
ANNALS OF PHYSICS 196, 345-360 (1989) 

The Elastic Energy- Momentum Tensor 
in Special Relativity 

DAVID N. WILLIAMS 

Randall Laboratory of Physics, The University of Michigan, 
Ann Arbor, Michigan 48109-l 120 

Received June 15. 1989 

We consider the standard nonrelativistic theory of a continuous, elastic medium with fmite 
deformations, according to which the elastic energy is a function only of the state of strain, 
and the elastic stress tensor is proportional to the strain gradient of the elastic energy in 
appropriate coordinates. We derive a special relativistic, energy-momentum tensor, which 
yields the standard class of theories in the nonrelativistic limit, from the requirement that it 
depend only on the state of deformation (including the minimal dependence on velocity con- 
sistent with covariance), plus conservation laws. The result agrees with an earlier theory 
proposed by B. Dewitt (in “Gravitation: An Introduction to Current Research” (L. Witten, 
Ed.), pp. 305-318, Wiley, New York, 1962). who generalized the nonrelativistic Lagrangian to 
general relativity. The elastic momentum density turns out to be of order v/c’, and therefore 
absent in the nonrelativistic theory. TJ 1989 Academic Press. Inc. 

1. INTRODUCTION 

Some early, sketchy remarks on the special relativistic version of the stress- 
energy-momentum tensor (called the energy-momentum tensor) for a continuous, 
ideal, elastic medium were given by Pauli [ 11. The nonrelativistic theory of 
elasticity for finite deformations, including the theory of elastic waves, has under- 
gone considerable development since then, which we shall not even begin to trace. 
A refined mathematical formalism for nonrelativistic elasticity now appears in 
standard texts [2], which we summarize later, in Section 3. 

C. B. Rayner [3] has a discussion of elasticity in general relativity, which 
includes some references to earlier work. The definitive treatment appears to be the 
later work of B. Dewitt [4]. We did not know about Dewitt’s elegant treatment 
at the time we did the work in the present paper, having learned of it only recently 
when we came across an application of his theory to collapsing stars by Gerlach 
and Scott [6]. Dewitt straightforwardly generalizes the nonrelativistic Lagrangian 
to general relativity, to lay a foundation for measurements in a larger attempt to 
quantize gravity. We very much recommend his discussion.’ 

’ There is a paper by W. C. Davidon [5] on continuum mechanics in special relativity, which does not 
go into elasticity explicitly. He appears not to have been aware of Dewitt’s work. 
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Our treatment arrives at the same answer in the more restricted framework of 
special relativity, by a different method. It is also straightforward, being essentially 
an invariance argument based on the requirement that the elastic tensor depend 
only on distortion variables, be covariant, and obey the work-energy conservation 
law. We present it here in the interest of having an independent treatment, self- 
contained within the simpler environment of special relativity.2 

We also provide the answer to a question which we were unable to find in the 
nonrelativistic literature : what is the momentum density for an elastic medium? The 
generalization from the nonrelativistic to the relativistic theory provides the answer 
to that question automatically: the elastic momentum density is zero in the non- 
relativistic theory, because it contains a factor u/c2 in the relativistic theory. That 
seems not inconsistent with what one might expect from a quantum picture. Kittel, 
for example, gives an argument for zero momentum in all phonons except for the 
infinite wavelength mode [7], 

We begin in Section 2 by reviewing some notation for the Lagrangian coordinate 
description of continuous media. The nonrelativistic model of elastic media with 
finite deformations in the version of Green and Zerna [2] is reviewed in Section 3. 
The conservation law constraints, both relativistic and nonrelativistic, are reviewed 
in Section 4. In Section 5, we introduce a relativistic description of the state of dis- 
tortion of a continuous medium (whether elastic or not) by means of a triad of 
four-vector distortion fields, actually a tetrad when the four-velocity is included. 
Information about the distortion of aging of body elements due to different proper 
times is not included.3 

Then in Section 6 we derive the parametrization of the relativistic version of the 
elastic tensor in terms of an elastic potential energy function, which depends only 
on elastic moduli and strain invariants, and in terms of the distortion and 
four-velocity fields. We show that parametrization to be sufficient to satisfy the 
relativistic conservation laws, and we make what seems to us a convincing case for 
the nonexistence of other solutions. 

We conclude in Section 7 with a discussion of the nonrelativistic limit, verifying 
in particular that the elastic stress and energy have the correct limits and that the 
momentum density vanishes in that limit. 

2. DEFORMATION IN LAGRANGIAN COORDINATES 

Our notation is similar to, but not identical with, that of Green and Zerna [2]. 
We assign the Cartesian coordinates 

a = (d, t12, 2) (1) 

‘We have also completed a companion study of classical, relativistic elastic strings, which may be 
submitted for publication later. 

’ De Witt [4] had realized this before us. 
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to the mass elements of the medium in its undeformed, unmoving, reference state. 
The Cartesian three-vector position of each mass element (unless we state 
otherwise, “mass element” means “rest mass element”) at the time t in an inertial 
frame is given by the family of motions 

x,(a) = 44 a), (2) 

which we assume to be one-to-one (nonsingular) at fixed t and sufficiently differen- 
tiable in t and a. Associated with these motions is the three-vector velocity field 

v,(a)=v(t,a)=~x(t,a). (3) 

which represents the velocity at time t of the mass element labeled by a. The 
volume of an undistorted mass element is then d3M. Corresponding to any given rest 
mass density p,(a) in the reference state, we have the rest mass density at time t: 

dt, xl = Po(a)/JI, 

.l =det% , da’ 

The rest mass element is 

dm = p(t, x) d3x = PO(a) d30z. 

The continuity equation follows, 

a,p+v+v)=o, 

where we use the notation 

(4) 

(5) 

(6) 

(7) 

for the partial time derivative holding x fixed and the usual spatial gradient holding 
t fixed. We use the notation 

D*=: =a,+v.v, 
a (8) 

for the material time derivative, or time derivative at fixed a, which is the time 
derivative appearing in the definition of the velocity field, Eq. (3). 

Let ei = e’, i= 1, 2, 3, be a constant, right-handed system of orthogonal unit 
three-vectors. We use these as Cartesian basis vectors both in the reference body 
three-space and in the inertial three-space where the motion occurs. We follow the 
convention that Latin indices i, j, . . . refer to inertial space while S, t, . . . refer to 
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reference space components,4 with the summation convention for repeated indices. 
Neighboring points in the undistorted body at rest are separated by 

da = d&e,. (9) 

At time t, the image of the separation between neighboring points under the 
motion is 

dx=x(l,u+du)-x(r,u)=gda”e,. (10) 

The Jacobian matrix c~x’/&” contains all information about the distortion of the 
unstrained body volume element d3a into its image d3x; it permits us to construct 
any separation dx of neighboring points of the distorted body from the undistorted 
separation da. 

The body coordinates a can be written at time t in terms of the inertial 
coordinates x, 

a,(x) = 46 x), (11) 

where 

u(t, x,(u)) = a. (12) 

The body coordinates a, are curvilinear with respect to the inertial coordinates x, 
and the vectors 

ax 
(13) 

point along the direction of increasing CC, the other components of a being held 
fixed, at a given point x. The lengths of these vectors describe the amount of 
dilation of the reference body along the curvilinear c? axes. 

The reciprocal vectors are 

5” = vcc, 4”. qt = a;. (14) 

The elements of length, unconstrained and at time t, respectively, are given by 

da. da = ii,, dci” da’ = Via. Via Ax’ &J, 

dx.dx=~-~d?“dsr’=6,dxidx’. 
(15) 

4 The context should distinguish the cases where the subscript t is used to mean rime instead. 
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The strain tensor is defined by 

i(dx .dx -da.du) =y,, da”da’= Ti/ dx’dxj, 

Y’,=; $&J-L 
( > 

+..q[-6,,), 
(16) 

Tjj= &(6,-Via.Vja), 

i:= y,,,~‘~’ = f,e’ej. 

Although the strain tensor at a single point does not contain the full information 
in the Jacobian matrix, it determines the curvilinear metric. 

For future reference, we note that the quantity 

(17) 

contains exactly the same information as yXr, because the matrix 4”. 5’ is the inverse 
of the matrix IJ,. n,; and the strain tensor can also be written 

Q= A”‘q,q,. (18) 

3. NONRELATIVISTIC ELASTIC STRESS TENSOR 

Our convention for the sign of the three-dimensional stress tensor is that 

dF=S”.dA (19) 

is the force exerted by the medium behind the right-hand oriented surface element dA 
on the medium just in front of dA. The front side is the side in the direction of dA. 

According to the standard theory of an ideal, elastic medium, there are no inter- 
nal states other than the state of strain, i.e., no thermodynamic variables such as 
temperature or pressure play a role. All internal stresses are the result of strain. The 
elastic energy per volume is potential energy, a function only of the state of strain 
and the body constraints of the form 

w4 x) = F(Y,,, a)/J. (20) 

The explicit dependence on a in this expression is a generalized description of the 
dependence on “elastic moduli,” which are allowed to vary from point to point of 
the body. In particular, we may use the explicit a dependence to define the bound- 
aries of the medium ; for example, if there is no medium outside a bounded region 
of the reference space, we demand that F vanish outside that region. Typically, F 
might have pieces proportional to various moduli ; and the vanishing of F outside 
the body could then be handled by letting the moduli go smoothly to zero within 
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some boundary layer region of arbitrarily small size. But in general, we allow an 
arbitrary, explicit a dependence. 

The potential energy hypothesis in Eq. (20), plus the principle of virtual work, or 
a standard thermodynamic argument [2], leads to the conclusion that the elastic 
stress tensor has the form 

s”= S”eiej= cffqlrqt, (21) 

(22) 

The first of these equations and the fact that the local stress tensor 0” is symmetric 
are not restricted to elastic media. The second, Eq. (22) is. 

The above formalism is broad enough to handle elastically homogeneous or 
inhomogeneous, isotropic or anisotropic media. The most familiar class of elastic 
media is that which obeys Hooke’s law: stress is proportional to strain. 

For use in the relativistic generalization, we note an alternative description of the 
above theory, namely, we use as a variable the convariant metric tensor, 

(23) 

instead of the strain tensor ys,. We use the same symbol F = F(qs,, a), whereupon 

(24) 

For some purposes, it is convenient to use the contravariant metrix tensor 

5”’ = 6”. 5’ = Va” . V@’ (25) 

as a variable instead of q,,, in which case we write 

F(rl,,, a) = C(t”‘, a). (26) 

It is straightforward to verify that 

(27) 

If we use the strain metric as a lowering symbol to define a local stress tensor with 
lower (covariant) body indices, 
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then this can be written 

(29) 

(30) 

The different names [ and g for the covariant and contravariant local stress tensors 
are intended to avoid confusion with the Cartesian raising and lowering operation, 
which is trivia1 both in body space and in inertial space. We actually use only the 
G’S in this paper. 

4. CONVENTIONS FOR MATERIAL EQUATIONS OF 
MOTION AND THE WORK-ENERGY THEOREM 

We assume only volume external forces, with no external surface forces, not even 
on the boundaries of the medium. We assume Newton’s law of reaction for all 
internal stresses across surface elements separating neighboring volume elements. 

Our Lorentz metric is (+, -, -, - ), with four-vector indices p = 0, 1, 2, 3. 
Latin indices are three-vector indices, as before. We define x0 = ct, and a, = a/4xP. 
For convenience in discussing both nonrelativistic and relativistic versions of the 
theory, we define the energy-momentum tensor in both nonrelativistic units, T&, 
and relativistic units, T”“: 

TFR = Tw = energy/volume, 

TcR = CT” = energy/area-time = flux of energy, 

T& = T”j/c = momentum/volume, 
(31) 

T& = TV = momentum/area-time = force/area = flux of momentum, 

The external force density four-vector f P is 

f = (f. v/c, f), (32) 

where f d3x is the external force on a volume element, and f .v d3x is the power 
expended by the external force on the volume element. The equations of motion are 

a, Tp’” = f y, (33) 

or in nonrelativistic units, 

a,T,“,+a,T&=f.v, (power law) (34) 

d,T$R+aiT&,=,fJ. (force iaw) 
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We introduce the covariant four-velocity field U”(X): 

u = Y(U)(C, VI, u . u = c2. (35) 

Then f . u = 0, and the relativistic conservation law, or, in nonrelativistic units, the 
work-energy theorem, says 

u,,i?,Tpv=O. (36) 

We decompose T Pv into a kinetic part and the rest: 

TP’” = KP’” + EPv (37) 

The kinetic part in the nonrelativistic case is 

K'o = v'Km 
NR NR, 

KiR = uiKOi 
NR’ 

(38) 

In the relativistic case it is 

P K”” = - u’uY 

Y ' 
(39) 

In both cases, flux is material flow. 
Both kinetic tensors automatically obey the conservation law .(36) because of 

material identities, such as the continuity equation. Thus, 

u, a, E"V=O. (40) 

We are interested in the situation where Efl" describes the elastic properties of the 
medium. The procedure will be to make a general Ansatz for E"" and look for 
conditions for the conservation law to be valid. We then check that we recover the 
class of theories described in Section 3 in the nonrelativistic limit, in effect rede- 
riving the fact that elastic stress is the gradient of strain in the nonrelativistic 
theory; and we check that the physical properties in the relativistic regime are 
natural for an elastic tensor that one would be willing to call the relativistic 
generalization of the nonrelativistic theory. 

5. THE COVARIANT DISTORTION FIELDS 

As we reviewed in Section 2, the vectors rls have an intuively simple relation 
to the state of distortion or strain (we use those terms interchangeably). For 
the relativistic generalization, we find it convenient to start from the reciprocal 
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quantities 5” = Vcr” as a complete description of distortion. The reason is that not 
only do the quantities 

5”,(x) = QY4 xl, s = 1,2, 3, (41) 

transform as four-vector fields under Lorentz transformations, they have somewhat 
simpler algebraic properties then their reciprocals, while containing the same 
distortion information. We call this set of three, four-vector distortion fields a 
distortion triad. 

They can be put together with the local four-velocity field, 

u(x) = yD,x = DTx, 

to form a tetrad. Since 

DtaS = 0, 

(42) 

(43) 

we get 

which in turn yields 

u .<” = 0. (45) 

Hence (” is spacelike. Moreover, the tetrad {u, (‘1 is linearly independent, because 
the determinant 

is nonvanishing. This incidentally shows that Jy is a Lorentz invariant. 
It turns our that the tetrad {u, ye,} reciprocal to {u, (?) is convenient for applica- 

tions, although algebraically a little more complicated. It obeys 

‘Is. r’ = s:, rfs .l.4 = 0, (47) 

To describe it and help in keeping track of what variables are held fixed in partial 
derivatives, we introduce the following notation for the world position four-vector: 

I% a) = x”(t, a) = (ct, x,(a)), (48) 

where r(t, a) is the proper time of the body point a at time t, 

T(t, a) = r(t,, a) + S:,&. 9 

595/196/Z-9 

(49) 
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In this notation, 

and is straightforward to verify that Eq. (47) is solved by 

(51) 

The notation using y and x indicates that z and t, respectively, are held fixed in the 
differentiation with respect to a. 

The information that is being omitted from q, by projecting the u direction out 
of the triad of four-vectors ay/aa* can be understood as follows. Note that 

Therefore, 
ay ax ax at ax 
&s=-gg+z&p =7-+ Aa r' 

so 

(52) 

(53) 

(54) 

whereas 
ax 2~~ ax 

fls=s-y ;;‘p (55) 

The information that is missing from qS is clearly iYt/iJaSI,, which describes the 
relative aging of different body points. 

We take as the relativistic analog of the strain tensor, or rather of the strain 
metric xI,~. q,, the symmetric, 3 x 3 distortion array of Lorentz invariants: 

The reciprocal, invariant metric tensor is 

(56) 

5.s’ = -5s. (’ = Va” . Va’ _ II. Va” 1. Va’. 
c c (57) 
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We could define the Lorentz invariant “analogous” strain tensor (see Eq. (16)), 

or the Lorentz invariant “alternative” strain tensor (see Eq. (17)), 

We choose instead to describe the state of strain by the invariant metric tensor v,~,. 
All of the above quantities agree with their nonrelativistic analogs to leading order 
in U/C. 

Finally, we note an identity which shows the Lorentz invariant Jy to be a 
function only of the relativistic strain: 

det( -9,. q,) = (Jr)‘. (61) 

The corresponding identity for the reciprocal quantities is 

1 
det( - 5”. 0 = (JY)Z. 

6. THE RELATIVISTIC ELASTIC TENSOR 

In order to motivate our Ansatz for the elastic tensor, let us elaborate a bit on 
the concept of elasticity. In its nonrelativistic conception, the stress in an elastic 
medium depends only on the field of elastic moduli and the state of distortion at 
each point, except for the flow term in the kinetic part of the tensor; and the energy 
density, aside from the kinetic part, is also a function only of the elastic moduli and 
the state of distortion. In the relativistic generalization, we allow the elastic part Ep” 
of the energy-momentum tensor to depend only on the state of distortion, 
generalized to covariant form, the four-velocity field, to account for relativistic 
kinematic effects, and the elastic moduli of the body. In other words, EN” is to 
depend only on the elastic moduli, which for us means any explicit a dependence, 
and on the four-velocity-four-distortion tetrad. 

Because the tetrad {u, q,} is linearly independent, any second rank tensor can be 
decomposed into the 16 dyads formed from it, 
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where we use the summation convention for the body indices s, t = 1,2, 3. The cr 
coefficients must be Lorentz invariant fields (in fact, Poincare invariant), because 
we want E”” to be covariant. They can have an explicit a dependence, because the 
body coordinates are Poincare invariant. If we demand that Epv depend only on 
distortion, velocity, and moduli, the only other dependence the O’S can have is 
on invariants formed from the tetrad {u, r,}. We saw earlier that all scalar 
and pseudoscalar invariants formed from these depend only on the strain invariants 
v],, = -vs. ql. Thus, we may choose to write the most general parametrization of 
coo, for example, in the form 

(65) 

where we are using the fact that Jy is a function of q,,. 
The only other general constraint is the conservation law, which says 

0 = u,ar E”” 

+U’u4(tj:Jycro’)+c 
JYC 

JydO+U’tj;d(uvJycr”), 
JYC 

(66) 

where we have used the orthogonality of u with qS and the continuity equation 

a.g=o, 

which follows from Eqs. (6) and (4) by putting p. = 1. 
To analyze this, we note some identities among partial derivatives. First the 

continuity equation (67) may be regarded as a straightforward property of the 
Jacobian matrix of the transformation between the variables y (or x) and (t, a), 
which also entails that 

This leads to 

where we have introduced the four-acceleration 

a=ti-D;u, a.u=O, 

(69) 

(70) 
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and the notation 

(71) 

Note that 

and that the invariants X, contain the relative aging information that is absent in 
rl S. 

We also define the invariant derivatives 

(73) 

and record the symmetric and antisymmetric identities 

The strategy now is to identify kinematic and deformation quantities in the 
conservation law (66) which vary independently in an arbitrary motion and which 
must have coefficients that vanish separately if the elastic tensor is to be defined 
independently of the equations of motion. Keeping in mind that the O’S have no 
explicit z dependence and the identities above, the conservation law becomes 

(76) 

If the kinematic quantities q,, (symmetric), u . (DJ, - DJ,) (antisymmetric), k,, 
and rc, can be varied independently by selecting an arbitrary motion subject to fixed 
strain invariants q,,, we conclude that the C’S must obey the following identities in 
order to define an elastic tensor independent of equations of motion: 
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It is not hard to show that there are indeed nonzero solutions to Eq. (77) for aso 
and a’“, but that their contributions to Epv all have identically vanishing four- 
divergence (zero force density) and may be discarded. The solutions to Eq. (79) are 
automatically symmetric, satisfying Eq. (78). 

We conclude that the class of elastic energy-momentum tensors may be 
parametrized in the form 

upuy F 2 aa 
E"'=,--mj-~~ 

c JY 
F= flv,,, a). 

(80) 

There is no loss of generality in this parametrization if our independent variation 
argument following Eq. (76) is accepted. In any case, the parametrization satisfies 
the general conservation law and the general criteria for elasticity. We shall see by 
inspection in the next section that its nonrelativistic limit is consistent with the 
standard theory. 

7. INTERPRETATION AND NONRELATIVISTIC LIMIT 

To interpret the elastic solutions (80), we write out the surviving, symmetric 
components of the relativistic tensor EpY, E q. (64), in nonrelativistic units: 

(81) 

By inspection of their explicit c-dependence, we conclude that if EER and E$, are 
to have finite nonrelativistic limits, then so must go0 and gSf, where the limit in the 
cr’s is taken by using the limiting values q,, = qs. q, defined in Eqs. (13) and (23) as 
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v/c -+ 0, and by removing any remaining c dependence through c + 00. That gives 
the nonrelativistic limit 

EzR = a”, EzR = 0, 

(82) 

where the limits in the g’s are understood. 
In the nonrelativistic limit, the stress part Ei,, parametrized by Eqs. (79) and 

(65), agrees as it should with the standard class of stress tensors for elastic media, 
as expressed by Eqs. (24) and (20). The momentum density is zero, as we claimed. 
The energy density agrees with the standard form of the elastic potential energy. 
The flux of energy E& has a part due to elastic potential energy and a part due 
to work done by the elastic stress. 

We remark that it is straightforward to verify that the nonrelativistic limit obeys 
the work-energy theorem exactly. We would be surprised if the analog of the discus- 
sion in the preceding section could not be carried through for the nonrelativistic 
case from the beginning, leading to the same result we got in the limit. The require- 
ment that ooo and csr depend only on Poincare invariants would be replaced by the 
statement that they can depend only on Gallilei invariants, those Gallilei invariants 
which involve only distortion being exhausted by the components of the non- 
relativistic metric tensor qsl. In particular, we should then get a direct proof that 
the nonrelativistic, elastic momentum density is zero. 

With the nonrelativistic limit as a guide to the intuition, we can see that the 
relativistic tensor in Eq. (81) has the form one would expect.’ We identify the terms 
in the relativistic tensor (in nonrelativistic units) as follows. In EER, the piece y’croo 
comes from the contribution 

yooo F 
Pcl=c2=Jc2 (83) 

to the rest mass density from the elastic potential energy. The remaining piece is a 
relativistic effect in the presence of stress. 

The energy flux EgR has a term due to flow of elastic rest mass and a term due 
to work done by elastic stress. 

The momentum density E& has a term pely uj from the elastic rest mass density, 
and an additional relativistic term from the elastic stress, analogous to the second 
piece of the energy density. 

The flux of momentum term EkR has a piece due to ilow of momentum density 
pe,yd and an elastic stress term. 

5 See, for example, Bergmann’s dicussion [S] of the form taken by a stress tensor in an inertial frame, 
given its expression in the local rest frame of a material point. 
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That concludes our study of the elastic tensor in special relativity. We are in 
complete agreement with Dewitt [4], and we refer to his work for a discussion 
of certain topics we have not mentioned, such as the propagation of small 
disturbances. 
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