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Travelling wave patterns occur frequently in chemically reacting systems: these include planar fronts, target patterns and 

spiral structures. We review the dispersion relation for planar waves, including the effects of diffusion in the “slow” field for a 

simplified piecewise-linear model, with a focus on the scaling behavior with respect to the relative rate of the “fast” and 

“slow” reactions. We discuss the implications of these results for spirals, showing the origins of Fife scaling and deriving a 

boundary-integral formulation of the spiral equations. We discuss the generalization to more realistic models, in particular, the 

popular Oregonator model for Belousov-Zhabotinskii reactions. 

1. Introduction 

There has recently been an increasing amount 

of interest in the process of spatial pattern forma- 

tion by chemically reacting systems, the best 

known of which is the Belousov-Zhabotinskii (BZ) 

reaction*. This interest has been spurred by so- 

phisticated experiments [2] aimed at unraveling 

the dynamics of these patterns, as well as attempts 

at an analytical treatment.** 

Depending on the reactant concentrations, the 

BZ system exhibits two types of behavior. The 

first is called oscillatory, and is characterized by 

*For a review of the general phenomenology of the BZ 

reaction and travelling waves therein, see ref. [I]. 

**There have been many papers on chemical waves, too 

numerous to cite in detail. Our work has been motivated 

primarily by the efforts of Keener and Tyson, refs. [6. lo] 

below and Fife, ref. [ll] below. 

spatially uniform spontaneous oscillations. The 

other type of behavior is generically referred to as 

excitable. Simply put, excitable kinetics means 

that the reacting system is locally stable but that 

small but finite perturbations can excite the sys- 

tem to perform large traversals in phase space. In 

a well-stirred reactor, the concentrations of reac- 

tants would rapidly equilibrate; in an open sys- 

tem, though, disturbances which “excite” the 

reaction can propagate through the material in the 

form of travelling waves. In a two-dimensional 

layer, possible wave patterns are planes, expand- 

ing circles (targets) or rotating spirals. 

It is relatively easy to demonstrate that periodic 

trains [3] of planar reaction fronts can exist at a 

continuous range of velocities; we will see this 

later in the specific model we study here. There- 

fore, a complete solution to the planar problem 

consists of finding a dispersion relation between 
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wavelength and velocity. Unfortunately, for com- 

plex reaction kinetics, even this simple level of 

analysis is only feasible numerically. 

Target patterns are the next more complicated 

behavior exhibited by BZ reactions [4]. Here, the 

frequency and wavelength of the pattern are 

related by the dispersion relation for planar solu- 

tions, but the particular wavelength seen is depen- 

dent on the details of the pacemaker region [5] in 

which the parameters of the system are perturbed 

into the oscillatory regime. 

The most interesting problem lies in the pattern 

selection problem for spiral wave patterns [6]. 

Here again, the frequency and wavelength of the 

pattern are related by the planar dispersion rela- 

tion, as the pattern far from the spiral core is just 

a periodic planar travelling wave train. Experi- 

mentally, there appears to be a unique spiral pat- 

tern for given parameter values. This problem is 

reminiscent of the pattern selection problems in 

other cases of steady-state nonequilibrium dynam- 

ics, e.g. dendritic growth [7] and viscous fingering 

[8]. It has recently been determined that in both of 

these systems the experimentally realized pattern 

selection is explained by the fact that there is a 

unique stable steady-state solution [9]. It is un- 

known, however, if there is similarly a unique 

steady-state spiral solution to the BZ equations of 

motion that would fix the frequency and wave- 

length independently. 

Experimentally, spiral structures possess a core 

region where the outgoing wavefront and wave- 

back meet - see schematic given in fig. 1. It is 

certainly the case that diffusion of the “slow” field 

Fig. 1. Sketch of a BZ spiral wave pattern 

plays a role in determining the core structure; it is 

unknown whether it is also relevant for the far 

distance outgoing waves. Keener and Tyson [6] 

have recently suggested a picture where the veloc- 

ity of the almost planar fronts at large radial 

distances is sufficiently large so as to allow for the 

neglect of diffusive effects. They then impose a 

boundary condition at a “fictitious” inner radius 

so as to determine a unique rotating pattern. They 

further suggest that diffusion might fix this inner 

radius giving rise to a truly unique spiral, but this 

is only a conjecture. Fife [ll], on the other hand, 

has suggested a different scaling for spiral waves. 

The relationship between these two proposals has 

yet to be clarified. It seems to us that progress 

towards resolving the issue of whether there is or 

is not a unique spiral solution requires a better 

understanding of diffusive effects. 

The purpose of this paper is to analyze the 

effects of diffusion of the “slow” field in BZ-type 

systems, and its implications for the nature of 

spiral wave patterns. An important first step in 

this process has been taken recently by Dockery, 

Keener, and Tyson (DKT) [lo]. In this paper, they 

calculated the dispersion relation for periodic 

travelling wave solutions, including the effects of 

diffusion of the “slow field.” As these travelling 

wave solutions determine the asymptotics of the 

spiral solution at large distances from the spiral 

core, they provide important clues as to the role of 

diffusion in spirals. 

We thus shall start by reviewing and expanding 

upon the work of DKT. As in ref. [IO], we shall 

work in the context of a two-reactant system in 

which the ratio of the two reactions is governed by 

the small parameter C. For small c the dynamics 

of the “fast” field can be eliminated, resulting in a 

two-phase problem for the “slow” field with a 

sharp interface dividing the two phases. The re- 

sulting field equations for the “slow” field are 

nonlinear and therefore difficult to analyze. As 

pointed out by DKT, it is convenient to introduce 

a simplified version of the “slow” field dynamics, 

in which the “slow” field satisfies a (different) 

linear equation in each phase. This simplified, 
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piecewise-linear model (PLM) appears to capture 

the essential features of the problem, while allow- 

ing an analytic discussion of the dispersion rela- 

tion. 

In our presentation, we will focus in particular 

on how the scaling with c changes as the velocity 

is varied. We shall see that there are generically 

three regions in parameter space. For very large 

velocity, diffusion is unimportant; for moderate 

velocities, diffusion effects set in and we demon- 

strate explicitly that the dispersion relation obeys 

a scaling originally suggested by Fife [ll]. If E is 

not sufficiently small, the Fife scaling will break 

down at small velocities. 

We then examine the implications of these re- 

sults for spiral wave patterns. We argue that, in 

the small-e limit, there are two distinct possibili- 

ties for the E dependence of the pattern. In partic- 

ular, if one assumes that the asymptotic velocity 

of the pattern is slow enough that diffusion effects 

are important even at large distances, the pattern 

then scales uniformly in e in the small-c limit. 

Appropriate resealings then yield the c-indepen- 

dent equation first derived by Fife. 

A crucial feature of the Fife regime is that the 

“slow” field is everywhere near the critical value 

for which the interface velocity (determined by the 

value of the “slow” field on the interface) has zero 

velocity. This implies that if the Fife scaling hy- 

pothesis is correct, the Fife equations for the spi- 

ral are valid in the small c limit for an arbitrary 

choice of kinetic equations, and not just for the 

simplified PLM. The underlying kinetics would 

then just serve to fix some parameters in the Fife 

equation. We present a calculation of these pa- 

rameters for the popular Oregonator model of BZ 

kinetics. More important, however, is the fact that 

the resulting spiral dynamics would be “ universal”, 

independent of the details of the underlying dy- 

namics. 

One of the crucial ingredients in the solution of 

the velocity selection problems in dendritic growth 

and viscous fingering, from both an analytical as 

well as a numerical standpoint, has been the refor- 

mulation of the problem, via a Green’s function 

boundary-integral technique, into an integro-dif- 

ferential equation for the interface [12]. The linear- 

ity of the PLM allows us to formulate a 

boundary-integral equation for the spiral wave 

pattern for this model. This recasting of the prob- 

lem should greatly simplify the task of numerically 

solving the equation and determining whether 

there is a unique solution. As this reformulation 

can be carried out at arbitrary C, the method, if 

successful is potentially capable of testing the 

validity of the Fife scaling ansatz. The boundary- 

integral formulation should also prove invaluable 

in performing a stability analysis of the numeri- 

cally determined solution(s). 

We view the results contained in this work as a 

necessary first step towards the resolution of the 

velocity selection problem for spirals. At the very 

least, our discussion of the boundaries between 

different scaling (in r) regimes should serve to 

clarify some of the disagreement in the literature 

on this subject. 

2. Periodic traveling waves 

2.1. Preliminaries 

In this section, we discuss the periodic traveling 

wave solutions in BZ-type dynamics. This prob- 

lem has been previously studied by Dockery, 

Keener and Tyson [lo] (DKT), but we shall repro- 

duce their results herein both in order to set 

notation as well as to make the paper self-con- 

tained. Our goal here is to emphasize the points 

that will be important for the rest of our paper. 

The general model we will consider is a two- 

reaction system of the form: 

Cti = C2V2z4 +f(u, u), (2.la) 

d = CDV ‘v + g( u, u). (2.lb). 

Here, e is the ratio of the reaction rates for the 

two species, u and u. D is the ratio of the diffu- 

sion constants for the two species, assumed to be 
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Fig. 2. Typical nullclines for the functions f. g. 

of order 1. We have used the traditional scaling 

for the space coordinate in which the diffusion 

constant for the u field is taken to be C. The 

functions f and g have nullclines of the general 

form indicated in fig. 2, so that for a given value 

of u in some range urnin < u < u,,, there are 3 

zeros of f( u, u). We may denote these zeros by 

ZQ,(U), u*(u), with u-(u) < uO(u) < u+(u). We 

are particularly interested in the limit of small, 

positive C, where there is a sharp interface be- 

tween the u > ua( u) and u -C u,,(u) regions. 

We will concern ourselves in this section with 

steady-state planar solutions propagating with 

some constant velocity c. We therefore transform 

to the comoving frame, whereupon the equations 

become 

C2U” + ecu’ +f( z.4, u) = 0, (2.2a) 

CDu”+cu’+g(u,u)=o. (2.2b) 

As is well known [6, 111 for small E these 

equations essentially decouple. The equation for u 

can be solved directly in this limit, yielding re- 

gions of slow variation in which u is algebraically 

related to u, separated by regions of fast variation, 

of width = C- ‘. In the “slow” regions, u is given 

by either u_(u) or u+(u) while in the “fast” 

region, u switches solution branch over a short 

distance and u can be taken as constant. Examin- 

ing the u equation in the transition region yields a 

(e-independent) relationship between the velocity 

c of this soliton-like solution and the value of u in 

the transition region. For a transition from u to 

u, with increasing x we get 

u = V(C), 

while for the reverse transition 

(2.3a) 

u=v(c)-V(-c). (2.3b) 

The equation for u can then be solved treating the 

transition region as an infinitely thin interface 

between two “phases” in each of which u is a 

different known function of u. The relation (2.3) 

serves, along with the continuity of u and its first 

derivative across the interface, as the boundary 

conditions determining the dynamics of the inter- 

face. The resulting equation of motion for u is in 

general nonlinear and can only be analyzed nu- 

merically. 

It is to circumvent this roadblock that DKT 

introduced the expedient of replacing this nonlin- 

ear equation for u with a different linear equation 

in each of the two phases. One may justify this 

piecewise-linear model (PLM) from several dif- 

ferent perspectives. On one level, one can view it 

as a toy model, with which to illustrate in an 

analytic fashion the generic features of the prob- 

lem. On the other hand, as pointed out by DKT. 

one can view the PLM as a first approximation to 

the full problem. In this case, we can derive the 

PLM by expanding the equation of motion for c’ 

about some particular value. It will prove useful to 

choose to expand about uS, the value of u for 

which the interface has zero velocity: u, = v(0) = 

V(0). In this approximation, the equation of mo- 

tion for u then has the form [lo] 

CDU” + 01’ -b*(u-u,)t_a+=O. (2.4) 

It is interesting to note that the PLM is exact 

for a model in which the functions f and g are 

linear in u and piecewise-linear in u [13]. Then, 

due to the linearity, one can eliminate the u field 

exactly, for any value of C, deriving a fourth-order 

piecewise-linear equation of motion for u. This 



allows one to investigate the accuracy of the small 

E decoupling approximation and explore the ef- 

fects of finite interface width in a convenient man- 

ner, while still only having to deal with one (lin- 

ear) field. 

As was discussed in the introduction, we are 

particularly interested in periodic solutions [3] of 

(2.4), with an alternating sequence of + and - 

phases. Let us denote the width of the + (-) 

regions by x, (x-), choosing the point x = 0 to 

lie on the interface between the - and + phases. 

There will then be interfaces between + and - at 

--x_~ and x+, which points are to be identified 

due to the periodic boundary conditions. In the + 

phase, 0 < x < x,, 

u+=u,+~+a,exp(k,x)+u,exp(k,x) 
+ 

(2.5a) 

and similarly, in the - phase, -x_ < x < 0, 

UP =u,-F+a,exp(k,x)+a,exp(k,x). 
_ 

(2.5b) 

The k1.z are given by 

-CT c +4cDb 
k 

\i’ 
1,2 = 2~0 (2.6) 

with analogous expressions for k, and k,. At the 

interface u and u’ are continuous, with u deter- 

mined by the velocity c, yielding 

u,(O) = u_(O) = V(C) = ug, 

0: (0) = u’ (0)) 

u+(X+)=U_(-x~)=V(C)=$), 
(2.7) 

r&(x+) = u’(-x_). 

This gives a system of six equations for the six 

unknowns, (pi 2 3 4 and x +. 

Now, generically c - O(l), so that (2.6) simpli- 

fies to k,,, = - c/c D, k,,, = b +_/c. The largeness 

of k,, implies that, assuming x* are not too 

small,’ a1 exp (k,x+) and a3 are exponentially 

small. Then, to lowest order in CD/C’, we can 

solve (2.7) directly, giving 

ai, +exp( -k,x_) - O(C), 

a+ 
a2= ug -us--, 

b+ 

aq = u. -us+% 
b- ’ 

= e In 
a++ b+( us - Go) 

x+ 
+ i a+-b+(u,-us) ’ 

x_= S- In 
a_+b_(u,-us) 

b- i a_-b_(u,-ti,) ’ 

(2.8) 

Notice that this is precisely the result we would 

obtain if we set D = 0, dropping the diffusion 

term in the u equation (2.4). Of course, the lower 

order CX~ 3 terms generate narrow (- 0(1/c)) 

boundary’ layers at the interfaces which are re- 

sponsible for the continuity of u’, which is lost if 

the diffusion term is dropped altogether. As these 

boundary layers are of the same width as the 

interface, however, the higher order analysis is 

nontrivial. 

2.2. The Fife regime 

We have just seen how the diffusionless limit 

arises from velocities c - O(1). We now investi- 

gate where this approximation breaks down. We 

derive the above result for the diffusionless limit 

by assuming exp (k,x +), exp (k,x -) +z 1, or 

equivalently, cx */CD z+ 1. Examining (2.8) we see 

that c -=c 1 is necessary for this condition to be 

violated. For small c, we may approximate u0 - u, 

= v’(O)c. The smallness of this quantity allows the 

expansion of the logarithms in (2.8), implying 

x + cx c2. From (2.4) it is clear that diffusion effects 

first become important when cx +- C, which trans- 

lates to c3 - E, or c - 0(G3), x +- 0(e213). One 

should notice that this range of c is still suffi- 

ciently large that the approximations for k, in the 

previous section are still valid. 

In this regime, first identified by Fife [ll], we 

can solve (2.7) via a different approximation. 

Here, k2x,, k,x _- O(C~/~), so we can expand 

exp(k,x+), exp(k,x_). Setting c = c113?, x+= 
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c 2/3x” i we find at 0th order in 6 

(Y, = a3 = 0, 
a+ a- 

(Y2= --. 
b, 

(Y4= -. 
bp (2.9 

Solving (2.7) to next order we find, after some 

tedious algebra, that .z_ is proportional to x”, [lo] 

a+ - 
x” = ax+, (2.10) 

and x”, satisfies 

[ a+S+- 2y’(0) ~‘1 sinh & 

_ a 
=2D(a++a_)sinh&K+sinh&$i+. 

(2.11) 

Eq. (2.11) implies that Z+, and so also x”_, 

monotonically decreases with c”. For large c”, 2 f + 

2v’(O) fZ2/a +, or x + + 2v’(0)c2/a + which matches 

on to the small-c limit of the result (2.8) for the 

diffusionless regime. At small ? [lo], 

(2.12) 

so 2 + have nonzero limits as ? goes to 0. The Fife 

regime thus interpolates between the relatively 

large velocity regime, c - O(l), where x i are also 

O(l), and a region where x + are small, O(C’/~). 

It is important to note for later that in the Fife 

regime, u - us +=x 1 not only at the interphase 

boundaries but everywhere. This is due fundamen- 

tally to the smallness of k,,,x + in this regime. 

Thus, we can equivalently obtain the Fife limit 

directly from the differential equation for u, (2.4) 

by dropping the u - u, term as can be verified 

explicitly. 

2.3. The stall (c + 0) limit 

There is one other limit which is possible to 

treat analytically, the stall limit, c + 0. Now, as c 

decreases, k,,, increase and so we would expect 

that the Fife approximation becomes less accu- 

rate. However, since in the Fife regime x &- 

0(c2i3) and even at c = 0, k,,, is no larger than 

O(C-~/~), it appears that the Fife approximation 

k,,,x + +z 1 is still valid down to c = 0 for small C. 

As we shall see, this is indeed the case for small 

enough C, (how small being a function of the 

parameters b +. a &). The restriction of “small 

enough” will turn out to be surprisingly stringent, 

however, and not simply c +=K 1. Thus the Fife 

approximation is not valid in general for c -C c1j3. 

In treating the c -+ 0 limit, we notice that at 

lowest order in c, the solution is actually undeter- 

mined, with solutions for a continuous range of 

x:. (We append a superscript s to remind the 

reader that we are calculating for the stall solu- 

tion, c = 0 +.) For a given x\. the solution is 

a1 = a,exp - db+/cD x: C i 

1 = 
‘1 1 + exp(/b+/cD x:) ’ 

a3 = a,exp($CJDxx”j 

a- l 

bP 1+ exp(-/mx’) ’ 

(2.13a) 

with x”_ given by [lo] 

(2.13b) 

At next order, a solvability condition emerges, 

yielding 

p l- 

i 

/Wx: 
+ sinh (,/m x>) 

db_/cD x” 

‘- sinh(/mx’! 

2V’(O)&X 

= tanh($/mx_4j 
(2.14) 
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For e small enough, we note that X~K 1 and 

we can solve these equations. In this limit, the 

equation relating x? to x:, (2.13b), reduces to the 

simple proportionality of the Fife limit, (2.10). 

Furthermore, eq. (2.14) then also reproduces the 

result (2.12) for xi in the Fife limit. In other 

words, as advertised, the Fife regime extends all 

the way down to c = 0 in the c + 0 limit. For 

finite E, however, at c -+ 0, x; approach nonzero 

values different from those predicted by the Fife 

approximation, (2.12). Comparing (2.10) and 

(2.13b), it is clear that the quality of the Fife 

approximation is controlled by the smallness of 

xi, which is turn is controlled by the smallness of 

E.-AS e is taken larger, for fixed b +, a +, the Fife 

approximation becomes worse. In fact, the stall 

solution disappears [lo] above a critical value of e, 

in which case the Fife approximation is very bad 

indeed! We can see this by noting that, from 

(2.13b), there is a maximum value that x”, can 

attain, namely 

at which point x? goes to cc. (We assume here 

that a_Jb,/a+K < 1, if not the roles of x: 

are simply reversed in the following.) However, 

for E > cc, where E, is such that 

/?QpxS;m= I +g 
sinh(/mx:““) - 

< 
ZV’(O)/W 

tanh(fVib/E,Dx:m”X i 
(2.15) 

the LHS of (2.14) is smaller than the RHS for all 

x:, 0 I Xs,l xs;m=, and no stall solution exists. In 

fact, for c > cc, no solution exists in a range 0 < c 

< Cmin(~), where cd,, is an increasing function 

of c. 

The picture that emerges, for e fixed and small, 

is then as follows. At the largest velocities, x + are 

large, 0( f- ‘12) and are well approximated by the 

diffusionless limit (2.8). As c decreases, x tr de- 

crease. Significant departures from the diffusion- 

less limit appear when c = c1j3. Here, the behavior 

of x, is governed by the Fife results, with a rate 

of decrease of x + much slower than the approxi- 

mate quadratic relationship x k a c2 of the diffu- 

sionless limit. Eventually, for smaller velocities, 

c +Z e1j3, the Fife approximation does worse. The 

situation is now controlled by the stall limit. If 

e < cc, so that the stall limit exists, then x + ap- 

proach their stall limits, x$. In general, x, al- 

ways decreases with c, whereas x_ can have a 

turning point if E is insufficiently small. If e > cc, 

there is a velocity at which x _---f cc, below which 

no periodic traveling wave solution exists. 

We can verify this picture by numerically solv- 

ing the system of equations (2.7). For these calcu- 

lations, we fix (for no particular reason) D = b+= 
b_= 1, a+= 0.625, a_= 0.375. We also assume 

for V, the function relating c to the value of u on 

the interface: V(C) = c/2&-, which is the 

form that arises from a piecewise-linear dynamics 

for U. The results of the calculations are presented 

in figs. 3-5. In figs. 3a and 3b, we plot x5 as a 

function of c for e = 0.01, below the critical value 

cc -10.163 for this choice of parameters. Also pre- 

sented on the same graphs are the results of the 

diffusionless and Fife approximations. One way to 

measure the quality of the Fife approximation is 

to consider x-/x+. In the Fife approximation, 

this ratio is a constant, a+/a_ = 5/3, independent 

of c. This ratio is plotted in fig. 4 as a function of 

?, where we see that x-/x + approaches the Fife 

value as c” decreases from its maximum value. It 

comes closest at c” = 0.495, where x _/x + = 1.763, 

and then diverges from the Fife result again from 

smaller C In fig. 4, we also present x-/x+ versus 

c” for a smaller value of e = 10P3. For this smaller 

value of E, the Fife approximation does better, as 

expected. For example, x _/x + now goes down to 

1.693, compared to the Fife value of 1.667. Lastly, 

we vary a +, so that c is above cc, while still small. 

Setting a c= 0.8, a_= 0.2, our original choice of 

e = 0.01 is now above the critical value, cc = 8.73 

X 10F3, for these parameters. In figs. 5a and 5b 

we plot x + versus c, together with the Fife pre- 

diction. We see that while the results for x, are 
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Fig. 3. X, (a) and x_ (b) versus velocity for the PLM with 

parameters e = 0.01, D =f+=f_= 1, g+= 0.625, g_= 0.375. 

The solid curve is the exact results, which are plotted together 

with the results of the diffusionless approximation (long dashes) 

and the Fife approximation (short dashes). 

2.00 I I I 

- E=0.01 

--- -- 

160 1 

1,L.t 
0 loo 2.00 300 400 5.00 

“c (Scaled Velocity) 

Fig. 4. x-/x+ versus the scaled velocity, ?, for the PLM with 

e = 0.01 (solid), 0.001 (short dashes) compared to the Fife 

prediction (long dashes). The other parameters are as in fig. 1. 

01 
0 020 040 060 000 

Velocity 
(a) 

250- 
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100- 

050- 
_____---- 

0 I 1 1 
0 020 040 060 0.80 
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(b) 

Fig. 5. X, (a) and .x- (b) versus velocity for the PLM with 

parameters e=O.Ol, D=f+=/_-=l, g+=O.8, g-=0.2. Exact 

results (solid) and Fife approximation (short dashes). 

still fairly good, 

unreliable, due 

critical velocity, 

the results for x_ are completely 

to the divergence of x_ at the 

‘rnin = 0.0672. 

Our last task here is to calculate cc, which 

controls the validity of the Fife approximation for 

small c. It is clear from the above that the most 

relevant parameter determining cc is C/U+. Let 

us then calculate cc in the limit ~_/a+< 1. 

In this limit, x:max = 2,/D/b_ C/U+, and SO 

(2.15) reduces to 

The 

U4 

4u~b:Dv’(0)2 ’ 
(2.16) 

Fife approximation is then valid at small 
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velocity for c < cc. As we noted in the introduc- 

tion to this subsection, this condition is much 

more stringent than our overall assumption E ==K 1. 

3. Spiral waves 

We will now examine the implications of the 

results of the previous section for the structure of 

spiral waves in BZ-type systems. Our analysis will 

be at first in the context of the PLM of section 2. 

We will see in the next section how the discussion 

can be generalized to more realistic models and in 

particular the Oregonator. 

As pointed out in the introduction, the spiral 

wave pattern at large distances from the spiral 

core asymptotically approaches a periodic travel- 

ing wave solution of the type studied in section 2. 

We have seen that such solutions exist for a con- 

tinuous range of velocities, with the spatial period- 

icity determined by the velocity. The solution to 

the problem of velocity selection therefore lies in 

an understanding of the dynamics in the core 

region. In particular, one needs to determine the 

mechanism that sets the size of the core. 

It is clear from the results of the previous sec- 

tion that diffusion of u plays a crucial role in the 

core region, where the normal velocity of the 

interface is small. Indeed, this observation served 

as the motivation for the current study. We have 

seen that for small L, there is a natural length 

scale, O(C~/~), f or velocities small enough that 

diffusion is important. This suggests that the length 

scale of the core of 0(c213). 

We must now consider the length scale far from 

the core, where we have a periodic traveling wave 

solution. We derive in section 2 that there are two 

possibilities: either c > cl’3 and diffusion is unim- 

portant asymptotically; or c ,< c1j3 and diffusion is 

relevant even in the far region. Of these, the latter 

is clearly the most attractive, as it would imply 

that the length scale in the outer region is also 

O( C2’3 ) and the entire pattern scales uniformly in 

E. If this is indeed the case, there is then the 

possibility of eliminating c from the problem en- 

tirely through a resealing. Of course, we do not 

know at this stage which scenario is correct, for 

this is precisely the problem of velocity selection 

we wish to eventually address, but for the moment 

let us assume the second scenario is realized and 

investigate the consequences. 

Before proceeding, however, we must address 

the effects of interfacial curvature. As is well 

known [6, 11, 141, the decoupling of the u and u 

equations in the small c limit, which introduces a 

sharp interface between phases in the equation for 

u, is modified if the interface is curved. The effect 

of a nonzero interfacial curvature, K, is to modify 

the c-u0 relation [2.6] to 

V,=V(C+CK). (3-I) 

Now, we have already assumed that the length 

scale of the spiral is 0(c213) everywhere, so K - 

0( ~~~1~). If we are to have uniformity in E, it 

must also be the case that c - O(E~/~). These 

scalings, x - 0( c213), c - 0(c’13) are just those of 

the Fife regime. 

We can now perform the resealings and exhibit 

the c-independent equations, first derived by Fife 

[ll]. Going to polar coordinates (r, f?) in the coro- 

tating frame with angular velocity w, we rescale 
r E fc213, w s GE_ 1/3, yielding 

a2 i a i a2 a 
c -+__++_ +&_ u 

aF2 r’ a7 ~2 ao2 i 1 ae 

*a*-b*(o-u,)=O. (3.2) 

If we now rescale u, defining u” = c-113( v - us), we 

get the final result 

i (3.3) 

where we have dropped the term b ku”r’/3. This is 

valid as long as u - u, -=K 1. We saw in section 2 

that this was true for the traveling wave solutions 

in the Fife regime, and it is reasonable to expect it 

to be true for the entire spiral wave, given that the 

pattern in the far regime is a Fife-regime travelling 



wave, as we are assuming. Eq. (3.3) has to be 

supplemented by the boundary condition for v” on 

the interphase boundary, 

‘1 interface =v’(O)(c”,+lq, (3.4) 

where c”n is the (resealed) normal velocity of the 

interface, and K” the resealed curvature. 

We have thus rederived Fife’s c-independent 

equations for a steady-state spiral. It of course 

remains to be seen what the nature of the solution 

space for these equations is. It is tempting to 

speculate, by analogy with the pattern selection 

seen in dendritic growth and viscous fingering, 

that there are a discrete infinity of steady-state 

solutions, with a unique stable solution. In the 

next section, we turn to the fully nonlinear Orego- 

nator model, and investigate the implications of 

the Fife scaling hypothesis in this case. 

4. The Oregonator 

The PLM, while possessing the advantage of 

simplicity is at best only an approximation to a 

realistic model for the BZ reaction. As we dis- 

cussed in the introduction, the complication of a 

more exact model is that, even when the “fast” 

fields are decoupled, it involves a nonlinear field 

equation for the “slow” field, u. In particular, a 

reduction to interface dynamics is not possible. 

If we assume, however, that the Fife scaling is 

appropriate to describe spiral wave patterns, a 

tremendous simplification results. We saw that 

one of the features of the Fife regime is that 

u - c’, x 1 everywhere. This allows us to linearize 

the u equation around the stall value u,. The result 

is a version of the PLM, with specific values of the 

parameters determined from the linearization. This 

is noteworthy for a number of reasons. First. the 

problem is now linear, allowing an attack via the 

same boundary-integral techniques used success- 

fully in the dendrite and viscous fingering prob- 

lems. The formulation of this approach will be the 

subject of the next section. Second, and most 

importantly, the structure of the resulting problem 

is independent of the fine details of the underlying 

Oregonator model. All that remains of this fine 

structure are the couplings u + (as we saw above. 

h i is irrelevant in the Fife region). These cou- 

plings can be determined phenomenologically from 

the dispersion relation for plane travelling waves. 

Thus, given a solution of the Fife-reduced PLM 

spiral wave problem ((3.3) and (3.4)) one can 

directly make predictions for the realistic case 

without making use of the detailed structure of the 

original model. This is very attractive, as the 

“realistic” models discussed in the literature, in- 

cluding the Oregonator. are themselves only phe- 

nomenological models, and are surely not correct 

in all details. 

This situation is reminiscent of that encoun- 

tered in the dendrite problem. There, one typically 

studies a “macroscopic” model, in which the in- 

terface is approximated as being infinitely thin. 

One can choose to start, however, from a phase- 

field approach [14], where one writes down a 

Landau-Ginzburg model for the dynamics of the 

rapidly varying phase field which gives rise to the 

interface. One can show [14] that in the limit of an 

intinitely thin interface, which in this case is ob- 

tained by letting the diffusion constant of the 

phase field tend to zero, one obtains the macro- 

scopic model. This macroscopic model is insensi- 

tive to the fine structure of the Landau-Ginzburg 

theory, which just serves to determine the macro- 

scopic couplings (e.g. the surface tension). These 

couplings can in turn be directly obtained from 

experiments. 

This wonderfully attractive scenario depends 

crucially on two things. First is the question in 

principle of whether the Fife scaling is correct and 

gives rise to a unique stable steady state. This 

question has already been discussed at length in 

section 3, and its resolution must await further 

work. The other question is a more practical mat- 

ter concerning the smallness of c. The Fife scaling 

is predicated on the c --f 0 limit (or in other words, 

the infinitely thin interface limit). We saw in sec- 

tion 2 how the Fife regime can break down at 
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small velocities if E is not small enough. While we 

would not expect qualitative changes in the physics 

to occur as long as c is reasonably small (for 

example, if the Fife scalings produce a unique 

stable spiral one would expect this feature to 

persist for finite c), the quantitative predictions 

will become worse as E grows. One way to get a 

feel for this question is to return to the problem of 

periodic travelling waves studied in section 2. 

This question of course depends on the particu- 

lar chemistry one is studying. Let us focus for the 

sake of definiteness on the Oregonator [15] model: 

rzi = C2V *u if( U, U), (4.la) 

ti=Ev*u+g(U,U), (4.lb) 

where the reaction terms f, g are given by 

f(u.u)=u-u*-@& 
(4.2) 

g(u,u)=u-u. 

The couplings are given by {= 3, q = 10e4, and, 

most importantly, c = lo-*. The linearization of 

this model has been performed numerically by 

DKT. Here we will exploit the smallness of q to 

exhibit (approximate) analytical results. As usual, 

the smallness of c implies a two-phase structure 

with a sharp interface separating the two phases. 

In the “ + ” phase, 

u+(u) = +(1 +/ii), 

and in the “ - ” phase 

u_(u)=q+ $72. 
fu 

As advertised, substituting u(u) in (4.lb), we find 

that u satisfies a nonlinear field equation. 

(4.3a) 

(4.3b) 

To linearize around the stall solution, we need 

first compute us. The easiest way to do this is to 

consider F,,(u), where f( u, u) = dF,/du. F, has 

two local maxima, u +(u), and u, is determined by 

the condition Fc,,(u+(u,)) = F,ju_(u,)). To lowest 

order in q, we find u, = 3/16f: We can now ex- 

pand (4.lb) to linear order, obtaining 

This is just the equation of motion for u in the 

PLM with D = 1 and the identifications 

a+ _= M%b,>? 4 
= 3/4 - 3/16f: “+ “, 

z 3/16f: “- ” 

and 

(4.5a) 

u_,~o,);,,=v , 
= 2j+ 1, “+ “, 

1, “_“, 
(4.5b) 

Z 

We also need the relation between the normal 

velocity c of the interface and the value of u on 

the interface. Neglecting curvature, (4.la) implies 

CC/~ dx’[U’(X’)]*=F,,(u_)-F,,(u+), (4.6) 
-‘x 

where u(x) is the kink solution connecting use 

at x = - 00 to u+(u) at x = cc. For small veloci- 

ties, u(x) = us(x) the zero-velocity kink solution. 

Then, 

(4.7) 

again to lowest order in q. After expanding the 



RHS of (4.6) about u = Q, we obtain 

“=u+Jz-c. s 
1Of 

(4.8) 

In the notation of section 2, v’(0) = fi/lOf: 

In section 2, we saw that cc, the value of e 

above which the c = 0 traveling wave solution 

ceased to exist, is a good figure of merit for the 

border between the very small c regime where the 

Fife results are trustworthy, and the regime where 

C, though small, is too large for the Fife approxi- 

mation to be useful. We may obtain an estimate 

for eC from our linearized version of the Oregona- 

tor (the piecewise linear Oregonator (PLO)), em- 

bodied in (4.4) and (4.5). We remind the reader 

that the Fife limit is obtained from the PLO by 

dropping the u - U, term. While the linearization 

by means of which we derived the PLO is strictly 

speaking only valid in the Fife limit, we saw in 

section 2 that the breakdown of the Fife limit at 

small velocity for e not small enough is caused by 

precisely the u - u, term. It is thus reasonable to 

use the PLO to obtain an estimate for cc_ From 

(2.15) along with the values of a +, h + given in 

(4.5) we find t, = 3.48 X 10m3. Thus, e for the 

Oregonator as given by Keener and Tyson is in 

fact much larger than cc. We should therefore 

expect that the comparison to experiment of nu- 

merical predictions based on the Fife limit should 

not be terribly accurate. 

One can verify this further by comparing the 

results of the Oregonator for the wavelength of the 

periodic traveling wave train both to the Fife limit 

and to the PLO. This is done in figs. 6a and 6b, 

which present x, and x_ versus c for the three 

models. We see that there x_+ 00 at c = 2.57 (as 

against c = 2.502 in the PLO) below which there is 

no solution. As expected, the Fife approximation 

does a poor job, especially in predicting x_ The 

PLO, however, does surprisingly well over the 

whole range of velocities for which the Oregonator 

has travelling wave train solutions, as already 

noted by DKT from a similar comparison. It 

should be reiterated that this is indeed a happy 

OIO- 
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o- 
0 

- exm+ 
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--Fafe 
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020 040 060 080 
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-exact 
______pLo 
--F,fe 

CO> 080 
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(W 

Fig. 6. _x+ (a) and x (b) versus velocity and the Oregonator 

(solid) compared to the pxcewise-linear Oregonator (short 

dashes) and the Fife approximation (long dabhcs). 

numerical accident, stemming from the fact that 

both the velocity relation u”(c) and u , (0) are 

very close to linear over the relevant range of their 

arguments. The lesson here is that the PLO might 

do a reasonable quantitative job in predicting 

spiral patterns, even though 6 is too large for the 

Fife regime to work well. 

5. Tbe boundary integral formulation 

The important advantage of the PLM is that 

one can hope to attack this problem for arbitrary c 

due to the linearity of the model. In so doing, one 

can test the validity of the Fife scalings in the 
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small c limit. As discussed in the introduction, a where C#I is the (unknown) value of fi l VU at the 

reformulation in terms of a boundary-integral interface. Using this, we can now evaluate (5.5) on 

problem should prove most useful in this analysis. the “wrong” side of the interface, where I/J is zero. 

To accomplish this, we need first to define the These two equations at each point on the interface 

appropriate Green’s functions for the differential together determine the interface, along with the 

operator in (3.2): unknown function 4. 

= $a(?-i’)6(B-8’). (5.1) 

The presence of different Green’s functions in the 

two phases complicates the boundary-layer analy- 

sis somewhat. The problem can be treated [16] by 

introducing two fields, li, +, each of which is 

nonzero only in its respective phase. We then 

define 

# ~ = u - u, T a Jb * “correct” phase, 
(5.2) = 0 otherwise. 

We can then write 

#.=/A’ . +‘G ,+; ds” - 
/- 

G +@; d?, (5.3) 

where the integrals are along the interface, and A 

is the normal to the interface, taken to point 

toward the “ + ” region. The functions $t, & are 

determined by the discontinuities of I/J and i? l 6# 

across the interface: 

[+ldisc=+1~ 

[s*+rl/]&sc=$2- %+I, (5.4) 

where the discontinuity is calculated from the 
“ _ >? to the “ + ” phase. The continuity of u and 

ii l $u across the interface, together with the 

boundary condition (3.1), implies that 

c#$ = +[Y(E”~(~,+)C”))--~T~+/~.], 

(5.5) 

Things simplify somewhat in the Fife limit. 

Here we only need one Green’s function, satisfy- 

ing 

so the boundary-integral equations can be formu- 

lated in terms of one field, 4, define by subtract- 

ing the inhomogeneous solution to (3.3) from 6. 

(5.7) 

As in (5.5) (upon dropping the & ‘s), IJJ can be 

expressed as an integral of the Green’s function 

along the interface. The source strengths are now 

given by 

C#Q = &(a++ a_), 

(5.8) 

As before, we now evaluate I/I along the interface 

using (5.5) applying the boundary condition (3.4). 

The resulting equation determines the interface 

shape. 

6. Summary 

In summary, then, we have reviewed the struc- 

ture of traveling wave solutions to the PLM. We 

characterized the three different velocity regimes 

and the corresponding length scales: (1) the large 

velocity region where c, x i - O(1) and diffusion is 

irrelevant; (2) the Fife regime, which sets in for 

c - O( Cl’3 ), where diffusion becomes important 

and x *- O(c213); and (3) the small-velocity re- 
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gion, where the behavior is very sensitive to the from DARPA under the University Research Ini- 

value of 6 and differs dramatically from the Fife tiative Grant No. N00014-86-K-0758, and by the 

results if c is too large. Alfred Sloan Foundation. 

We then demonstrated that assuming the se- 

lected velocity of the spiral pattern lies in the 

diffusion-dominated Fife regime (and indeed as- 

suming there is a selected velocity in the first 

place), we can reproduce the c-independent equa- 

tions of Fife. It is illuminating to note in this 

context that the actual experimental value for the 

spiral velocity does indeed appear to lie in the 

regime where diffusion effects are important. This 

can be seen clearly by comparing figs. 3a and 8 of 

Keener and Tyson [6]. As a first step toward 

addressing the validity of this assumption, we 

have formulated a boundary-integral representa- 

tion of the steady-state spiral equations, both with 

the assumption of Fife scaling and also in general. 

References 

111 

[21 

R.J. Field and M. Burger, eds., Oscillations and Travelling 

Waves in Chemical Systems (Wiley, New York, 1985). 

S.L. Muller, T. Plesser and B. Hess, Science 230 (19X5) 

661; 

[31 

[41 

[51 

161 

171 

Lastly, we pointed out that the Fife equations 

are in fact universal, independent of the details of 

the underlying equations. The underlying dynam- 

ics serves only to fix the coupling constants in the 

Fife equation. This derivation relies on taking the 

c + 0 limit, in which there is an infinitely sharp 

interface between the two “phases” of the 1) field. 

It would thus be very useful to have experimental 

data on the c dependence of the spiral pattern, 

which can presumably be obtained through vary- 

ing the recipe used in the reaction. This is espe- 

cially true since the value of c for the particular 

recipe analyzed by Keener and Tyson is not small 

enough for the Fife theory to be quantitatively 

correct. The piecewise-linear Oregonator, a lin- 

earized version of the Oregonator, might, however, 

suffice for quantitative predictions for the 

Keener-Tyson recipe. 

W.Y. Tam. W. Horsthemke, Z. Noszticzius and H. 

Swinney, J. Chem. Phys. XX (1988) 3395. 

J. Rime1 and J.B. Keller. Biophys. J. 13 (1973) 1313. 

J. J. Tyson and P. Fife. J. Chem. Phys. 73 (1980) 2224. 

A.T. Winfree. Oscillations and Travelling Waves in Chem- 

ical Systems, R.J. Field and M. Burger, eds. (Wiley. New 

York, 19X5). 

J.P. Keener and J.J. Tyson, Physica D 21 (19X6) 307; 

J.P. Keener. SIAM J. Appl. Math. 46 (19X6) 1039. 

M.E. Glicksman. Mat. Sci. Eng. 65 (1984) 45; 

A. Dougherty and J.P. Gollub, Phys. Rev. A 3X (19X8) 

3043 

[Xl 

191 

[lOI 

PII 

[121 

P.G SaA‘man and GI Taylor. Proc. Roy. Sot A 245 

(1958) 313. 

For a review of recent progress. see D. Kessler, J. Koplik 

and H. Levine. Pattern selection in fingered growth phe- 

nomena. Ad\. Phys. 37 (1988) 255: 

J.S. Langer. Les Houches Lecture Notes “On Chance and 

Matter”. 19X6. J. Souletie, J. Vannimenus and R Stow 

eds. (North-Holland, Amsterdam. 19X7). 

J.D. Dockerq. J.P. Keener and J.J. Tyson, Physica D 30 

(19X8) 177 

P. Fife, in: Non-equilibrium Dynamics m Chemical Sya- 

tcms. C. Vidal and A. Pacault, eds (Springer. Berlin 

(19X4): J. Stat. Phys. 39 (1985) 687. 

G. Nash and M.E. Clicksman. Acta Metall. 22 (1974) 

12X3: 

(131 

[I41 

1151 

D.A. Kessler and H. Levine, Phys. Fluids 30 (19X7) 1246 

See, e.g. H.P. McKean. Adv. Math. 4 (1975) 209. 

G. Fix, in: Research Notes in Mathematics, Vol. 2, A. 

Fanana and M. Primicero, eds. (Pitman, London, 1985); 

J. Collins and H. Levme, Phys. Rev. B31 (1985) 6119. 

J.J Tvson. in: Oscillations and Travelling Waves in 

Chemical Systems. R J. Field and M. Burger, eds (Wilcv, 
New York. 1985): and also in: Non-linear Phenomena in 

Chemical Dynamics. C. Vidal and A. Pacault, eds. 

(Springer. Berlin. 1981). 

D.A. Kessler and H Levine. Steady-state cellular growth 
during direction solidification, Phys. Rev. A.. to appear. 

Acknowledgements [161 

The work of D.A.K. was supported by U.S. 

Department of Energy, Grant No. DE-FG-02- 

85ER54189. H.L. was supported in part by a grant 


