_{x} \mathrm{H}_{2}=\mathrm{C}_{x}^{\alpha} \mathrm{H}_{2}$.) Contributions $>10 \%$ are shown except for NH modes for which contributions $>5 \%$ are shown. Numbers in parentheses are calculated IR intensities. For differences in PEDs between g and u species of $<4 \%$, average is given.

