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The problem of cutting process monitoring has been investigated in recent years, with 
encouraging results, using pattern recognition analysis of acoustic emission (AE) signals. 
The analyses are based on linear discriminant functions, which assume that the observed 
data (from each class) are independent random samples from multivariate normal distribu- 
tions with equal covariance matrices. However, in a number of practical situations some 
(or all) of these assumptions may not necessarily hold, resulting in errors in the analysis. 

In this paper, the distributions of AE spectra generated in earlier work are first analysed, 
and the results indicate departure from the assumptions, although the lack of normality 
was not too severe. Relaxing the assumption of equality of the covariance matrices, 
quadratic discriminant function analysis produced improved results for tool wear and 
chip noise monitoring while degrading tool fracture detection. The latter is due to 
inadequacy of the amount of data used in training the system. It is expected that increasing 
the data base would improve the results for all classes. 

The analysis until now has focused on reducing the dimensionality of the feature space 
by eliminating the features with the least discriminatory power. Even though this inevitably 
reduces the performance of the system, it is a necessary compromise for increased 
computational speed. To make use of the entire feature set with a reduced matrix rank, 
a principal component analysis is investigated. The result is a substantial improvement in 
correct classification of AE signals, even under different cuting conditions. 

1. INTRODUCTION 

Automation of metal cutting processes have always been a principal goal of the 
manufacturing industry. However, the inability to monitor completely the condition of 
the cutting tool in real time has been a major obstacle to achieving this goal. Tool breakage 
and tool wear can result in substantial cost through damage to machinery and parts 
produced, as well as the cost associated with machine downtime. 

Much research has recently been done to monitor the conditions of cutting tools in 
machining processes. In recent years, acoustic emission (AE) has been investigated as 
an effective sensing technique for machining processes. AE refers to elastic stress waves 
generated as a result of the rapid release of strain energy within a material due to a 
rearrangement of its internal structure. It has been applied to a variety of situations 
including weld flaw detection, fracture and crack propagation in pressure vessels, and 
mechanical equipment and material property evaluation during tensile testing. AE can 
be used to obtain direct information about the major activities of metal cutting, including 
plastic deformation, frictional contact, and fracture of both chip and tool. However, a 
major problem area has been the development of signal decomposition schemes that can 
identify and separate the contributions from these sources. 

Statistical techniques have been used to develop a methodology for AE signal decompo- 
sition. The methods generally used to analyse AE signals corresponding to tool wear and 
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tool breakage were based on descriptive statistics, e.g. [l-4]. Kannatey-Asibu and Dornfeld 
[5] list several statistical methods which have been used in the past to analyse AE signals. 
Among them are: “count and count rate” (which is a record of signals whose amplitude 
exceed a pre-set threshold voltage), “amplitude distribution analysis” (which gives an 
indication of the number of signals whose amplitude fall within a predefined range), and 
“frequency spectrum” (which shows the contribution of each frequency component to 
the total power). Also, Kannatey-Asibu and Dornfeld [3] carried out experiments and 
analysed the data by assuming that the distribution of the rms value of AE signals follows 
a beta-distribution with some parameters. They found that the skewness and the kurtosis 
which are functions of the parameters of the assumed beta-distribution, were sensitive 
to progressive tool wear. 

Kannatey-Asibu [6] proposed the use of linear discriminant function analysis as a 
technique for AE signal decomposition, in order to identify sources of AE signals in 
metal cutting processes. Following this work, others have studied the use of this technique 
to monitor the condition of cutting tools in metal cutting processes. See, for example 
[7,8]. Emel and Kannatey-Asibu [9] conducted controlled experiments on a lathe under 
three different cutting conditions, and obtained data for four different classes, viz, chip 
noise, tool fracture, sharp tool, and worn tool. The data was used to develop linear 
discriminant functions for classifying future incoming signals. They concluded that the 
results indicate an 84-94% reliability for detecting tool failure of any type. 

Although classification seems to be a good statistical technique for signal decomposition, 
much work needs to be done before one can use it to analyse AE signals for on-line 
cutting tool monitoring. This paper discusses the use of appropriate statistical techniques 
for analysis of frequency domain AE signals to monitor cutting tools. It will be shown, 
using the experimental data of Emel and Kannatey-Asibu [9], that substantial improve- 
ment over the results to date is achieved by the use of these techniques. The next section 
gives a general statement of the problem that we are investigating. 

2. PROBLEM STATEMENT 

Consider a process that can be in one of s (s 2 2) mutually exclusive states. One of 
these states is defined as in control, and the rest are defined as out of control. For example, 
in a metal cutting process the in control state corresponds to a sharp and healthy cutting 
tool, whereas the out of control states correspond to a worn tool, fractured tool, or both. 
Suppose that the process can be monitored, at some regular intervals, through measure- 
ments of k-dimensional vectors of observations (attributes). In the above metal cutting 
example, these vectors of observations can each be a k-dimensional vector of spectral 
power components of AE signals, generated at regular intervals from the cutting process. 
Suppose that before actual monitoring of the process begins, controlled experiments have 
been conducted, where the process has been set at each possible state i (i = 1,2,. . . , s), 
and ni vectors of attributes (we refer to these vectors of attributes as the training sets) 
have been obtained from each of these states. For i = 1,2,. . . , s states, let us denote these 
vectors of attributes by xi, xi,. . . , xl,. The superscript i specifies that an observation 
belongs to state i, and the subscripts 1,2,. . . , ni specify the order (time interval) in which 
the observations have been taken. For example, in the cutting process, i = 2 may denote 

i 2 a worn tool. Then xi, x2, . . . , x:,, denote 20 vectors (e.g. k-dimensional spectral power 
components of AE signals) of observations which have been taken at regular intervals 
from a controlled experiment where a worn tool has been used for machining. 

Now let us assume that the actual cutting process starts in control, i.e., with a sharp 
and “healthy” tool. As cutting continues, the tool experiences wear. At some point in the 
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process, we observe a single k-dimensional vector of attributes, x’ = (x, , x2,. . . , xk). If it 
is determined that x is generated by an out of control state, i.e., worn or broken tool, 
then the process will be stopped for inspection and corrective action taken, otherwise it 
will continue. The problem we will be concerned with is to determine which one of the 
s mutually exclusive states has generated x, and whether to stop the process for inspection 
and correction. 

3. BACKGROUND 

The problem of classification may be considered as a “statistical decision function” 
problem, where we have a number of hypotheses each stating that the subject under 
investigation belongs to a particular distribution. We must accept one of these hypotheses 
and reject the others. The classification problem was first studied by Fisher [lo], followed 
by Smith [ll]. It has since been studied by many authors, see, for example [12-191. In 
this section, we briefly discuss the classification functions as well as the principal com- 
ponents analysis as the basis for our data analysis. 

3.1. DISCRIMINANT FUNCTIONS 

Theorem. Suppose x is an observation from one of the s multivariate populations II, 
with density J(xlni), where tii represents the known matrix of the parameters of the 
distribution. If pi is the u priori probability of x belonging to 17i, and if C, is the cost of 
misclassifying x as belonging to ZIi when it actually belongs to Lrj, then the regions of 
classification R, , R2, . . . , R, that minimise the expected cost of misclassification are 
defined by assigning x to R, if 

i$, piC,J(Xlni)< i$, piCjd(XIili) forall j=1,2 ,..., s;j#r. (3.1) 
(i#r) (i#j) 

For s = 2, the above theorem states: classify x into R, if 

PZC**f2(XI~,,<P,C*,fi(xln,). (3.2) 

Now suppose that ZIi is a multivariate normal distribution with known mean vector pi, 
and covariance matrix Zig (i = 1,2). By the above theorem, in order to minimise the 
expected cost of misclassification, we classify x into n, if: 

1~~1-“2 exp {-fb-k)‘GYx-p,)} p& 
l&-“2 exp {-t(x-~*)‘r;‘(~-lr*)}~P1C21 

(3.3) 

Taking the natural logarithm (In) of both sides and simplifying gives 

[(x-~Z)‘~;1(x--C12)-(x-~,)‘~~1(x-~,)]~21n [ ~;$p:;;:]. (3.4) 

Equation (3.4) is the quadratic discriminant function of x. If & = I,, p, = p2, and 
Cl2 = C,, , then (3.4) reduces to the simple linear discriminant function of x given by: 

X’~--‘(lr~-cl*)-s(cr,+cL*)‘~-‘(cL,-~~)~~. (3.5) 
If there are more than two populations (s >2), and their misclassification costs are 
equal, then the rule for classifying x into one of these populations is to calculate the 
a posteriori probability for each population and assign x to that population with the 
largest a posteriori probability. In the case of unequal normal population coveraince 
matrices, the a posteriori probability for population i can be obtained by exponentiating 
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the expression 

-~x’~~‘x+x’~~‘~i-~~~~~‘~i+lnpi-ln~~j~”2 (3.6) 

for each i. If the covariance matrices are equal the aposteriori probability for the population 
i can correspondingly be obtained from 

x’~~‘~i+lnpi-f~l~“CLi, (3.7) 

which is the linear discriminant function of x. 
The results described above are based on the assumption that the population parameters 

are all known. However, in practice these are seldom known, and therefore must be 
estimated from data. This means that the above results are valid if large samples are 
available to give reliable estimators. 

3.2. PRINCIPAL COMPONENT ANALYSIS 

Suppose we have a k-dimensional random vector X’ = (X, , X,, . . . , X,) having a multi- 
variate (not necessarily normal) distribution with mean vector p and covariance matrix 
Z. We can find linear combinations YI, Y2,. . . , Y, of X, , X2,. . . , X, (r < k) which 
convey approximately the same amount of variance as expressed by the original variables. 
The variables YI, Yz, . . . , Y, are called the first r principal components of the dependence 
structure among X, , X,, . . . , X,, and are evaluated as follows: 

Let 

k 

Yi=C aijXj fori=1,2 ,..., r. 
j=l 

Then 

maximise fair) var ( Yi) = var 

subject to the constraint 

This gives cu: = (al,, a12,. . . , (Ylk) as the set of weights which maximise var (Yr). a1 is 
the eigenvector corresponding to the largest eigenvalue of 8 which is equal to var ( Y,). 
Next we solve 

. . 
maximtse(,,,l var ( YJ = var 

(i-, > 
i aIjXj 

subject to the constraint 

jiI azj = 1 and covar ( Y, , Yz) = 0. 

This gives a; = ( czzl, azz, . . . , aZk) as the set of weights which maximise var ( Y2). a2 is 
the eigenvector corresponding to the second largest eigenvalue of LE which is equal to 
var ( Y2). After YI, Y2, . . . , Y,_, , have been obtained, we solve 

maximisel,,A) var ( Yr) = var 



ACOUSTIC EMISSION FOR CUITING TOOL MONITORING 409 

subject to the constraint 

and covar(Y,,,, Y,)=O (m=l,2 ,..., r-l). 
This gives cw; = (a,, , (Y,~, . . . , alk) as the set of weights which maximise var (Y,). a, is 
the eigenvector corresponding to the r-th largest eigenvalue of X which is equal to var ( Y,). 
Therefore, the principal component analysis rotates the axes of X, , X,, . . . , X, to obtain 
the new orthogonal axes Y,, Yz, . . . , Y, which account for a large portion of the total 
variance of the Xis. 

4. RESULTS AND DISCUSSION 

In this section, we present and discuss the result of our analysis, but first a brief 
description on how the data [9] were obtained. 

Controlled experiments were conducted on a lathe machine under three sets of cutting 
conditions, which resulted in three sets of data. We refer to these three sets of data as 
“set l”, “set 2”, and “set 3”. The cutting conditions corresponding to data sets 1 and 2 
are described in Table 1 of Emel and Kannatey-Asibu [9] (they refer to sets 1 and 2 as 
tests 11 and 13 respectively). Below, we briefly describe how the frequency domain AE 
signals were obtained for set 1. Throughout, we use set 1 to report our findings, and use 
the other two sets for confirmation. 

For each of the four possible states (tool fracture, chip noise, sharp tool, and worn 
tool), separate recordings of time domain AE signals were made. For example, for the 
tool fracture state, 29 separate experiments were conducted where each time the tool was 
deliberately fractured during the machining process and in each case the corresponding 
AE signals were recorded. One-millisecond time portions of each of these signals were 
then sampled, corresponding to 4096 data points. The time domain data were then 
transformed to the frequency domain using the fast Fourier transform (FFT). This resulted 
in 2048 data points in the frequency range of l-1000 kHz. The sample means of every 
40 data points were then calculated to represent 51 (4048 divided by 40) features each 
with a 20 kHz frequency range. The first five features were then discarded due to the low 
signal-to-noise ratio, in essence filtering off the lower 100 kHz frequencies. This resulted 
in 46-dimensional vector of features (variables). These 46 power spectral components 
were further normalised with respect to the total power of the spectrum, using the 
expression 

zk X,=lOlog - 

i i 
: zk 

for k=l,2 ,,..., 46, 

k=l 

where zk represents the contribution of feature k This makes the power components 
invariant to the absolute energy. The end results were 29 independent vectors, each 
consisting of 46 power components. 

For the sharp and worn tool states, separate tests were conducted where sharp and 
worn tools were used, respectively. In recording continuous AE signals generated from 
these experiments, transient signals due to chip breakage were also periodically recorded. 
Chip noise signals were thus obtained from the same tests conducted for sharp and worn 
tools. For each of these tests, a total of 20 samples (46-dimensional vectors generated in 
exactly the same way as above) were obtained. Also, from each experiment, up to 20 
chip noise samples were obtained. The tests with sharp and worn tools were repeated 
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four times each, so a total of 80 vectors of observations were obtained for each of sharp 
and worn tool states, and a total of 74 vectors of observations were obtained for the chip 
noise. 

Let us assume now that the data from each state are independent random samples 
from multivariate normal distributions with unknown parameters, and that the sample 
sizes are large enough so that good estimates of the parameters of these distributions are 
possible. Furthermore, assume that the population covariance matrices are equal (even 
though the test for equality of these matrices revealed that they are not). Substituting the 
appropriate estimates for the parameters in expression (3.7), and using the forward 
stepwise procedure described in Appendix A, we obtained the linear discriminant func- 
tions of data set 1 for the four states (tool fracture, chip noise, sharp tool, and worn 
tool). We assumed that the a priori probability of an observation belonging to state i, p,, 
as well as the misclassification costs, cijr are the same for all i and j. Also, we develop 
discriminant functions for all four states in order to perform simultaneous classification. 
This will give results comparable to those in Table 4 of Emel and Kannatey-Asibu [9]. 
The stepwise procedure selected 14 features (variables) as the most discriminatory features. 
These features, together with their corresponding frequency bands, are given in Table 1. 

Table 2 gives the number of the vectors classified into each state, and the percentage 
of correct classification which are represented by the boldface numbers along the diagonal. 
The percentage of correct classifications for the chip noise and the tool fracture states is 
reasonable but that of the sharp and the worn tool states is very poor. The first possible 
remedy is to test for the equality of the covariance matrices to see if the quadratic 
discriminant functions are more appropriate. The percentage of correct classifications in 
Table 2 can be compared with those obtained by Emel and Kannatey-Asibu [9]. shown 
in Table 3. They used 20 features which were selected by ranking the F statistics 
corresponding to one-way Anova (see, for example [20]) and selecting the first 20. This 
feature selection was based on the assumption that the 46 features (variables) were 
independent, which is not necessarily the case, as illustrated by the data in Table 4 which 
gives the Pearson correlation coefficients between each pair of eight arbitrarily selected 

TABLE 1 

The list of 14 features, selected by 
stepwise discriminant analysis, and 

their corresponding frequencies 

Feature Frequency (kHz) 

3 140 
4 160 
7 220 
8 240 
9 260 

10 280 
12 320 
15 380 
16 400 
34 760 
38 840 
39 860 
44 960 
46 1000 
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TABLE 2 

The results of LD analysis of the 14 features selected by stepwise procedure. The top 
entries are number of vectors classzjied into a population. The bold entries arepercentage 

correct classification 

Classified population 

True population Chip noise Tool fracture Sharp tool Worn tool 

Chip noise 67 4 0 3 
90 

Tool fracture 2 27 0 0 
93 

Sharp tool 0 0 66 14 
82 

Worn tool 2 0 23 55 
69 

TABLE 3 

The results of the linear discriminant analysis of Emel and Kannatey-Asibu [9] for data set 
1 (Table 4 in their paper) 

State 

Percentage 
classification 

Chip noise Tool fracture Sharp tool Worn tool 

correct 84 85 75 61 

features in each state. This means that the inclusion of a given feature in the discriminant 
function may very well depend on the inclusion or exclusion of some other features. This 
fact has been taken into account in our feature selection procedure (see Appendix A for 
discussion on how to account for this correlation structure in feature selection). The 
correlations between each pair of the remaining 38 features were similar to those in Table 
4. The four values in each box represent the correlations between the feature specified 
in the row and the feature specified in the column for each of the four states. For example, 
the correlation between feature 8 and 7 is 0.248 for the chip noise, 0.34 for the fracture, 
O-539 for the sharp tool, and 0.732 for the worn tool state. Most of these correlations are 
highly significant, which can be compared with the threshold values corresponding to 
95% level of significance, given at the bottom of the table. 

The test for equality of population covariance matrices (see, for example [17] for the 
derivation of the test statistics) was rejected at any level of significance less than O-001, 
so expression (3.6) was used to obtain the quadratic discriminant functions for data set 
1. Table 5 gives the number of vectors classified into each state and the percentages of 
correct classification along the diagonal. As expected, the quadratic procedure performs 
better overall. However, for the tool fracture state, the percentage of correct classifications 
drops from 93 to 79. This is clearly due to the small sample size (29) in this state (Foley 
[21] suggests that there should be at least four times as many samples as there are features 
in order to obtain reliable discriminant functions). Also, the covariance matrices must 
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TABLE 4 
Pearson correlation coeficients p (p = covar (X,, X,)/(SQRT (var (Xi) . var (X,)), i # j) 

between the indicated .features 

Feature State Fr, Fr, Fr, Fr, 

Fr4 CN 0.304 
FR 0.405 
SH 0.726 
WR 0.667 

Fr, CN 0.289 0.253 
FR -0.62 1 -0.219 
SH 0.609 0.645 
WR 0.448 0.638 

Fr, CN -0.121 0.080 0.248 
FR -0.080 0.342 0.340 
SH 0.276 0.338 0.539 
WR 0.356 0.449 0.732 

Fr, CN -0.208 -0.156 
FR -0.158 0.311 
SH 0,106 0.058 
WR 0.33 1 0.361 

Fr,” CN 0.067 0.154 
FR 0.155 0.692 
SH -0.281 -0.266 
WR 0.134 0.252 

CN -0.252 -0.028 
FR -0.547 -0.475 
SH -0,633 -0,534 
WR -0.269 -0.182 

Fr,, CN -0.296 -0.523 
FR 0.054 -0.207 
SH -0.802 -0.760 
WR -0.713 -0,699 

-0.156 0.389 
0.260 0.724 
0.325 0.392 
0.684 0.717 

0.277 0.283 
0.066 0.550 

-0.115 0.196 
0.604 0.677 

0,133’ 0,239 
0.187 -0.071 

-0.432 -0.102 
0.145 0.316 

-0.560 -0.141 
-0.240 -0.683 
-0.639 -0.292 
-0.425 -0.262 

0.218 
0.541 
0447 
0.624 

0.136 0.169 
-0.041 -0,468 

0.243 0.542 
0.436 0.429 

0.034 -0,379 -0.259 
-0.501 -0.455 0.074 
-0.372 0.372 0.720 
-0.150 -0.078 0.537 

CN: chip noise; FR: tool fracture; SH: sharp tool; WR: worn tool. 
Significant at 5% if entries are: >0.229 for CN, >0.367 for FR, and 20.22 for SH and WR. 

be estimated by available observations. This means that with 14 variables, a total of 98 
parameters (the elements of a lower triangular covariance matrix for tool fracture state) 
must be estimated from a total of 406 data (29 x 14) points. This clearly reduces the 
number of degrees of freedom available for good estimation, resulting in poorer 
classification. 

The results of Table 5 are not particularly good, especially in the case of detecting and 
discriminating between sharp tools and worn tools with up to 18% error in classification. 
Further examination of the data set 1 provides some explanations for these poor results. 
Table 6 gives the lag one serial correlations of the 14 variables selected for the discriminant 
analysis above. Similar serial correlations were present for the remaining 32 variables in 
each state. The serial correlations are significant for sharp and worn tool (this clearly is 
a violation of the underlying assumption of independence of observations in discriminant 
analysis). They are less strong for chip noise, and almost non-existent for tool fracture. 
The reason for lack of serial correlations between the observations for tool fracture in 
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TABLE 5 

Results of QD analysis of the 14 selected features listed in Table 1. Top entries are 
number of vectors class$ed into a population. Bold entries are percentage correct 

classification 

Predicted population 

True population Chip noise Tool fracture Sharp tool Worn tool 

Chip noise 74 0 0 0 
100 

Tool fracture 6 23 0 0 
79 

Sharp tool 0 0 66 14 
82 

Worn tool 3 0 10 67 
84 

TABLE 6 

Lag 1 serial correlations of 14 selected variables Cfeatures) selected in the stepwise 
discriminant analysis 

Variables 
(features) Chip noise Tool fracture Sharp tool Worn tool 

3 0.155 0.018 
4 0.230 0.146 
7 0.137 -0.088 
8 0.015 0.053 
9 -0.055 -0.089 

10 -0.251 0.028 
12 -0.02 1 -0,187 
15 0.259 -0.193 
16 -0.088 -0.097 
34 0.329 0.362 
38 0444 0.101 
39 0.547 -0.024 
44 0.516 0.095 
46 0.458 -0.033 

Significant at 
5% 
1% 

0.229 0.367 0.220 0.220 
0.298 0.471 0.286 0.286 

0.538 
0.473 
0.263 
0.176 
0.223 
0.160 
0.198 
0.543 
0.561 
0.606 
0.647 
0.550 
0.414 
0.438 

0.461 
0.570 
0.314 
0.286 
0,509 
0.187 
0.255 
0.436 
0.549 
0.636 
0,606 
0.574 
0.580 
0.621 

this study was the independent experiments which generated the 29 vectors (xs) of 
observations. 

Another problem with the data is the lack of normality which was assumed for the 
above linear and quadratic discriminant function analyses. Figures 1-8 give histograms 
of eight features, two for each state. The shapes and the patterns of the histograms of 
the remaining variables in each state were similar to these eight histograms. For normally 
distributed observations, skewness and kurtosis must equal zero. Departure of these two 
measures from zero is sufficient indication of departure from normality. Nakanishi and 
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Figure 1. Histogram of feature 4 from chip noise. Skewness = - kurtosis 1.41, = 5.40. 
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Figure 2. Histogram of feature 16 from chip noise. Skewness = 2.16, kurtosis = 12.33. 
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Figure 3. Histogram of feature 3 from tool fracture. Skewness = 3.40, kurtosis = 13.70. 

Figure 4. Histogram of feature 4 from tool fracture. Skewness = -1.75. kurtosis = 3.97 
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Figure 5. Histogram of feature 3 from sharp tool. Skewness = -0.42, kurtosis = -0.58. 

Figure 6. Histogram of feature 4 from sharp tool. Skewness = -0.21, kurtosis = -0.43. 
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Figure 7. Histogram of feature 39 from worn tool. Skewness = -0.29, kurtosis = -0.67. 
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Figure 8. Histogram of feature 44 from worn tool. Skewness = -0.32, kurtosis = -0.77. 
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Sato [22] pointed out that large skewness and kurtosis have important effects on the 
performance of the linear and quadratic discriminant functions. 

The above results indicate that the standard linear or quadratic normal theory dis- 
criminant analysis do not produce optimum results for tool health monitoring using 
frequency domain AE signals. This may be due to the fact that the generated acoustic 
emission signals are mixed with various corrupting signals such as instrumentation noise, 
digitisation noise, vibration, etc. [23,24]. We should therefore find a method of separating 
and isolating these signals to distinct components, and use those components for 
classification which represent the acoustic emission. The principal component analysis 
is a useful technique for separating data into distinct parts, since it performs an orthogonal 
transformation of the axes which characterise the data with each axis representing a 
distinct component. The concept of principal components was discussed in the preceding 
section. We applied this technique to our data and obtained the first six principal 
components for each of the three data sets. 

Table 7 gives the cumulative percentage of total variance explained by the first six 
principal components of the data set 1 for each of the four states. Tables 8 and 9 give 
the corresponding cumulative percentages for data sets 2 and 3 respectively. Notice that 
for these two sets no data on the “tool fracture” state were available. It can be seen in 
the first column of Table 7 that the first principal component accounts for a large portion 
of the total variability in these data (between 49 and 83%). Also, these six principal 
components, together, account for up to 91% of the total variance (sum of the elements 
along the diagonal of the variance covariance matrix). This means that instead of the 46 
features we can use these six components, thereby reducing the problem size by 40 
dimensions, but only lose up to 24% of the total variance. Furthermore, these components 
are orthogonal to each other (correlation between each pair is zero). This means that 

TABLE 7 

Cumulative percentage of variance explained by the jirst six principal components of the 46 
variables in data set 1 

Cumulative % of variance explained, Set 1 

State 1 2 3 4 5 6 

Chip noise 48.1 59.7 66.3 72.1 74.4 76.4 
Tool fracture 52.2 63.8 72.4 76.0 79.5 82.4 
Sharp tool 83.1 85.7 88.0 89.2 90.0 90.7 
Worn tool 81.2 86.8 88.4 89.5 90.3 91.0 

TABLE 8 

Cumulative percentage of variance explained by the first six principal components of the 46 
variables in data set 2 

Cumulative % of variance explained, set 2 

State 1 2 3 4 5 6 

Chip noise 62.4 72.2 76.5 79.2 81.5 83.6 
Sharp tool 51.2 69.7 73.8 77.5 79.6 81.5 
Worn tool 86-2 87.8 88-9 89.9 90.7 91.4 
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TABLE 9 

Cumulative percentage of variance explained by the first six principal components of the 46 
variables in data set 3 

Cumulative % of variance explained, set 3 

State 1 2 3 4 5 6 

Chip noise 70.1 81.5 84.7 86.2 87.5 88.6 
Sharp tool 84 1 87.7 90.0 90.9 91.5 92.1 
Worn tool 83.5 87.2 88.7 90.1 90.8 91.5 

each component may represent a particular characteristic of the machining process. 
Similar results were found for the other data sets, as Tables 8 and 9 indicate. 

Examination of these principal components revealed interesting results in terms of 
their descriptive statistics and their discriminatory powers. Table 10 gives the descriptive 
statistics of the six principal components for set 1. Those of sets 2 and 3 are given in 
Tables 11 and 12 respectively. As Table 10 indicates, the first principal component for 
each state has about the same distribution (similar minimum, maximum, mean, standard 
deviation), but for the remaining principal components, these distributions seem to have 

TABLE 10 

Descriptive statistics of the six principal components for the four states of set 1 

Principal 
component 

Descriptive statistics of the principal components, set 1 

Min. Max. Mean S.D. Skewness Kurtosis 
- 

Chip 1 
noise 2 
(74) 3 

4 
5 
6 

-118.1 3.7 0.17 -0.01 
0.2 1.8 -3.45 17.16 

-43.5 1.4 -1.34 4.15 
-2.5 1.3 0.82 2.16 
-2.9 0.8 0.05 -0.27 

1.9 0.7 0.10 -0.23 

Tool 1 
fracture 2 

(29) 3 
4 
5 
6 

-119.7 3.6 1.78 7.37 
4.2 1.7 0.34 6.30 

-1.4 1.4 -1.88 3.77 
-1.6 0.9 -0.07 -0.51 
11.0 0.9 -0.21 -0.40 
8.2 0.8 -0.07 -0.49 

Sharp 1 
tool 2 
(80) 3 

4 
5 
6 

-112.5 6.2 -0.12 -1.18 
22.7 1.1 0.39 0.14 
19.0 1.0 0.09 -0.28 

-32.9 0.7 0.36 0.64 
0.5 0.6 -0.38 0.56 

-4.2 0.6 -0.04 -0.35 

Worn 1 
too1 2 
(80) 3 

4 
5 
6 

-125.9 -108.0 
-10.5 3.1 
-49.5 -40.9 

-5.5 1.9 
-5.0 -1.0 

0.4 3.8 

-127.6 -105.6 
-1.1 10.0 
-6.0 0.6 
-3.5 0.2 

8.9 12.6 
6.6 9.9 

-123.1 -99.9 
20.0 26.0 
16.4 21.5 

-34.4 -30.5 
-16.6 1.8 
-5.4 -2.9 

-126.9 -100.8 
-25.7 -17.1 

41.6 45.6 
-1.9 2.7 
-4.0 -0.7 
-5.1 -1.8 

-112.2 6.3 -0.15 -0.92 
-22.5 6.7 0.30 0.18 

44.0 0.9 -0.61 0.32 
-0.3 0.8 0.60 1.71 
-2.4 0.6 0.26 0.17 
-3.1 0.6 -0.32 0.48 

State 

Sample size in parentheses. 
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TABLE 11 

Descriptive statistic of the six principal components for the three states of set 2 

State 
Principal 

component 

Descriptive statistics of the principal components, set 2 

Min. Max. Mean S.D. Skewness Kurtosis 

Chip 
noise 
(40) 

Sharp 
too1 
(40) 

Worn 
too1 
(60) 

-109.3 -94.7 -101,8 3.2 -0.31 0.43 
-3.8 10.5 0.4 1.9 3.32 16.7 

-39.0 -34.2 -36.3 0.9 -0.53 0.96 
-10.8 -6.6 -8.2 0.9 -0.46 0.42 

-1.5 1.2 -0.4 0.6 0.50 -0.19 
-8.6 -5.8 -7.3 0.6 0.09 -0.42 

1 -120.4 -95.4 -107.8 6.5 -0.54 -0.88 
2 -13.2 -9.3 -11.3 0.9 -0.23 -0.30 
3 -34.5 -30.9 -32.9 0.7 0.44 0.06 
4 -26.9 -24.0 -25.5 0.7 0.22 -0.51 
5 -3.9 -1.0 -2.4 0.6 -0.16 -0.13 
6 25.0 27.5 26.3 0.6 -0.02 -0.63 

-122.2 -102.7 -113.7 4.4 0.43 -0.10 
-34.7 -25,2 -31.2 1.7 1.62 4.16 
-43.6 -37.0 -40.3 1.2 -0.12 1.40 

1.6 5,7 3.0 0.9 0.88 0.45 
1.0 5.5 3.3 0.8 0.21 1.2 

-16.3 -12.7 -14.0 0.8 -0.62 0.54 

Sample size in parentheses. 

TABLE 12 

Descriptive statistics of the six principal components for the three states of set 3 

State 
Principal 

component 

Descriptive statistics of the principal components, set 3 

Min. Max. Mean S.D. Skewness Kurtosis 

Chip 
noise 
(70) I 

Sharp 
tool 
(80) 

Worn 
too1 
(80) 

1 -131.2 -108.0 -121.3 5.8 0.41 -0.71 
2 -38.4 -22.9 -28.1 2.4 -1.12 3.98 
3 -50.2 -41.2 -43.4 1.2 -244 11.75 
4 3.6 10.0 8.6 0.8 -3.02 16.13 
5 13.5 -8.0 -10.4 0.8 -0.32 2.79 
6 -0.9 2.8 1.0 0.7 -0.28 0.39 

1 -129.7 -99.3 -113.1 7.2 -0.23 -0.80 
2 13.9 20.8 17.4 1.5 0.32 -0.27 
3 -31.9 -25.8 -29,7 1.2 0.67 1.23 
4 -26.4 -22.8 -24.3 0.7 -0.62 0.27 
5 -10.7 -7.4 -8.9 0.6 -0.30 0.03 
6 -1.6 1.5 -0.3 0.6 0.28 0.37 

1 -124.8 -94.0 -107.9 6.9 -0.48 -0.50 
2 -28.1 -18.5 -21.4 1.4 -1.19 4.31 
3 -50.5 -45.6 -47.1 0.9 -1.20 1.96 
4 7.3 12.0 12.0 0.9 -0.30 0.10 
5 6.2 -2.7 -4.3 0.6 0.01 0.73 
6 0.6 3.8 2.5 0.6 -0.24 0.07 

Sample size in parentheses. 



ACOUSTIC EMISSION FOR CUTTING TOOL MONITORING 419 

completely different locations (means) in each state, as well as other differences. More 
importantly, by comparing Tables 10-12, the distribution of the first principal component 
seems to be the same, irrespective of the cutting conditions of the process. This means 
that the first principal component, despite its importance in terms of amount of variance 
it explains, has no discriminatory power. It also indicates that the first principal component 
is describing a particular characteristic of the system which is present irrespective of the 
condition of the cutting tool or the cutting conditions of the process. 

Figures 9-11 give three plots of ‘Ye vs. j (one from each data set, 1, 2, and 3), for 
j=l,2,..., 46, where CX! = (a,,, CX,~, . , . , ald6) are optimally calculated weights which 
maximise the variance of the first principal component Y,, and 

- 0.004 

I -0.029 : 

*..* 
-0 098 . I 

1 5 10 15 20 25 30 35 40 45 
i 

Figure 9. a,j vs. j for the sharp tool data of Set 1. X = (X, , X,, . . . , X,,) = 46-dimensional vector of features. 
Y, = z,“=, n,,xj - first principal component of the 46 features, where I?=, afi = 1. 
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Figure 10. (I ,j vs. j for the worn tool data of set 2. X = (X, , X,, . . . , X,) - 46-dimensional vector of features. 
yL=I.,“=I 11 j a X = first principal component of the 46 features, where xE”-, afj = 1. 
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Figure 11. Q,, vs. j for the chip noise data of set 3. X = (X, , X,, , X,) = 46 dimensional vector of features. 
Y, = C,“=, a, iXi = first principal component of the 46 features, where x:, a:, = 1. 

(no apparent pattern was detected for any other ffk, vs. j for k = 2,3,. . . ,6). As these 
figures indicate, the weights are very small (less than 0.1) for small values of j. Now since 
j represents the features at different frequencies, this means that the features at frequencies 
less than 400 kHz or so contribute very little to the first principal component. This 
contribution seems to be largest in the frequency range of 400-800 kHz. Therefore, the 
first principal component must represent a particular characteristic of the system which 
is unaffected by the cutting conditions or the state of the cutting tool (e.g., electronics 
noise, digitisation noise, instrumentation noise, etc.). This is further supported by the 
fact that, discarding this component and performing linear discriminant analysis on the 
next five components, produce 100% correct classification for all three data sets. Table 
13 gives the results of this analysis for data set 1. A comparison of this table with those 
of 1 and 2 reveals the improvement in the results obtained. It must be pointed out that 
in this paper we have resubstituted the same data points that were used to obtain the 
discriminant functions for validation (calculation of percentage correct classification). 
This is because we believe that classification techniques should be reliable enough to 

TABLE 13 

Number of vectors classified into a population. Bold entries are percentage of correct 
classijca tion 

Classified population 

True population Chip noise Tool fracture Sharp tool Worn tool 

Chip noise 74 0 0 0 
100 

Tool fracture 0 29 0 0 
100 

Sharp tool 0 0 80 0 
loo 

Worn tool 0 0 0 80 
100 
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classify correctly the same data points that were used to develop them. Also, since we 
did not have large data sets, cross validation of our results was not possible. The results 
may therefore appear optimistic. However, we believe that our results will be repeated 
with fresh data since the distribution of the principal components are very different for 
each state. 

A further examination of Table 10 reveals an interesting result. Consider, for example, 
the third principal component. The range of numbers in this component are from -49.5 
to -40.9 for chip noise, -6 to 0.6 for tool fracture, 16.4 to 21.5 for a sharp tool, and 
41.6 to 45.6 for a worn tool. Clearly, there is no intersection between these four ranges 
of numbers. Therefore, it is possible to use only this component to classify signals into 
one of the four states by a simple inspection. It must, however, be noted that this inspection 
method does not always produce such good results. This is evident in Table 12 where no 
unique component has the characteristics of the third component in Table 10. 

5. CONCLUSIONS 

The use of AE methodology as a sensing technique for monitoring the condition of a 
cutting tool in metal cutting is examined in the context ‘of statistical pattern recognition 
(linear or quadratic discriminant functions), as’s tool for signal decomposition. It was 
found that the spectral power of acoustic emission signals are cross and serially correlated, 
and that they do not necessarily satisfy the required normality assumption. Departure 
from these major assumptions caused the classifier’s performance to be less than optimum. 

The principal component analysis of data in each state indicated that the spectral power 
of acoustic emission signals are contaminated by noise in the system. This noise was 
represented by the first principal component which had no discriminatory power. The 
amount of noise in the system was found to be maximum in the frequency range of 400 
to 800 kHz. Separating the noise forms AE produced components with strong discrimina- 
tory power, so much so that only a few principal components produced 100% correct 
classification (under resubstitution of data). These results were particularly promising 
since they were repeated under three different cutting conditions. We suggest that further 
experiments under various cutting conditions can shed more light on the universality of 
these results. 

ACKNOWLEDGEMENT 

We would like to thank Dr Erdal Emel for providing the data used in this paper. The 
support of this research by the National Science Foundation under Grant Number 
DMC-8607198 and by the University of Michigan Industrial Consortium on Diagnostic 
Sensing and Control for Metal Cutting, as well as the Industrial Technology Institute, is 
greatly appreciated. 

REFERENCES 

1. Y. KAKINO 1980 ASM Proceedings of an International Conference on Cutting Tool Materials, 
In-process detection of tool breakage by monitoring acoustic emission. pp. 25-39. 

2. I. INASAKI and S. YONET~U 1981 Proceedings of the International Machine Tool Design and 
Research Conference, 22, pp. 261-268. In-process detection of cutting tool damage by acoustic 
emission measurement. 

3. E. KANNATEY-ASIBU, JR and D. A. DORNFELD 1982 Wear 76. A study of tool wear using 
statistical analysis of metal cutting acoustic emission. 



422 A. A. HOUSHMAND AND E. KANNATEY-ASIBU. JR 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 
12. 
13. 
14. 
15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

E. N. DIEI and D. A. DORNFELD 1985 Sensors and Controls for Manufacturing (E. Kannatey- 
Asibu, Jr, A. G. Ulsoy and R. Komanduri, editors pp. 33-39. ASME Publication, PED-Vol. 
18. A model of tool fracture generated acoustic emission during machining. 
E. KANNATEY-ASIBUJR and D.A. DORNFELD 1981 Journal of EngineeringforIndustry,103, 
330-340. Quantitative relationships for acoustic emission from orthogonal metal cutting. 
E. KANNETAY-ASIBU, JR 1982 Proceedings of the Tenth NAMRC, pp. 487-492. On the 
application of the pattern recognition method to manufacturing process monitoring. 
D. A. DORNFELD and C. S. PAN 1985 Proceedings of the Thirteenth NAMRC, Berkely, CA, 
pp. 299-303. Determination of chip forming states using linear discriminant function technique 
with acoustic emission. 
E. KANNATEY-ASIBU, JR and E. EMEL 1987 Mechanical Systems and Signals Processing 1, 
333-347. Linear discriminant function analysis of acoustic emission signals for cutting tool 
monitoring. 
E. EMEL and E. KANNATEY-ASIBU, JR 1988 ASME Journal of Engineering Industry 110, 
137-145. Tool failure monitoring in turning by pattern recognition analysis of AE signals. 
R. A. FISHER 1936 Annals of Eugenics 7, 179-188. The use of multiple measurements in 
toxonomic problems. 
C. A. B. SMITH 1947 Annals of Eugenics 13, 272-282. Some examples of discrimination. 
D. F. MORRISON 1967 Multivariate Statistical Method. New York: McGraw-Hill. 
S. J. PRESS 1972 Applied Multivariate Analysis, New York: Holt, Rinehart and Winston. 
K. FUKUNAGA 1972 Introduction to Statistical Pattern Recognition, New York: Academic Press. 
A. A. AFIFI and S. P. AZEN 1972 Statistical Analysis. A Computer Oriented Approach. New 
York: Academic Press. 
R. I. JENNRICH 1977 Statistical Methodfor Digital Computers, Vol. III. New York: John Wiley. 
Stepwise discriminant analysis. 
T. W. ANDERSON 1984 An Introduction to Multivariate Statistical Analysis, Second Edition. 
New York: John Wiley. 
C. K. BAYNE and J. J. BEAUCHAMP 1984 Communication in Statistics-Simulation and Computa- 
tion 13(5), 669-682. Misclassification probabilities for second-order discriminant functions used 
to classify bivariate normal populations. 
J. J. DAUDIN 1986 Biometrics 42, pp. 473-481. Selection of variables in mixed variable 
discriminant analysis. 
N. R. DRAPER and H. SMITH 1981 Applied Regression Analysis, Second Edition. New York: 
John Wiley. 
D. H. FOLEY 1972 IEEE Transactions on Information Theory IT-18, 618-626. Consideration 
of sample and feature size. 
H. NAKANISHI and Y. SATO 1985 Communication in Statistics-Theory and Methods 14(5), 
1181-1200. The performance of the linear and quadratic discriminant functions of three types 
of non-normal distributions. 
L. J. GRAHAM and G. A. ALERS 1975 Monitoring Structural Integrity by Acoustic Emission, 
ASTM STP 571, pp. 1 l-39. Acoustic emission in frequency domain. 
P. HORVATH and F. J. COOK 1981 Quantitative Non-destructive Evaluation 1, 463-473. 
Establishing signal processing and pattern recognition techniques for inflight discrimination 
between crack-growth acoustic emission and other acoustic waveforms. 

APPENDIX A. STEPWISE DISCRIMINANT ANALYSIS 

Here we describe the stepwise method used for feature selection in our analysis of 
data. This method is described by Afifi and Azen [15]. 

Suppose Y - N((I. y, Z), where py is the k-dimensional vector of means, and 8 is the 
k x k variance-covariance matrix. Partition Y, py, and P as: 

(A.11 

WhereY:kxl,Z:uxl,T:vxl,~,,:uxu,~,,:vxv,~,,:uxv,~I;,,:vxu,andu+v=k. 
Now, if &, > 0, and &,> 0, then Z- N(pZ, &,), and T- N&, Xzz). It follows that 
the conditional distribution of Z given T = t is also multivariate normal with mean vector 
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a linear function oft, and variance-covariance matrix independent of t; that is 
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(ZlT=t)-N[~Z+~‘,z~~:(t-(lT),~,,.21. 64.2) 

where E1,.2=Z,1-&Z:‘;~&,. 
Let Xj = (Xj,, X$, . 

(PI;, PS, * * * 3 
. . , Xj,)’ be the j-th random vector from population i, and pi = 

pi)’ be the mean vector of population i, (for i = 1,2, . . . , s). Let V, denote 
the r-th feature; the procedure for stepwise discrimination is as follows. 

First the F to enter along with its degrees of freedom is computed for each V,, 
r-1,2,... , k. This F to enter is the one-way analysis of variance F statistic for testing 
the null hypothesis Ho: Jo: = pf = , . . . , pf. That is, 

i=l 

F= (s-1) 

i g (Xj,-a:,*’ 
(r=l,2 ,..., k). (A.3) 

i=l j-1 

(n-s) 

where ni is the sample size for state i, 

and X: is the r-th sample estimate of ~1, and Xr is the r-th sample estimate of feature 
mean, pu, say. Now if all F to enter (F,) are less than a prescribed inclusion level, called 
the F to include (the F value corresponding to (Y level of significance), the process 
terminates and we conclude that no feature significantly discriminates between the 
populations. Otherwise the feature V,, having the largest F to enter is selected as the 
first feature. We then use (A.2) to find the conditional distribution of the remaining k - 1 
features conditioned on the feature selected, and use them to calculate the F to enter 
and its degrees of freedom for each feature not entered. This tests the null hypothesis 
H,,: cl:,, =. . * = pEr,, where CL:.,, is the mean of the conditional distribution in population 
iof V,given V,,,i=l,2 ,..., s,r=1,2 ,..., k, r # r,. If all the F to enter values of the 
remaining features are less than F to include, then we stop the process and conclude 
that only V,, discriminates, between the populations. Otherwise the feature V, with the 
maximum value of F to enter is selected. Note that in the subsequent calculation of F 
statistics for any feature, we must take into account the fact that although the distributions 
of Vrs remain normal, the parametrisation changes because these distribution are now 
conditional. Therefore a different expression from (A.3) must be used to obtain these F 
values. 

Now, we use (A.2) again, to obtain the conditional distributions of V,, given V,, and 
V, given V,, , as well as the conditional distributions of all the features not entered. Then 
we calculate two F to remove values and their degrees of freedom for V,, and V,. These 
test null hypothesis HO: pi,.,z = . . * = pU:,.,? and HO: p&,., =. * * = p&,,, respectively. If 
either of the F to remove values are less than F to include value, then the feature with 
the smallest F to remove value is removed from the list and added to the excluded 
features. Otherwise the F to enter and its degree of freedom for each feature not entered 
are calculated. This tests the hypothesis HO: P:,,~~ = * * * = pZ.r,r2, where ~i.,,,~ is the mean 
of the conditional distribution in population i of V, given V,, and V,, i = 1,2, . . . , s, 
r=l,2 ,--*, k, r # r, or r2. If all F to enter values are less than the F to include value, 
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then the process stops, otherwise the feature with the largest F to enter is selected as the 
third feature. We continue this process until either the inclusion and the exclusion tests 
fail, or all the features are included. 

The procedure described above is the forward selection discriminant function. The 
backward elimination procedure follows similar steps except that in that case we start 
with all the features included and try to exclude one feature at a time. 

APPENDIX B. NOMENCLATURE 

j-th training sample from state i 
single vector of observation to be classified into one of s states, (S 2 2) 
population (state) i 
multivariate probability density function of the population ZZ, with known parameter 
matrix a, 
cost of misclassifying x into III when it actually belongs to 17, 
a priori probability of x belonging to II, 
k-dimensional vector of the means for population II, 
(k x k) variance-covariance matrix for each population under the assumption of equality 
of variance-covariance matrices 
(k x k) variance-covariance matrix for population IZ, 
k-dimensional random vector of features 
i-th component of the random vector X 
i-th non-normalized feature 
i-th principal component (eigenvalue) 
i-th eigenvector 


