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New measures of segregation are defined and calculated for the A + B+O reaction on one-dimensional and fractal lattices (Sier- 
pinski carpet and gasket). We differentiate between local and global segregation parameters. Results and comparisons are given 

for steady-state simulations that strictly conserve the equality of A and B particle densities. This work demonstrates that global 

kinetic laws are related to both local and global segregation. 

1. Introduction 

Diffusion-controlled elementary binary At B re- 
actions on fractal and low-dimensional structures ex- 
hibit anomalous (non-classical) kinetics [ l-61. 
Furthermore, the reactant populations have been ob- 
served to segregate, forming regions or aggregates of 

a single type. For transient reactions, this was dis- 
covered theoretically by Ovchinnikov and Zeldovich 
[ I] (dimensions 1 to 3), was simulated by Tous- 
saint and Wilczek [ 3 ] (dimensions 1 and 2 ) and was 
demonstrated for fractal dimensions by Blumen et 
al. [ 4 ] (Sierpinski gasket). Since reactions between 
the same species do not occur (At A or B t B), the 
existence of segregation restricts reactions to cluster 
boundaries. By this means, segregation can dramat- 
ically alter the effective topology of the reaction me- 
dium. Even more surprising has been the discovery 
of segregation in steady-state reactions [j-8], in 
which reactants are added at a constant rate until a 
steady-state reaction rate (and population) has been 
established. In both cases, the degree of segregation 
has been found to increase with decreasing spectral 
dimension, d,. Recent work has suggested that a’, is 
a critical factor in determining the degree of reactant 
segregation [ 91. 

Systematic study of the relationships between the 
topology of the reaction medium, reactant segrega- 
tion, and reaction kinetics, requires quantitative 
methods to characterize particle segregation. Distin- 
guishing random fluctuations from genuine segre- 

gation is difficult, even in relatively simple systems. 
Criteria are needed for consistent, quantitative, 
comparison of particle distributions during reactions 
in systems with a variety of topologies and densities. 
Several such parameters are discussed here and used 
to describe the degree of segregation at steady state 
for reactions on a one-dimensional lattice (d,= 1 ), 

the Sierpinski carpet (d,= 1.68) and the Sierpinski 
gasket (d2= 1.36). 

2. Simulation methodology 

In steady-state simulations, the initial population 
of reactants on the lattice is zero. Equal numbers of 
A and B are added at regular time intervals, their po- 
sitions chosen at random. If an attempt is made to 
add a particle to a site occupied by a particle of the 
other type, either the particles can react or a new 
(random) site can be selected. The former process 
is referred to as landing with “vertical reaction”, while 
the latter is termed landing without “vertical reac- 
tion”. Each particle is moved with probability z- ’ to 
one of its z nearest-neighbor sites on each time step. 
Only one particle is allowed to occupy a lattice site. 
Reaction occurs when an A particle attempts to move 
to a site occupied by a B particle or vice versa. The 
details of the simulations have been described else- 
where for the 1-D lattice [ lo], the Sierpinski carpet 
[ 111, and the Sierpinski gasket [ 5 1. 

Landing with vertical reaction was used in simu- 
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lations on the 1-D lattice and Sierpinski carpet. No 
vertical reaction was allowed on the Sierpinski car- 
pet. It has been shown elsewhere [ 121 that the type 
of landing process used has a significant effect on the 
development of segregation in reacting systems. 
Therefore, results from the two types of simulation 

cannot be compared on a quantitative basis. 

3. Segregation parameters 

Two categories of segregation parameters can be 
identified: local and global [ 131. Local parameters 
are sensitive to the environments experienced by in- 
dividual reactants. For this reason, they are partic- 
ularly informative about the conditions which de- 

termine instantaneous reaction kinetics. Global 
parameters, on the other hand, describe overall par- 

ticle distributions. As such, they are useful for char- 
acterizing and monitoring the evolution of steady 
states. 

3.1. Local segregation parameters 

A convenient basis for defining local segregation 
parameters is the relative numbers of nearest-neigh- 
bor (adjacent, dimer) pairs which are matched (A- 

A or B-B) or mixed (A-B or B-A) [ 11,121. One 
such parameter is given by 

p 
NN 

= NAA+~~BB-(NAB+NB~) 
NAA + .‘bn + Nus + %A 

(1) 

in which NaA, NBB, NAB and IV,, are the numbers of 
A-A, B-B, A-B and B-A pairs, respectively. In a to- 
tally random system, the numbers of matched and 

mixed pairs are equal and PNN is 0. In a totally seg- 
regated system, the number of mixed pairs is ap- 
proximately 0, yielding PNN= 1. A completely or- 
dered, or super-lattice, structure with a super-lattice 
spacing of 1 (density= 1 ), yields P,,=O since the 
number of mixed and matched pairs is equal. For 
super-lattice spacings greater than the nearest neigh- 
bor separation, there are no nearest neighbor pairs 
and PNN is undefined. 

Fig. 1 shows PNN as a function of time for the 
steady-state reaction on a one-dimensional lattice. 
The total population density is also presented as a 
function of time, scaled to fit on the same plot. Al- 
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Fig. 1. Approach to the steady state: number of walkers and seg- 

regation parameters - 1-D. The total number ofwalkers, N (solid 

curve), and segregation parameters Pb (long dashes) and Pm 

(short dashes) are plotted as a function of time as described in 
section 3 of the text. Two walkers were added per step to a 128- 

site lattice (with vertical annihilation and cyclic boundary con- 

ditions). Data were averaged aver 10 time steps and smoothed. 

The total number of walkers was scaled to fit on the plot. 

though there are significant fluctuations in PNN at 

longer times, the segregation measured by this cri- 
terion is seen to reach a stable level at early times. 
The degree of segregation closely follows the time de- 

velopment of the density. The steady-state value of 
PNN is approximately 0.9, corresponding to nearly 
total segregation. 

The expression of eq. ( 1) generalizes to higher-di- 
mensional and fractal lattices as long as a taxicab 

[ 141 definition of “nearest neighbor” is employed, 
restricting neighbors to sites connected by the un- 
derlying lattice (fig. 2a). The time development of 

PyqN is shown in fig. 5 for a steady-state simulation 
on a fifth-order Sierpinski carpet. The steady-state 
value of PNN is approximately 0.7, which indicates 

substantial segregation, although less than the value 
for the 1-D lattice. The value of PNN after lo6 time 
steps on an eight-order Sierpinski gasket is included 
as a single point. In this system, with P,,=O.87 the 
segregation is nearly complete. 

3.2. Global segregation parameters 

In searching for appropriate parameters by which 

to describe the global spatial distribution of particles 
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r=3 A 
Fig. 2. Taxicab geometries. (a) The nearest neighbors to the solid 

diamondare marked with open circles. (b) The closest neighbor 

to the solid diamond is marked with an open circle (assuming no 

other lattice sites are occupied). The taxicab distance, r, between 

these two sites is 3. 

on a lattice, it is necessary to move beyond nearest 
neighbor relationships. One way to view segregation 
is in terms of the formation of clusters or aggregates 
of a single particle type. Parameters which charac- 
terize cluster structures, e.g. the sizes and spatial ex- 

tents of clusters, can then be used to characterize 
particle distributions as a whole. 

In one-dimensional systems, clusters are easily de- 
fined: a cluster is a region in which the particles are 
all of one type (A or B), bounded on both ends by 
particles of the opposite type. One quantity which 

describes such clusters is the number of boundaries 
between clusters, Nb, which is equal to the number 
of clusters. Since reactions can only occur at the 
boundaries between clusters, N,, describes the num- 
ber of reactive regions. On the average, the ratio of 

the total number of particles (N) to N,,, gives the 
number of particles in each cluster. The average clus- 
ter length (extent) is found by dividing the number 
of clusters by the total length of the lattice. 

.4 global segregation parameter can be formed from 

Nb: 

(2) 

in which N is the number of walkers and Nb is the 
number of boundaries. Nb and N are equal in a super- 
lattice or totally mixed distribution (Pb=O). Note 

that this result is independent of the spacing (or den- 
sity) of particles. In a random system, Nb is of the 
order of N, leading to small finite values of Pb. Total 
segregation results in a system with two clusters and 

consequently two boundaries; the resulting value of 
Pb is 1. Pb is plotted as a function of time for a 1-D 

system in fig. 1. Pb reaches its steady-state value 
somewhat earlier than Pm, but the steady-state value 
for the one-dimensional system is also approxi- 

mately 0.9. 
The notion of a cluster and associated boundaries 

is straightforward in one-dimensional systems. One- 

dimensional clusters can be defined without regard 
to inter-particle separations and therefore density. In 
higher dimensions and fractals, the situation is more 
complicated. Clusters can be readily defined in terms 
of a specific maximum intra-cluster particle sepa- 

ration, but the appropriate separation depends upon 
density. We have therefore turned to another feature 
of particle distributions to obtain parameters by 
which to describe the global segregation in systems 
of one dimension and higher: inter-particle 
separations. 

A consequence of the formation of clusters is that 
particles of the same type, grouped into the same 
clusters, are more closely spaced than particles of 
different types, which are in different clusters. In or- 
der to characterize these separations, we have ex- 
tended the nearest (adjacent) neighbor concept of 
section 3.1 to a “closest” neighbor concept. The clos- 
est neighbor to a particle is the particle at the short- 

est distance. where distance is defined by taxicab ge- 
ometry (illustrated in fig. 2b). By counting the 
number of particles in a system with a closest neigh- 
bor at a given distance r, we obtain a distribution of 
closest neighbor separations, designated PCN ( Y). 
Through the use of the taxicab definition of distance 

on discrete, disordered or fractal lattices, PCN( v) can 
be used to characterize particle distributions in ar- 
bitrary topologies, We note that this definition is 

analogous to the “Hertz nearest (closest) neighbor” 
distribution [ 15,161. 

PCN( r) is calculated from a series of breadth-first 
searches [ 171, one for each particle. For each par- 
ticle, the set of sites within one lattice unit ( r= 1) is 
identified. If any is occupied, PCN ( 1) is incremented 
by 1. If not, the set of r=2 sites is formed from the 
nearest neighbors of the r= 1 sites, excluding those 
which have already been examined. If no r= 2 site is 
occupied, the process is repeated until an occupied 
site is encountered in the set of r=n sites. P,,(n) is 
then incremented by 1. This straightforward breadth- 
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first search method is appropriate for any lattice with 
a single lattice spacing. More sophisiicated tech- 
niques are required for lattices with unequal spac- 
ings between adjacent sites. 

PCN( r) may be determined separately for matched 

and mixed pairs in order to examine the difference 
in separations of like and unlike particles. The clos- 
est neighbor separations of matched pairs reflect in- 
tra-cluster particle separations and therefore intra- 
cluster densities. The closest neighbor separations of 
mixed pairs, on the other hand, are inter-cluster dis- 
tances by definition. They therefore reflect the dis- 

tances between adjacent clusters of different particle 
types. The greater the difference in the most prob- 
able (or average) closest neighbor separation of 
mixed and matched pairs, the greater the extent of 

clusterization and hence of segregation. Corrections 
for density effects on each of the PCN ( r) can be made 
by scaling r by its most probable value. 

PCN( r) is presented in fig. 3 for matched (“AA”) 
and mixed (“AB”) pairs at steady state on a one-di- 
mensional lattice. For comparison, the curve ob- 
tained from a random distribution of the same den- 
sity is also shown. As expected, the most probable 
separation of matched pairs is significantly smaller 
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Fig. 3. Steady-state closest neighbor distributions - I-D. PcN(r) 

is plotted as a function of r- I for the 1-D lattice at (or near) 

steady state. AA: matched pairs: AB: mixed pairs. Results for 

random distributions (dashed line) are included for compari- 

son. The simulation curves represent averages over 50 time points 
from each of 10 runs. Two walkers were added per step to a 128- 

site lattice (with vertical annihilation and cyclic boundary 

conditions). 

than that of the random distribution, due to in- 
creased intra-cluster densities. The mixed pair dis- 
tribution is nearly flat. This arises from the relatively 
even spacing of particles within one cluster. The dis- 
tances from the boundary, the closest point at which 
a particle of the other type may be found, to each 
particle in a cluster are fairly evenly distributed. 
PCN ( r) for matched and mixed pairs at steady state 
on the Sierpinski gasket is shown in fig. 4 and seen 
to have qualitatively similar features to those of the 
1-D lattice (fig. 3 ), except that the random curve is 

not a decaying exponential but qualitatively similar 
to a two-dimensional Hertz distribution [ 15,161, as 

expected [ 18 1. 
Distributions such as those offigs. 3 and 4 are use- 

ful for characterizing particle distributions at a par- 

ticular time. A single parameter, however, is more 
convenient for monitoring the development of seg- 
regation over time, or for quantitative comparisons 

between systems of different topologies. One such 
parameter is given by 

P <RcN(AA)) 
(CN’=l-(RCN(AB)) (3) 

in which (R,,(A.4)) and (R,,(AB)) are the av- 
erage closest neighbor separations of matched and 

Fig. 4. Steady-state closest neighbor distributions - Sierpinski 

gasket. P&r) is plotted as a function of r- I for the Sierpinski 

gasket at steady state ( IO6 time steps). AA: matihed pairs; AB 
mixed pairs. The curves represent averages over 2 runs. Sixteen 

walkers were added per step to an eight-order Sierpinski gasket 

(without vertical annihilation). For further details see ref. [ 5 1. 
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Fig. 5. Closest neighbor segregation parameter. PO,, (eq. (3)) 

is plotted as a function of time for the 1-D lattice and the Sierpin- 

ski carpet. The steady-state value for the Sierpinski gasket is plot- 

ted as a single point in the upper left. PNN for the Sierpinski car- 

pet is included for comparison. For further details see captions 

offigs.3andIandref. [lo]. 

mixed pairs, respectively. In a random system, these 
. . 

two quantities are equal and PO,, is 0. In a totally 
segregated system of infinite extent, ( Rcu (AB) > 
goes to infinity, the ratio to 0, and PC,,> to 1. For 

finite systems, values of 1 cannot be achieved, but 
values on the order of 1 - 1 /L, where L is the lattice 

size, are expected. Since ( RCN (AA) ) depends upon 
the overall particle density, the ratio can be cor- 
rected for density for quantitative comparisons of 
segregation in systems with significantly different 
densities. 

P cCNj is plotted as a function of time for steady- 
state simulations on the 1-D lattice and Sierpinski 
carpet in fig. 5. The steady-state value after 1 O6 steps 
obtained from particle distributions on the Sierpin- 
ski gasket is included as a single point. For compar- 
ison, the parameter PNN (eq. ( 1) ) for the Sierpinski 
carpet is also plotted. Although the magnitudes of 
PC,,) and PNN differ, their time dependence is quite 

similar. 

4. Discussion 

The kinds of quantitative measures required to es- 
tablish relationships between topology, reactant seg- 
regation and reaction kinetics are those which are 
generalizable to low and high densities, and to all lat- 

tice topologies. Three parameters have been pre- 
sented here, each with certain strengths and 
weaknesses. 

The parameter which is sensitive to local effects, 
PNN, can be extended to any dimensionality (Eu- 
clidean or fractal). It is, however, limited to systems 
with moderate or high particle densities, because it 
relies on the abundance of pairs of particles at ad- 
jacent sites. Both of the global segregation parame- 
ters defined here are valid at any particle density. Pb 
is limited by lattice topology, because cluster bound- 
aries are not easily defined in higher-dimensional or 
fractal lattices. The third parameter, PO,), is read- 
ily applied to any lattice, as long as a taxicab dcfi- 
nition of distance is employed. 

All three parameters have well-defined limits: 0 for 
random or perfectly mixed systems and 1 for com- 
plete segregation. PNN breaks down in super-lattice 
structures of densities below 1, for the same reason 
that it is not usable at low densities in general. The 
theoretical upper limit of PcCN) can only be achieved 
in systems of infinite extent. Corrections for finite 

lattice size are needed before quantitatively com- 
paring segregation on lattices of different sizes. In 
addition, P,,CNj retains some density dependence, 
which can also be corrected. 

Criteria for consistent evaluation of reactant seg- 
regation in a wide variety of systems are essential for 
understanding the relationship between segregation 
and reaction kinetics. We note that Hertz distribu- 
tion functions [ 18-201 which are analogous to 
PcN(r) have been related quantitatively to reaction 
rate laws. This relationship has not been established 
for the A+ B reaction, but it is obvious from our work 
that the kinetics and segregation measures are inter- 
related. Parameters which can be generalized to ar- 
bitrary geometries and densities will prove of most 
value in the development of an integrated view of 
reaction kinetics in low-dimensional systems. The 
particular measures of segregation suggested here are 
not the only ones possible. Other segregation param- 
eters [ 7,8], along similar as well as markedly dif- 

467 



Volume 163, number 6 CHEMICAL PHYSICS LETTERS 24 November 1989 

ferent lines, can, and certainly should, be 
investigated. 
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