
ARTIFICIAL INTELLIGENCE 235

Classifier Systems and
Genetic Algorithms

L.B. Booker, D.E. Goldberg and J.H. Holland
Computer Science and Engineering, 3116 EECS Building,
The University of Michigan, Ann Arbor, MI 48109, U.S.A.

ABSTRACT

Classifier systems are massively parallel, message-passing, rule-based systems that learn through
credit assignment (the bucket brigade algorithm) and rule discovery (the genetic algorithm). They
typically operate in environments that exhibit one or more of the following characteristics: (1)
perpetually novel events accompanied by large amounts of noisy or irrelevant data; (2) continual,
often real-time, requirements for action; (3) implicitly or inexactly defined goals; and (4) sparse
payoff or reinforcement obtainable only through long action sequences. Classifier systems are
designed to absorb new information continuously from such environments, devising sets of compet-
ing hypotheses (expressed as rules) without disturbing significantly capabilities already acquired.
This paper reviews the definition, theory, and extant applications of classifier systems, comparing
them with other machine learning techniques, and closing with a discussion of advantages, problems,
and possible extensions of classifier systems.

1. Introduction

Consider the simply defined world of checkers. We can analyze many of its
complexities and with some real effort we can design a system that plays a
pretty decent game. However, even in this simple world novelty abounds. A
good player will quickly learn to confuse the system by giving play some novel
twists. The real world about us is much more complex. A system confronting
this environment faces perpetual novelty--the flow of visual information
impinging upon a mammalian retina, for example, never twice generates the
same firing pattern during the mammal's lifespan. How can a system act other
than randomly in such environments?

It is small wonder, in the face of such complexity, that even the most
carefully contrived systems err significantly and repeatedly. There are only two
cures. An outside agency can intervene to provide a new design, or the system
can revise its own design on the basis of its experience. For the systems of most
interest here----cognitive systems or robotic systems in realistic environments,
ecological systems, the immune system, economic systems, and so on--the first
option is rarely feasible. Such systems are immersed in continually changing

Artificial Intelligence 40 (1989) 235-282
0004-3702/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)

236 L.B. BOOKER ET AL.

environments wherein timely outside intervention is difficult or impossible. The
only option then is learning or, using the more inclusive word, adaptation.

In broadest terms, the object of a learning system, natural or artificial, is the
expansion of its knowledge in the face of uncertainty. More directly, a learning
system improves its performance by generalizing upon past experience. Clear-
ly, in the face of perpetual novelty, experience can guide future action only if
there are relevant regularities in the system's environment. Human experience
indicates that the real world abounds in regularities, but this does not mean
that it is easy to extract and exploit them.

In the study of artificial intelligence the problem of extracting regularities is
the problem of discovering useful representations or categories. For a machine
learning system, the problem is one of constructing relevant categories from
the system's primitives (pixels, features, or whatever else is taken as given).
Discovery of relevant categories is only half the job; the system must also
discover what kinds of action are appropriate to each category. The overall
process bears a close relation to the Newell-Simon [40] problem solving
paradigm, though there are differences arising from problems created by
perpetual novelty, imperfect information, implicit definition of the goals, and
the typically long, coordinated action sequences required to attain goals.

There is another problem at least as difficult as the representation problem.
In complex environments, the actual attainment of a goal conveys little
information about the overall process required to attain the goal. As Samuel
[42] observed in his classic paper, the information (about successive board
configurations) generated during the play of a game greatly exceeds the few
bits conveyed by the final win or a loss. In games, and in most realistic
environments, these "intermediate" states have no associated payoff or direct
information concerning their "worth." Yet they play a stage-setting role for
goal attainment. It may be relatively easy to recognize a triple jump as a
critical step toward a win; it is much less easy to recognize that something done
many moves earlier set the stage for the triple jump. How is the learning
system to recognize the implicit value of certain stage-setting actions?

Samuel points the way to a solution. Information conveyed by intermediate
states can be used to construct a model of the environment, and this model can
be used in turn to make predictions. The verification or falsification of a
prediction by subsequent events can be used then to improve the model. The
model, of course, also includes the states yielding payoff, so that predictions
about the value of certain stage-setting actions can be checked, with revisions
made where appropriate.

In sum, the learning systems of most interest here confront some subset of
the following problems:

(1) a perpetually novel stream of data concerning the environment, often
noisy or irrelevant (as in the case of mammalian vision),

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 237

(2) continual, often real-time, requirements for action (as in the case of an
organism or robot, or a tournament game),

(3) implicitly or inexactly defined goals (such as acquiring food, money, or
some other resource, in a complex environment),

(4) sparse payoff or reinforcement, requiring long sequences of action (as in
an organism's search for food, or the play of a game such as chess or go).

In order to tackle these problems the learning system must:

(1) invent categories that uncover goal-relevant regularities in its en-
vironment,

(2) use the flow of information encountered along the way to the goal to
steadily refine its model of the environment,

(3) assign appropriate actions to stage-setting categories encountered on the
way to the goal.

It quickly becomes apparent that one cannot produce a learning system of
this kind by grafting learning algorithms onto existing (nonlearning) AI
systems. The system must continually absorb new information and devise
ranges of competing hypotheses (conjectures, plausible new rules) without
disturbing capabilities it already has. Requirements for consistency are re-
placed by competition between alternatives. Perpetual novelty and continual
change provide little opportunity for optimization, so that the competition aims
at satisficing rather than optimization. In addition, the high-level interpreters
employed by most (nonlearning) AI systems can cause difficulties for learning.
High-level interpreters, by design, impose a complex relation between primi-
tives of the language and the sentences (rules) that specify actions. Typically
this complex relation makes it difficult to find simple combinations of primi-
tives that provide plausible generalizations of experience.

A final comment before proceeding: Adaptive processes, with rare excep-
tions, are far more complex than the most complex processes studied in the
physical sciences. And there is as little hope of understanding them without the
help of theory as there would be of understanding physics without the
attendant theoretical framework. Theory provides the maps that turn an
uncoordinated set of experiments or computer simulations into a cumulative
exploration. It is far from clear at this time what form a unified theory of
learning would take, but there are useful fragments in place. Some of these
fragments have been provided by the connectionists, particularly those follow-
ing the paths set by Sutton and Barto [98], Hinton [23], Hopfield [36] and
others. Other fragments come from theoretical investigations of complex
adaptive systems such as the investigations of the immune system pursued by
Farmer, Packard and Perelson [14]. Still others come from research centering
on genetic algorithms and classifier systems (see, for example, [28]). This paper
focuses on contributions deriving from the latter studies, supplying some

238 L.B. BOOKER ET AL.

illustrations of the interaction between theory, computer modeling, and data in
that context. A central theoretical concern is the process whereby structures
(rule clusters and the like) emerge in response to the problem solving demands
imposed by the system's environment.

2. Overview

The machine learning systems discussed in this paper are called classifier
systems. It is useful to distinguish three levels of activity (see Fig. 1) when
looking at learning from the point of view of classifier systems:

At the lowest level is the performance system. This is the part of the overall
system that interacts directly with the environment. It is much like an expert
system, though typically less domain-dependent. The performance systems we
will be talking about are rule-based, as are most expert systems, but they are
message-passing, highly standardized, and highly parallel. Rules of this kind
are called classifiers. The performance system is discussed in detail in Section
3; Section 4 relates the terminology and procedures of classifier systems to their
counterparts in more typical AI systems.

Because the system must determine which of its rules are effective, a second
level of activity is required. Generally the rules in the performance system are
of varying usefulness and some, or even most, of them may be incorrect.
Somehow the system must evaluate the rules. This activity is often called credit
assignment (or apportionment of credit); accordingly this level of the system
will be called the credit assignment system. The particular algorithms used here
for credit assignment are called bucket brigade algorithms; they are discussed in
Section 5.

The third level of activity, the rule discovery system, is required because,

Pless~es from
In[~ut Interface

P~off

Dis~evtMrg
tc,~t~ A~,r~wl

Credit ~stgnmeM
[Bucket brigade]

= I Performance

I [Cl=ssifior sustml

HessaQes from Internal Plonitors
(Goals)

Fig. 1. General organization of a classifier system.

Mess~es to
Output Interface

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 239

even after the system has effectively evaluated millions of rules, it has tested
only a minuscule portion of the plausibly useful rules. Selection of the best of
that minuscule portion can give little confidence that the system has exhausted
its possibilities for improvement; it is even possible that none of the rules it has
examined is very good. The system must be able to generate new rules to
replace the least useful rules currently in place. The rules could be generated at
random (say by "mutation" operators) or by running through a predetermined
enumeration, but such "experience-independent" procedures produce
improvements much too slowly to be useful in realistic settings. Somehow the
rule discovery procedure must be biased by the system's accumulated ex-
perience. In the present context this becomes a matter of using experience to
determine useful "building blocks" for rules; then new rules are generated by
combining selected building blocks. Under this procedure the new rules are at
least plausible in terms of system experience. (Note that a rule may be
plausible without necessarily being useful of even correct.) The rule discovery
system discussed here employs genetic algorithms. Section 6 discusses genetic
algorithms. Section 7 relates the procedures implicit in genetic algorithms to
some better-known machine learning procedures.

Section 8 reviews some of the major applications and tests of genetic
algorithms and classifier systems, while the final section of the paper discusses
some open questions, obstacles, and major directions for future research.

Historically, our first attempt at understanding adaptive processes (and
learning) turned into a theoretical study of genetic algorithms. This study was
summarized in a book titled Adaptation in Natural and Artificial Systems
(Holland [28]). Chapter 8 of that book contained the germ of the next phase.
This phase concerned representations that lent themselves to manipulation by
genetic algorithms. It built upon the definition of the broadcast language
presented in Chapter 8, simplifying it in several ways to obtain a standardized
class of parallel, rule-based systems called classifier systems. The first descrip-
tions of classifier systems appeared in Holland [29]. This led to concerns with
apportioning credit in parallel systems. Early considerations, such as those of
Holland and Reitman [34], gave rise to an algorithm called the bucket brigade
algorithm (see [31]) that uses only local interactions between rules to distribute
credit.

3. Classifier Systems

The starting point for this approach to machine learning is a set of rule-based
systems suited to rule discovery algorithms. The rules must lend themselves to
processes that extract and recombine "building blocks" from currently useful
rules to form new rules, and the rules must interact simply and in a highly
parallel fashion. Section 4 discusses the reasons for these requirements, but we
define the rule-based systems first to provide a specific focus for that dis-
cussion.

240 L.B. B O O K E R ET AL.

3.1. Definition of the basic elements

Classifier systems are parallel, message-passing, rule-based systems wherein all
rules have the same simple form. In the simplest version all messages are
required to be of a fixed length over a specified alphabet, typically k-bit binary
strings. The rules are in the usual condition~action form. The condition part
specifies what kinds of messages satisfy (activate) the rule and the action part
specifies what message is to be sent when the rule is satisfied.

A classifier system consists of four basic parts (see Fig. 2).

- T h e input interface translates the current state of the environment into
standard messages. For example, the input interface may use property detec-
tors to set the bit values (1: the current state has the property, 0: it does not) at
given positions in an incoming message.

- The classifiers, the rules used by the system, define the system's procedures
for processing messages.

- T h e message list contains all current messages (those generated by the
input interface and those generated by satisfied rules).

- The output interface translates some messages into effector actions, actions
that modify the state of the environment.

A classifier system's basic execution cycle consists of the following steps:

Step 1. Add all messages from the input interface to the message list.

I n p u t I n t e r f a o e
| l | l l ;

l
f r o m

environment

C l a s s i f i e r s
~ n d i t i n n I r n o ~ ~_I~C.I

I

I N J

:i" }
Message L i s t

a l l m e s s a g e s t e s t -
~1 a l a t / n s t al l c o n -
d i t i ons

(~ w i n n / n g ¢ l ~ $ i f i e r $

c~e$

Fig. 2. Basic parts of a classifier system.

Output Interfa©e

to
environment

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 241

Step 2. Compare all messages on the message list to all conditions of all
classifiers and record all matches (satisfied conditions).

Step 3. For each set of matches satisfying the condition part of some
classifier, post the message specified by its action part to a list of new messages.

Step 4. Replace all messages on the message list by the list of new messages.
Step 5. Translate messages on the message list to requirements on the

output interface, thereby producing the system's current output.
Step 6. Return to Step 1.

Individual classifiers must have a simple, compact definition if they are to
serve as appropriate grist for the learning mill; a complex, interpreted defini-
tion makes it difficult for the learning algorithm to find and exploit building
blocks from which to construct new rules (see Section 4).

The major technical hurdle in implementing this definition is that of provid-
ing a simple specification of the condition part of the rule. Each condition must
specify exactly the set of messages that satisfies it. Though most large sets can
be defined only by an explicit listing, there is one class of subsets in the
message space that can be s~ecified quite compactly, the hyperplanes in that
space. Specifically, let {1, 0} be the set of possible k-bit messages; if we use
" # " as a "don't care" symbol, then the set of hyperplanes can be designated
by the set of all ternary strings of length k over the alphabet {1, 0, #) . For
example, the string 1 # # . . . # designates the set of all messages that start with
a 1, while the string 0 0 . . . 0# specifies the set { 0 0 . . . 01, 0 0 . . . 00) consisting
of exactly two messages, and so on.

It is easy to check whether a given message satisfies a condition. The
condition and the message are matched position by position, and if the entries
at all non-# positions are identical, then the message satisfies the condition.
The notation is extended by allowing any string c over {1, 0, #} to be prefixed
by a " - " with the intended interpretation that - c is satisfied just in case no
message satisfying c is present on the message list.

3.2. Examples

At this point we can introduce a small classifier system that illustrates the
"programming" of classifiers. The sets of rules that we'll look at can be thought
of as fragments of a simple simulated organism or robot. The system has a
vision field that provides it with information about its environment, and it is
capable of motion through that environment. Its goal is to acquire certain kinds
of objects in the environment ("targets") and avoid others ("dangers"). Thus,
the environment presents the system with a variety of problems such as "What
sequence of outputs will take the system from its present location to a visible
target?" The system must use classifiers with conditions sensitive to messages
from the input interface, as well as classifiers that integrate the messages from
other classifiers, to send messages that control the output interface in appropri-
ate ways.

242 L.B. BOOKER ET AL.

In the examples that follow, the system's input interface produces a message
for each object in the vision field. A set of detectors produces these messages
by inserting in them the values for a variety of properties, such as whether or
not the object is moving, whether it is large or small, etc. The detectors and
the values they produce will be defined as needed in the examples.

The system has three kinds of effectors that determine its actions in the
environment. One effector controls the VISION VECTOR, a vector indicating the
orientation of the center of the vision field. The VISION VECTOR can be rotated
incrementally each time step (V-LEFF or V-RIGHT, say in 15-degree increments).
The system also has a MOTION VECTOR that indicates its direction of motion,
often independent of the direction of vision (as when the system is scanning
while it moves). The second effector controls rotation of the MOTION VECTOR
(M-LEFT or M-RIGHT) in much the same fashion as the first effector controls the
VISION VECTOR. The second effector may also align the MOTION VECTOR with
the VISION VECTOR, or set it in the opposite direction (ALIGN and OPPOSE,
respectively), to facilitate behaviors such as pursuit and flight. The third
effector sets the rate of motion in the indicated direction (FAST, CRUISE, SLOW,
STOP). The classifiers process the information produced by the detectors to
provide sequences of effector commands that enable the system to achieve
goals.

For the first examples let the system be supplied with the following property
detectors:

1, if the object is moving,
d l = 0 , otherwise;

(0, 0) , if the object is centered in the vision field,
(d2, d3) = ~(1, 0) , if the object is left of center,

[(0 , 1), if the object is right of center ;

1, if the system is adjacent to the object ,
d4 : 0 , otherwise ;

1, if the object is large,
d s= 0, otherwise;

1, if the object is striped,
d6 --- 0, otherwise.

Let the detectors specify the rightmost six bits of messages from the input interface,
d, setting the rightmost bit, d 2 the next bit to the left, etc. (see Fig. 3).

Example 3.1. A simple stimulus-response classifier.

IF there is "prey" (small, moving, nonstriped object), centered in
the vision field (centered), and not adjacent (nonadjacent),

THEN move toward the object (ALIGN) rapidly (FAST).

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 243

Vision Field Detectors Vision
V o c t o r ~ . .Motion "~octor d l

Object ~ da ' // d4e¢~

~ 7 ~ 1 _. 0

Message
Fig. 3. Input interface for a simple classifier system.

Somewhat fancifully, we can think of the system as an "insect eater" that seeks
out small, moving objects unless they are striped ("wasps"). To implement this
rule as a classifier we need a condition that attends to the appropriate detector
values. It is also important that the classifier recognize that the message is
generated by the input interface (rather than internally). To accomplish this we
assign messages a prefix or tag that identifies their ofigin--a two-bit tag that
takes the value (0, 0) for messages from the input interface will serve for
present purposes (see Example 3.5 for a further discussion of tags). Following
the conventions of the previous subsection the classifier has the condition

00########000001,

where the leftmost two loci specify the required tag, the # specify the loci
(detectors) not attended to, and the rightmost 6 loci specify the required
detector values (d 1 = 1 = moving, being the fightmost locus, etc.). When this
condition is satisfied, the classifier sends an outgoing message, say

0100000000000000,

where the prefix 01 indicates that the message is not from the input interface.
(Though these examples use 16-bit messages, in realistic systems much longer
messages would be advantageous.) We can think of this message as being used
directly to set effector conditions in the output interface. For convenience
these effector settings, ALIGN and FAST in the present case, will be indicated in
capital letters at the fight end of the classifier specification. The complete
specification, then, is

0 0 # # # # # # # # 0 0 0 0 0 1 /0100000000000000, ALIGN, FAST.

244 L.B. B O O K E R E T AL.

Example 3.2. A set of classifiers detecting a compound object defined by the
relations between its parts.

The following pair of rules emits an identifying message when there is a
moving T-shaped object in the vision field.

IF there is a centered object that is large, has a long axis, and is
moving along the direction of that long axis,

THEN move the vision vector FORWARD (along the axis in the
direction of motion) and record the presence of a moving object
of type 'T ' .

IF there was a centered object of type "1" observed on the previous
time step, and IF there is currently a centered object in contact
with 'T ' that is large, has a long axis, and is moving crosswise to
the direction of that long axis,

THEN record the presence of a moving object of type "T" (blunt
end forward).

The first of these rules is "triggered" whenever the system "sees" an object
moving in the same direction as its long axis. When this happens the system
scans forward to see if the object is preceded by an attached cross-piece. The
two rules acting in concert detect a compound object defined by the relation
between its parts (cf. Winston's [53] "arch"). Note that the pair of rules can be
fooled; the moving "cross-piece" might be accidentally or temporarily in
contact with the moving 'T' . As such the rules constitute only a first approxi-
mation or default, to be improved by adding additional conditions or exception
rules as experience accumulates. Note also the assumption of some sophistica-
tion in the input and output interfaces: an effector "subroutine" that moves the
center of vision along the line of motion, a detector that detects the absence of
a gap as the center of vision moves from one object to another, and beneath all
a detector "subroutine" that picks out moving objects. Because these are
intended as simple examples, we will not go into detail about the interfaces---
suffice it to say that reasonable approximations to such "subroutines" exist
(see, for example, [37]).

If we go back to our earlier fancy of the system as an insect eater, then
moving T-shaped objects can be thought of as "hawks" (not too farfetched,
because a "T" formed of two pieces of wood and moved over newly hatched
chicks causes them to run for cover, see [43]).

To redo these rules as classifiers we need two new detectors:

dT={~' ,
if the object is moving in the direction of its long axis,
otherwise ;

if the object is moving in the direction of its short axis,
otherwise.

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 245

We also need a command for the effector subroutine that causes the vision
vector to move up the long axis of an object in the direction of its motion, call
it V-FORWARD. Finally, let the message 0100000000000001 signal the detection
of the moving 'T ' and let the message 010000000006(~10 signal the detection of
the moving T-shaped object. The classifier implementing the first rule then has
the form

0 0 # # # # # # 0 1 # 1 # 0 0 1 /0100000000000001, V-FORWARD.

The second rule must be contingent upon b o t h the just previous detection of
the moving 'T ' , signalled by the message 0100000000000001, and the current
presence of the cross-piece, signalled by a message from the environment
starting with tag 00 and having the value 1 for detector d 8.

0100000000000001, 0 0 # # # # # # 1 0 # 1 # 0 0 1 / 0100000000000010.

Example 3.3. Simple memory.
The following set of three rules keeps the system on alert status if there has

been a moving object in the vision field recently. The duration of the alert is
determined by a timer, called the ALERT TIMER, that is set by a message, say
0100000000000011, when the object appears.

IF there is a moving object in the vision field,
THEN set the ALERT TIMER and send an alert message.

IF the ALERT TIMER is not zero ,
THEN send an alert message.

IF there is n o moving object in the vision field and the ALERT TIMER
is not zero ,

THEN decrement the ALERT TIMER.

To translate these rules into classifiers we need an effector subroutine that sets
the alert timer, call it SET ALERT, and another that decrements the alert timer,
call it DECREMENT ALERT. We also need a detector that determines whether or
not the alert timer is zero.

I10 , if the ALERT TIMER is n o t zero ,
d9 -- , otherwise.

The classifiers implementing the three rules then have the form

0 0 # # # # # # # # # # # # # 1 / 0100000000000011, SET ALERT
0 0 # # # # # 1 # # # # # # # # / 0 1 ~ 1 1
0 0 # # # # # 1 # # # # # # # 0 / DECREMENT ALERT.

246 L.B. BOOKER ET AL.

Note that the first two rules send the same message, in effect providing an OR

of the two conditions, because satisfying either the first condition o r the second
will cause the message to appear on the message list. Note also that these rules
check on an i n t e r n a l condition via the detector d9, thus providing a system that
is no longer driven solely by external stimuli.

Example 3.4. Building blocks.
To illustrate the possibility of combining several active rules to handle

complex situations we introduce the following three pairs of rules.

(A) IF there is an alert and the moving object is near ,
THEN move at FAST in the direction of the MOTION VECTOR.

IF there is an alert and the moving object is fa r ,
THEN move at CRUISE in the direction of the MOTION VECTOR.

(B) IF there is an alert, and a small, nonstriped object in the vision
field,

THEN ALIGN the motion vector with the vision vector.

IF there is an alert, and a large T-shaped object in the vision field,
THEN OPPOSE the motion vector to the vision vector.

(C) IF there is an alert, and a moving object in the vision field,
THEN send a message that causes the vision effectors to CENTER the

object .

IF there is an alert, and n o moving object in the vision field,
THEN send a message that causes the vision effectors to SCAN.

(Each of the rules in pair (C) sends a message that invokes additional rules.
For example "centering" can be accomplished by rules of the form,

IF there is an object in the left vision field,
THEN execute V-LEFT.

IF there is an object in the right vision field,
THEN execute V-RIGHT.

realized by the pair of classifiers

0 0 # # # # # # # # # # # 1 0 # / V-LEFT
0 0 # # # # # # # # # # # 0 1 # / V-RIGHT.)

Any combination of rules obtained by activating one rule from each of the
three subsets (A), (B), (C) yields a potentially useful behavior for the system.
Accordingly the rules can be combined to yield behavior in eight distinct
situations; moreover, the system need encounter only two situations (involving

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 247

disjoint sets of three rules) to test all six rules. The example can be extended
easily to much larger numbers of subsets. The number of potentially useful
combinations increases as an exponent of the number of subsets; that is, n
subsets, of two alternatives apiece, yield 2 n distinct combinations of n simulta-
neously active rules. Once again, only two situations (appropriately chosen)
need be encountered to provide testing for all the rules.

The six rules are implemented as classifiers in the same way as in the earlier
examples, noticing that the system is put on alert status by using a condition
that is satisfied by the alert message 0100000000000011. Thus the first rule
becomes

0100000000000011, 0 0 # # # # 0 # # # # # # # # 1 / FAST,

where a new detector dl0 , supplying values at the tenth position from the fight
in environmental messages, determines whether the object is far (value 1) or
near (value 0).

It is clear that the building block approach provides tremendous combina-
torial advantages to the system (along the lines described so well by Simon
[45]).

Example 3.5. Networks and tagging.
Networks are built up in terms of pointers that couple the elements (nodes)

of the network, so the basic problem is that of supplying classifier systems with
the counterparts of pointers. In effect we want to be able to couple classifiers
so that activation of a classifier C in turn causes activation of the classifiers to
which it points. The passing of activation between coupled classifiers then acts
much like Fahlman's [13] marker-passing scheme, except that the classifier
system is passing, and processing, messages. In general we will say a classifier
C 2 is coupled to a classifier C 1 if some condition of C 2 is satisfied by the
message(s) generated by the action part of C 1. Note that a classifier with very
specific conditions (few #) will be coupled typically to only a few other
classifiers, while a classifier with very general conditions (many #) will be
coupled to many other classifiers. Looked at this way, classifiers with very
specific conditions have few incoming "branches," while classifiers with very
general conditions have many incoming "branches."

The simplest way to couple classifiers is by means of tags, bits incorporated
in the condition part of a classifier that serve as a kind of identifier or address.
For example, a condition of the form 1 1 0 1 # # . . . # will accept any message
with the prefix 1101. Thus, to send a message to this classifier we need only
prefix the message with the tag 1101. We have already seen an example of this
use of tags in Example 3.1, where messages from the input interface are
"addressed" only to classifiers that have conditions starting with the prefix 00.
Because b bits yield 2 b distinct tags, and tags can be placed anywhere in a

248 L.B. BOOKER ET AL.

condition (the component bits need not even be contiguous), large numbers of
conditions can be "addressed" uniquely at the cost of relatively few bits.

By using appropriate tags one can define a classifier that attends to a specific
set of classifiers. Consider, for example, a pair of classifiers C1 and C 2 that send
messages prefixed with 1101 and 1001, respectively. A classifier with the
condition 1 1 0 1 # # . . . # will attend only to C1, whereas a classifier with
condition 1 # 0 1 # # . . . # will attend to both C 1 and C 2. This approach, in
conjunction with recodings (where the prefix of the outgoing message differs
from that of the satisfying messages), provides great flexibility in defining the
sets of classifiers to which a given classifier attends. Two examples will
illustrate the possibilities:

Example 3.5.1. Produdng a message in response to an arbitrarily chosen subset of
messages.

An arbitrary logical (boolean) combination of conditions can be realized through
a combination of couplings and recodings. The primitives from which more com-
plex expressions can be constructed are AND, OR, and NOT. An AND-
condition is expressed by a single multi-condition classifier such as M1,M2/M,
for M is only added to the message list if both M 1 and M 2 are on the list. Similarly the
pair of classifiers M1/M and M z / M express an OR-condition, for M is added to the
message list if either MI or M 2 is on the list. NOT, of course, is expressed by a classifier
with the condition - M. As an illustration, consider the boolean expression

(M 1 AND M2) OR ((NOT M3) AND M4).

This is expressed by the following set of classifiers with the message M
appearing if and only if the boolean expression is satisfied.

MI,M2/M , - M 3 , M J M .

The judicious use of # and recodings often substantially reduces the number of
classifiers required when the boolean expressions are complex.

Example 3.5.2. Representing a network
The most direct way of representing a network is to use one classifier for

each pointer (arrow) in the network (though it is often possible to find clean
representations using one classifier for each node in the network).

As an illustration of this approach consider the following network fragment
(Fig. 4). In marker-passing terms, the ALERT node acquires a marker when
there is a MOVING object in the vision field. For the purposes of this example,
we will assume that the conjunction of arrows at the TARGET node is a
requirement that all three nodes (ALERT, SMALL, and NOT STRIPED) be marked

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 249

di=1
l H o v m 3

}
~ dlOaO dlO'~l

I ~ A t t] I NOT s r ~) [Nt~a] I r ~

/

11100
[~ - . (~ l

11001 11010 11011
[PtlW~(I [,~:~O,~X 1 [tq.tE: l

Fig. 4. A network fragment.

before TARGET is marked. Similarly, PURSUE will only be marked if both
TARGET and NEAR are marked, etc.

To transform this network into a set of classifiers, begin by assigning an
identifying tag to each node. (The tags used in the diagram are 5-bit prefixes).
The required couplings between the classifiers are then simply achieved by
coordinating the tags used in conditions with the tags on the messages
("markers") to be passed. Henceforth, we extend the notation to allow # ' s in
the action part of classifiers, where they designate pass-throughs: Wherever the
message part contains a # , the bit value of the outgoing message is identical to
the bit value of the message satisfying the classifier's first condition. That is, the
bit value of the incoming (satisfying) message is "passed through" to the
outgoing message.

On the basis, assuming that the MOVING node is marked by the detector dl,
the arrow between MOVING and ALERT would be implemented by the classifier

0 0 # # # # # # # # # # # # # 1 / 0 1 0 0 1 # # # # # # # # # # # ,

while the arrows leading from SMALL, NOT STRIPED, and ALERT to TARGET
could be implemented by the single classifier

~ # # # # # # # # ~ # # # # , 0 1 ~ 1 # # # # # # # # # # # /

1 0 ~ 1 # # # # # # # # # # # .

In turn, the arrows from NEAR and TARGET to PURSUE could be implemented
by

0 0 # # # # 0 # # # # # # # # # , 1 0 0 0 1 # # # # # # # # # # # /

1 1 0 0 1 # # # # # # # # # # # .

250 L.B. BOOKER ET AL.

The remainder of the network would be implemented similarly.

Some comments are in order. First, the techniques used in Example 3.5.1 to
implement boolean connectives apply equally to arrows. For example, we
could set conditions so that TARGET would be activated if e i ther MOVING and
SMALL o r MOVING and NOT STRIPED were activated. Relations between
categories can be introduced following the general lines of Example 3.2.
Second, tags can be assigned in ways that provide direct information about the
structure of the network. For example, in the network above the first two bits
of the tag indicate the level of the corresponding category (the number of
arrows intervening between the category and the input from the environment).
Finally, effector-oriented categories such as PURSUE would presumably "call
subroutines" (sets of classifiers) that carry out the desired actions. For instance,
the message from PURSUE would involve such operations as centering the
object (see the classifiers just after (C) in Example 3.4), followed by rapid
movement toward the object (see the classifier in Example 3.1).

Forrest [15] has produced a general complier for producing coupled clas-
sifiers implementing any semantic net specified by KL-ONE expressions.

A final comment on the use of classifiers: Systems of classifiers, when used
with learning algorithms, are n o t adjusted for consistency. Instead individual
rules are treated as partially confirmed hypotheses, and conflicts are resolved
by competition. The specifics of this competition are presented in Section 5.

4. The Relation of Classifier Systems to Other AI Problem
Solving Systems

As noted previously, many of the problem solving and learning mechanisms in
classifier systems have been motivated by broad considerations of adaptive
processes in both natural and artificial systems. This point of view leads to a
collection of computation procedures that differ markedly from the symbolic
methods familiar to the AI community. It is therefore worthwhile to step back
from the details of classifier systems and examine the core ideas that make
classifier systems an important part of machine learning research.

When viewed solely as rule-based systems, classifier systems have two
apparently serious weaknesses. First, the rules are written in a language that
lacks descriptive power in comparison to what is available in other rule-based
systems. The left-hand side of each rule is a simple conjunctive expression
having a limited number of terms. It clearly cannot be used to express
arbitrary, general relationships among attributes. Even though sets of such
expressions are adequate in principle, most statements in the classifier language
can be expressed more concisely or easily as statements in LISP or logic.
Second, because several rules are allowed to fire simultaneously, control issues
are raised that do not come up in conventional rule-based systems. Coherency

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 251

can be difficult to achieve in a distributed computation. Explicit machinery is
needed for insuring a consistent problem solving focus, and the requisite
control knowledge may be hard to come by unless the problem is inherently
parallel to begin with. These two properties suggest an unconventional ap-
proach if a classifier system is to be used to build a conventional expert system,
though the computational completeness of classifier systems assures it could be
done in the usual way.

The key to understanding the advantages of classifier systems is to under-
stand the kind of problems they were designed to solve. A perpetually novel
stream of data constitutes an extremely complex and uncertain problem solving
environment. A well-known strategy for resolving uncertainty is exemplified by
the blackboard architecture (see [12]). By coordinating multiple sources of
hierarchically organized knowledge, hypotheses and constraints, problem solv-
ing can proceed in an opportunistic way, guided by the summation of converg-
ing evidence and building on weak or partial results to arrive at confident
conclusions. However, managing novelty requires more than this kind of
problem solving flexibility. A system must dynamically construct and modify
the representation of the problem itself! Flexibility is required at the more
basic level of concepts, relations, and the way they are organized. Classifier
systems were designed to make this kind of flexibility possible.

Building blocks are the technical device used in classifier systems to achieve
this flexibility. The message list is a global database much like a blackboard,
but the possibilities for organizing hypotheses are not predetermined in
advance. Messages and tags are building blocks that provide a flexible way of
constructing arbitrary hierarchical or heterarchical associations among rules
and concepts. Because the language is simple, modifying these associations can
be done with local syntactic manipulations that avoid the need for complex
interpreters or knowledge-intensive critics. In a similar way, rules themselves
are building blocks for representing complex concepts, constraints and problem
solving behaviors. Because rules are activated in parallel, new combinations of
existing rules and rule clusters can be used to handle novel situations. This is
tantamount to building knowledge sources as needed during problem solving.

The apparently unsophisticated language of classifier systems is therefore a
deliberate tradeoff of descriptive power for adaptive efficiency. A simple
syntax yields building blocks that are easy to identify, evaluate, and recombine
in useful ways. Moreover, the sacrifice of descriptive power is not as severe as
it might seem. A complex environment will contain concepts that cannot be
specified easily or precisely even with a powerful logic. For example, a concept
might be an equivalence class in which the members share no common
features. Or it might be a relation with a strength that is measured by the
distance from some prototype. Or it might be a network of relationships so
variable that there are no clearly defined concept boundaries. Rather than
construct a syntactically complex representation of such a concept that would

252 L.B. B O O K E R ET AL.

be difficult to use or modify, a classifier system uses groups of rules as the
representation. The structure of the concept is modeled by the organization,
variability, and distribution of strength among the rules. Because the members
of a group compete to become active (see Section 5), the appropriate aspects
of the representation are selected only when they are relevant in a given
problem solving context. The modularity of the concept thereby makes it easier
to use as well as easier to modify.

This distributed approach to representing knowledge is similar to the way
complex concepts are represented in connectionist systems (see [24]). Both
frameworks use a collection of basic computing elements as epistemic building
blocks. Classifier systems use condition/action rules that interact by passing
messages. Connectionist systems use simple processing units that send excita-
tory and inhibitory signals to each other. Concepts are represented in both
systems by the simultaneous activation of several computing elements. Every
computing element is involved in representing several concepts, and the
representations for similar concepts share elements. Retrieval of a concept is a
constructive process that simultaneously activates constituent elements best
fitting the current context. This technique has the important advantage that
some relevant generalizations are achieved automatically. Modifications to
elements of one representation automatically affect all similar representations
that share those elements.

There are important differences between classifier systems and connectionist
systems, however, that stem primarily from the properties of the building
blocks they use. The interactions among computing elements in a connectionist
system make "best-fit" searches a primitive operation. Activity in a partial
pattern of elements is tantamount to an incomplete specification of a concept.
Such patterns are automatically extended into a complete pattern of activity
representing the concept most consistent with the given specification. Content-
addressable memory can therefore be implemented effortlessly. The same
capability is achieved in a classifier system using pointers and tags to link
related rules. A directed spreading activation is then required to efficiently
retrieve the appropriate concept.

Other differences relate to the way inductions are achieved. Modification of
connection strengths is the only inductive mechanism available in most connec-
tionist systems (see [36, 48]). Moreover, the rules for updating strength are
part of the initial system design that cannot be changed except perhaps by
tuning a few parameters. Classifier systems, on the other hand, permit a broad
spectrum of inductive mechanisms ranging from strength adjustments to ana-
logies. Many of these mechanisms can be controlled by, or can be easily
expressed in terms of, inferential rules. These inferential rules can be
evaluated, modified and used to build higher-level concepts in the same way
that building blocks are used to construct lower-level concepts.

Classifier systems are like connectionist systems in emphasizing micro-

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 253

structure, multiple constraints and the emergence of complex computations
from simple processes. However, classifier systems use rules as a basic epi-
stemic unit, thereby avoiding the reduction of all knowledge to a set of
connection strengths. Classifier systems thus occupy an important middle
ground between the symbolic and connectionist paradigms.

We conclude this section by comparing classifier systems to SOAR (see [38]),
another system architecture motivated by broad considerations of cognitive
processes. SOAR is a general-purpose architecture for goal-oriented problem
solving and learning. All behavior in SOAR is viewed as a search through a
problem space for some state that satisfies the goal (problem solution) criteria.
Searching a problem space involves selecting appropriate operators to trans-
form the initial problem state, through a sequence of operations, into an
acceptable goal state. Whenever there is an impasse in this process, such as a
lack of sufficient criteria for selecting an operator, SOAR generates a subgoal to
resolve the impasse. Achieving this subgoal is a new problem that SOAR solves
recursively by searching through the problem space characterizing the subgoal.
SOAR's knowledge about problem states, operators, and solution criteria is
represented by a set of condition/action rules. When an impasse is resolved,
SOAR seizes the opportunity to learn a new rule (or set of rules) that
summarizes important aspects of the subgoal processing. The new rule, or
chunk of knowledge, can then be used to avoid similar impasses in the future.
The learning mechanism that generates these rules is called chunking.

There are some obvious points of comparison between classifier systems and
the SOAR architecture. Both emphasize the flexibility that comes from using
rules as a basic unit of representation, and both emphasize the importance of
tightly coupling induction mechanisms with problem solving. However, clas-
sifier systems do not enforce any one particular problem solving regime the
way SOAR does. At a broader level, these systems espouse very different points
of view about the mechanisms necessary for intelligent behavior. SOAR empha-
sizes the sufficiency of a single problem solving methodology coupled with a
single learning mechanism. The only way to break a problem solving impasse is
by creating subgoals, and the only way to learn is to add rules to the knowledge
base by chunking. Classifier systems, on the other hand, place an emphasis on
flexibly modeling the problem solving environment. A good model allows for
prediction-based evaluation of the knowledge base, and the assignment of
credit to the model's building blocks. This, in turn, makes it possible to
modify, replace, or add to existing rules via inductive mechanisms such as the
recombination of highly rated building blocks. Moreover, a model can provide
the constraints necessary to generate plausible reformulations of the repre-
sentation of a problem. To resolve problem solving impasses, then, classifier
systems hypothesize new rules (by recombining building blocks), instead of
recompiling (chunking) existing rules.

We will make comparisons to other machine learning methods (Section 7),

254 L.B. BOOKER ET AL.

after we have defined and discussed the learning algorithms for classifier
systems.

5. Bucket Brigade Algorithms

The first major learning task facing any rule-based system operating in a
complex environment is the credit assignment task, Somehow the performance
system must determine both the rules responsible for its successes and the
representativeness of the conditions encountered in attaining the successes.
(The reader will find an excellent discussion of credit assignment algorithms in
Sutton's [47] report.) The task is difficult because overt rewards are rare in
complex environments; the system's behavior is mostly "stage-setting" that
makes possible later successes. The problem is even more difficult for parallel
systems, where only some of the rules active at a given time may be
instrumental in attaining later success. An environment exhibiting perpetual
novelty adds still another order of complexity. Under such conditions the
performance system can never have an absolute assurance that any of its rules
is "correct." The perpetual novelty of the environment, combined with an
always limited sampling of that environment, leaves a residue to uncertainty.
Each rule in effect serves as a hypothesis that has been more or less confirmed.

The bucket brigade algorithm is designed to solve the credit assignment
problem for classifier systems. To implement the algorithm, each classifier is
assigned a quantity called its strength. The bucket brigade algorithm adjusts the
strength to reflect the classifier's overall usefulness to the system. The strength
is then used as the basis of a competition. Each time step, each satisfied
classifier makes a bid based on its strength, and only the highest bidding
classifiers get their messages on the message list for the next time step.

It is worth recalling that there are no consistency requirements on posted
messages; the message list can hold any set of messages, and any such set can
direct further competition. The only point at which consistency enters is at the
output interface. Here, different sets of messages may specify conflicting
responses. Such conflicts are again resolved by competition. For example, the
strengths of the classifiers advocating each response can be summed so that one
of the conflicting actions is chosen with a probability proportional to the sum of
its advocates.

The bidding process is specified as follows. Let s(C, t) be the strength of
classifier C at time t. Two factors clearly bear on the bidding process: (1)
relevance to the current situation, and (2) past "usefulness." Relevance is
mostly a matter of the specificity of the rule's condition part--a more specific
condition satisfied by the current situation conveys more information about
that situation. The rule's strength is supposed to reflect its usefulness. In the
simplest versions of the competition the bid is a product of these two factors,
being 0 if the rule is irrelevant (condition not satisfied) or useless (strength 0),

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 255

and being high when the rule is highly specific to the situation (detailed
conditions satisfied) and well confirmed as useful (high strength).

To implement this bidding procedure, we modify Step 3 of the basic
execution cycle (see Section 3.1).

Step 3. For each set of matches satisfying the condition part of classifier C,
calculate a bid according to the following formula,

B(C, t) = bR(C)s(C, t) ,

where R(C) is the specificity, equal to the number of non-# in the condition
part of C divided by the length thereof, and b is a constant considerably less
than 1 (e.g., ~ or ~6). The size of the bid determines the probability that the
classifier posts its message (specified by the action part) to the new message
list. (E.g., the probability that the classifier posts its message might decrease
exponentially as the size of the bid decreases.)

The use of probability in the revised step assures that rules of lower strength
sometimes get tested, thereby providing for the occasional testing of less-
favored and newly generated (lower strength) classifiers ("hypotheses").

The operation of the bucket brigade algorithm can be explained informally
via an economic analogy. The algorithm treats each rule as a kind of "mid-
dleman" in a complex economy. As a "middleman," a rule only deals with its
"suppliers"--the rules sending messages satisfying its conditions--and its "con-
sumers"--the rules with conditions satisfied by the messages the "middleman"
sends. Whenever a rule wins a bidding competition, it initiates a transaction
wherein it pays out part of its strength to its suppliers. (If the rule does not bid
enough to win the competition, it pays nothing.) As one of the winners of the
competition, the rule becomes active, serving as a supplier to its consumers,
and receiving payments from them in turn. Under this arrangement, the rule's
strength is a kind of capital that measures its ability to turn a "profit." If a rule
receives more from its consumers than it paid out, it has made a profit; that is,
its strength has increased.

More formally, when a winning classifier C places its message on the
message list it pays for the privilege by having its strength s(C, t) reduced by
the amount of the bid B(C, t),

s (C , t + 1) = s (C , t) - B(C, t).

The Classifiers { C'} sending messages matched by this winner, the "suppliers,"
have their strengths increased by the amount of the bid--it is shared among
them in the simplest version--

s(C', t + 1) = s(C', t) + ag(C, t) ,

where a = 1/(no. of members of {C'}).

256 L.B. BOOKER ET AL.

A rule is likely to be profitable only if its consumers, in their local
transactions, are also (on the average) profitable. The consumers, in turn, will
be profitable only if their consumers are profitable. The resulting chains of
consumers lead to the ultimate consumers, the rules that directly attain goals
and receive payoff directly from the environment. (Payoff is added to the
strengths of all rules determining responses at the time the payoff occurs.) A
rule that regularly attains payoff when activated is of course profitable. The
profitability of other rules depends upon their being coupled into sequences
leading to these profitable ultimate consumers. The bucket brigade ensures
that early acting, "stage-setting" rules eventually receive credit if they are
coupled into (correlated with) sequences that (on average) lead to payoff.

If a rule sequence is faulty, the final rule in the sequence loses strength, and
the sequence will begin to disintegrate, over time, from the final rule back-
wards through its chain of precursors. As soon as a rule's strength decreases to
the point that it loses in the bidding process, some competing rule will get a
chance to act as a replacement. If the competing rule is more useful than the
one displaced, a revised rule sequence will begin to form using the new rule.
The bucket brigade algorithm thus searches out and repairs "weak links"
through its pervasive local application.

Whenever rules are coupled into larger hierarchical knowledge structures,
the bucket brigade algorithm is still more powerful than the description so far
would suggest. Consider an abstract rule C* of the general form, "if the goal is
G, and if the procedure P is executed, then G will be achieved." C* will be
active throughout the time interval in which the sequence of rules comprising P
is executed. If the goal is indeed achieved, this rule serves to activate the
response that attains the goal, as well as the stage-setting responses preceding
that response. Under the bucket brigade C* will be strengthened immediately
by the goal attainment. On the very next trial involving P, the earliest rules in
P will have their strengths substantially increased under the bucket brigade.
This happens because the early rules act as suppliers to the strengthened C*
(via the condition "if the procedure P is executed"). Normally, the process
would have to be executed on the order of n times to backchain strength
through an n-step process P. C* circumvents this necessity.

6. Genetic Algorithms

The rule discovery process for classifier systems uses a genetic algorithm (GA).
Basically, a genetic algorithm selects high strength classifiers as "parents,"
forming "offspring" by recombining components from the parent classifiers.
The offspring displace weak classifiers in the system and enter into competi-
tion, being activated and tested when their conditions are satisfied. Thus, a
genetic algorithm crudely, but at high speed, mimics the genetic processes
underlying evolution. It is vital to the understanding of genetic algorithms to

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 257

know that even the simplest versions act much more subtly than "random
search with preservation of the best," contrary to a common misreading of
genetics as a process primarily driven by mutation. (Genetic algorithms have
been studied intensively by analysis, Holland [28] and Bethke [4], and simula-
tion, DeJong [11], Smith [46], Booker [6], Goldberg [18], and others.)

Though genetic algorithms act subtly, the basic execution cycle, the "central
loop," is quite simple:

Step 1. From the set of classifiers, select pairs according to strength--the
stronger the classifier, the more likely its selection.

Step 2. Apply genetic operators to the pairs, creating "offspring" classifiers.
Chief among the genetic operators is cross-over, which simply exchanges a
randomly selected segment between the pairs (see Fig. 5).

Step 3. Replace the weakest classifiers with the offspring.

The key to understanding a genetic algorithm is an understanding of the way
it manipulates a special class of building blocks called schemas. In brief, under
a GA, a good building block is a building block that occurs in good rules. The
GA biases future constructions toward the use of good building blocks. We will
soon see that a GA rapidly explores the space of schemas, a very large space,
implicitly rating and exploiting schemas according to the strengths of the rules
employing them. (The term schema as used here is related to, but should not
be confused with, the broader use of that term in psychology).

The first step in making this informal description precise is a careful
definition of schema. To start, recall that a condition (or an action) for a
classifier is defined by a string of letters a 1 a 2 . . . a j . . . a k of length k over the
3-letter alphabet {1, 0, #}. It is reasonable to look upon these strings as built
up from the component letters {1, 0, #}. It is equally reasonable to look upon
certain combinations of letters, say 11 or 0##1 , as components. All such
possibilities can be defined with the help of a new "don't care" symbol "*." To
define a given schema, we specify the letters at the positions of interest, filling
out the rest of the string with "don't cares." (The procedure mimics that for
defining conditions, but we are operating at a different level now.) Thus,
• 0 # # 1 . * . . . * focuses attention on the combination 0 # # 1 at positions 2
through 5. Equivalently, . 0 # # 1 . * . . . * specifies a set of conditions, the set of
all conditions that can be defined by using the combination 0 # # 1 at positions 2
through 5. Any condition that has 0 # # 1 at the given positions is an instance of
schema . 0 # # 1 . * . . . *. The set of all schemas is just the set {1, 0, # , .}k of all
strings of length k over the alphabet (1, 0, # , *}. (Note that a schema defines a
subset of the set of all possible conditions, while each condition defines a
subset of the set of all possible messages.)

A classifier system, at any given time t, typically has many classifiers that
contain a given component or schema tr; that is, the system has many instances
of cr. We can assign a value s(tr, t) to o- at time t by averaging the strengths of

258 L . B . B O O K E R E T A L .

its instances. For example, let the system contain classifier C1, with condition
1 0 # # 1 1 0 . . . 0 and strength s(C~, t) = 4, and classifier Cz, with condition
0 0 # # 1 0 1 1 . . . 1 and strength s(C2, t) = 2. If these are the only two instances of
schema o- = * 0 # # 1 . * . . . * at time t, then we assign to the schema the value

s(cr, t) = ½ [s(CI, t) + s(C2, t)] = 3 ,

the average of the strengths of the two instances. The general formula is

s(cr, t) = (1/[no. of instances of or]) ~] s(C, t) .
C an instances of o"

s(cr, t) can be looked upon as an estimate of the mean value of o-, formed by
taking the average value of the samples (instances) of o- present in the classifier
system at time t. It is a crude estimate and can mislead the system; nevertheless
it serves well enough as a heuristic guide if the system has procedures that
compensate for misleading estimates. This the algorithm does, as we will see,
by evaluating additional samples of the schema; that is, it constructs new
classifiers that are instances of the schema and submits them to the bucket
brigade.

Consider now a system with M classifiers that uses the observed averages
{s(cr, t)) to guide the construction of new classifiers from schemas. Two
questions arise: (1) How many schemas are present (have instances) in the set
of M classifiers? (2) How is the system to calculate and use the {s(o', t)}?

The answer to the first question has important implications for the use of
schemas as building blocks. A single condition (or action) is an instance of 2 k
schemas! (This is easily established by noting that a given condition is an
instance of every schema obtained by substituting an "*" for one or more
letters in the definition of the condition.) In a system of M single-condition
classifiers, there is enough information to calculate averages for somewhere
between 2 k and M2 k schemas. Even for very simple classifiers and a small
system, k = 32 and M = 1000, this is an enormous number, M2 k - 4 trillion.

The natural way to use the averages would be to construct more instances of
above-average schemas, while constructing fewer instances of below-average
schemas. That is, the system would make more use of above-average building
blocks, and less use of below-average building blocks. More explicitly: Let s(t)
be the average strength of the classifiers at time t. Then schema cr is above
average if s(~r, t) / s (t)> 1, and vice versa. Let M(cr, t) be the number of
instances of schema or in the system at time t, and let M(o', t + T) be the
number of instances of or after M new classifiers (samples) have been con-
structed. The simplest heuristic for using the information s(o~, t)/s(t) would be
to require that the number of instances (uses) of or increase (or decrease) at
time t + T according to that ratio,

M(cr, t + T) = c[s(o', t)/s(t)lM(cr, t) ,

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 259

where c is an arbitrary constant. It is even possible, in principle, to construct
the new classifiers so that every schema o- with at least a few instances present at
t receives the requisite number of samples. (This is rather surprising since there
are so many schemas and only M new classifiers are constructed; however a
little thought and some calculation, exploiting the fact that a single classifier is
an instance of 2 k distinct schemas, shows that it is possible.)

A generating procedure following this heuristic, setting aside problems of
implementation for the moment, has many advantages. It samples each schema
with above-average instances with increasing intensity, thereby further confirm-
ing (or disconfirming) its usefulness and exploiting it (if it remains above
average). This also drives the overall average s(t) upward, providing an
ever-increasing criterion that a schema must meet to be above average.
Moreover, the heuristic employs a distribution of instances, rather than
working only from the "most recent best" instance. This yields both robustness
and insurance against being caught on "false peaks" (local optima) that
misdirect development. Overall, the power of this heuristic stems from its rapid
accumulation of better-than-average building blocks. Because the strengths
underlying the s(tr, t) are determined (via the bucket brigade) by the reg-
ularities and interactions in the environment, the heuristic provides a sophisti-
cated way of exploiting such regularities and interactions.

Though these possibilities exist in principle, there is no feasible direct way to
calculate and use the large set of averages {s(tr, t)/s(t)}. However, genetic
algorithms do implicitly what is impossible explicitly. To see this, we must
specify exactly the steps by which a genetic algorithm generates new classifiers.

The algorithm acts on a set B(t) of M strings {C1, C2 , CM} over the
alphabet {1, 0, #} with assigned strengths s(Cj, t) via the following steps:

Step 1. Compute the average strength s(t) of the strings in B(t), and assign
the normalized value s(Cj, t)/s(t) to each string Cj. in B(t).

Step 2. Assign each string in B(t) a probability proportional to its normal-
ized value. Then, using this probability distribution, select n pairs of strings,
n ~ M, from B(t), and make copies of them.

Step 3. Apply cross-over (and, possibly, other genetic operators) to each
copied pair, forming 2n new strings. Cross-over is applied to a pair of strings as
follows: Select at random a position i, 1 ~< i ~ < k, and then exchange the
segments to the left of position i in the two strings (see Fig. 5).

Step 4. Replace the 2n lowest strength strings in B(t) with the 2n strings
newly generated in Step 3.

Step 5. Set t to t + 1 in preparation for the next use of the algorithm and
return to Step 1.

Figure 6 illustrates the operation of the algorithm. In more sophisticated
versions of the algorithm, the selection of pairs for recombination may be
biased toward classifiers active at the time some triggering condition is satis-
fied. Also Step 4 may be modified to prevent one kind of string from

2 6 0 L.B. B O O K E R ET AL

10###000#0111##I
I

I

10###000 #

0111##I

I0###000#I0#####

1

III i

##101#111 0111##I

Fig. 5. E x a m p l e o f t h e c r o s s - o v e r o p e r a t o r .

¢i

[Potent#]

i I I0##'0 # ...

I''011 I'' ...
i'V"$ V"¢

000 I#'I I* ...

'KCj. t) Pt, of Intercba~e Cj'

[No. O f f s p r i ~] [Crossover] [Of fs l> r i~]

,
. .

"i...~l / f -* 0 0 0 1 " # ~ ' 0 " ::_..]

" ~ ~' 0 0 0 1 " # 11 # ...
. F ' C]

0 1 0 # = 1 0 0 0 ... = 0 0 # # # # 11
~'V'"~, . r ~ _ ~ T ~

e 0 0 # # # " I 1 ... z ~00 #### 11

0 " 0 1 # # 1 0 " ... ~' 0 " 0 1 " # . v ...

~;:~'""~' ~ " "-'~ ~"~ I~' ~-4' I 100"#0111 ... 01"'10 # ..]

~fk~mg bits in instances v(, , , , , , I , 8) : 0+2+2 : 1.33
I # S

~'~""'~ d e f ~ bits i~ ~ $ t ~ ,K,O04#~,,,) = 2+2+ 1 _ t .67
O0 # 3

encloeee #e~ents i~ offegri~q~ from first I~rent
1

. locu# of c rouover

Fig. 6. Example of a genetic algorithm acting on schemas.

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 261

"overcrowding" B(t) (see [4, 11] for details).
Contiguity of constituents, and the building blocks constructed from them,

are significant under the cross-over operator. Close constituents tend to be
exchanged together. Operators for rearranging the atomic constituents defining
the rules, such as the genetic operator inversion, can bias the rule generation
process toward the use of certain kinds of building blocks. For example, if
"color" is nearer to "shape" than to "taste" in a condition, then a particular
"color"-"shape" combination will be exchanged as a unit more often than a
"color"-"taste" combination. Inversion, by rearranging the positions of
"shape" and "taste," could reverse this bias. Other genetic operators, such as
mutation, have lesser roles in this use of the algorithm, mainly providing
"insurance" (see [28, Chapter 6, Sections 2-4] for details).

To see how the genetic algorithm implicitly carries out the schema search
heuristic described earlier, it is helpful to divide the algorithm's action into two
phases: phase 1 consists of Steps 1-2; phase 2 consists of Steps 3-4.

First consider what would happen if phase 1 were iterated, without the
execution of phase 2, but with the replacement of strings in B(t). In particular,
let phase 1 be iterated M/2n times (assuming for convenience that M is a
multiple of 2n). Under M/2n repetitions of phase 1, each instance C of a given
schema or can be expected to produce s(or, t)/s(t) "offspring" copies. The total
number of instances of schema or after the action of phase 1 is just the sum of
the copies of the individual instances. Dividing this total by the original
number of instances, M(or, t), gives the average rate of increase, and is just
s(or, t)/s(t) as required by the heuristic. This is true of every schema with
instances in B(t), as required by the heuristic.

Given that phase 1 provides just the emphasis for each schema required by
the heuristic, why is phase 2 necessary? Phase 2 is required because phase 1
introduces no new strings (samples) into B(t), it merely introduces copies of
strings already there. Phase 1 provides emphasis but no new trials. The genetic
operators, applied in phase 2, obviously modify strings. It can be proved (see
[28, Theorem 6.2.3]) that the genetic operators of Step 3 leave the emphasis
provided by phase 1 largely undisturbed, while providing new instances of the
various schemas in B(t) in accord with that emphasis. Thus, phase 1 combined
with phase 2 provides, implicitly, just the sampling scheme suggested by the
heuristic.

The fundamental theorem for genetic algorithms [28, Theorem 6.2.3] can be
rewritten as a procedure for progressively biasing a probability distribution
over the space {1, 0, #}k:

Theorem 6.1. Let Pcross be the probability that a selected pair will be crossed,
and let Pmut be the probability that a mutation will occur at any given locus. I f
p(or, t) is the fraction of the population occupied by the instances of or at time t,

262

then

L.B. BOOKER ET AL.

p(CT t + 1) 3 [I - A(a, t)l[l - ~m”tld’“‘[4~, 0~4t)lp(c+, t>

gives the expected fraction of the population occupied by instances of (T at time
t + 1 under the genetic algorithm.

The right-hand side of this equation can be interpreted as follows: [~(a, t)l
u(t)], the ratio of the observed average value of the schema s compared to the
overall population average, determines the rate of change of p(a, t), subject to
the “error” terms [l - h(c+, t)][l - P,,,,,] ‘@) If u((T, t) is above average, then .
schema u tends to increase, and vice versa.

The “error” terms are the result of breakup of instances of u because of
cross-over and mutation, respectively. In particular, h(a, t) =

P,,,,,(l(o) lk)P(UY t) is an upper bound on the loss of instances of u resulting
from crosses that fall within the interval of length I(a) determined by the
outermost defining loci of the schema, and [l - P,,JdCu) gives the proportion
of instances of (T that escape a mutation at one of the d(o) defining loci of cx

(The underlying algorithm is stochastic so the equation only provides a
bound on expectations at each time step. Using the terminology of mathemati-
cal genetics, the equation supplies a deterministic model of the algorithm under
the assumption that the expectations are the values actually achieved on each
time step.)

In any population that is not too small-from a biological view, a population
not so small as to be endangered from a lack of genetic variation---distinct
schemas will almost always have distinct subsets of instances. For example, in a
randomly generated population of size 2500 over the space { 1, 0} k, any schema
defined on 8 loci can be expected to have about 10 instances. (For ease of
calculation, we consider populations of binary strings in the rest of this section,
but the same results hold for n-letter alphabets.) There are

2500 (1 10
= 3 x 1oZ6

ways of choosing this subset, so that it is extremely unlikely that the subsets of
instances for two such schemas will be identical. (Looked at another way, the
chance that two schemas have even one instance in common is less than
10 x 2+ = & if they are defined on disjoint subsets of loci.) Because the sets of
instances are overwhelmingly likely to be distinct, the observed averages
a(~, t), will have little cross-correlation. As a consequence, the rate of increase
(or decrease) of a schema o under a genetic algorithm is largely uncontami-
nated by the rates associated other such schemas. Loosely, the rate is un-
influenced by “cross-talk” from the other schemas.

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 263

To gain some idea of how many schemas are so processed consider the
following:

Theorem 6.2. Select some bound e on the transcription error under reproduc-
tion and cross-over, and pick l such that l /k <- l e. Then in a population o f size
M = Cl 2Ilk, obtained as a uniform random sample f rom {1, 0} k, the number o f
schemas propagated with an error less than e greatly exceeds M 3.

Proof. (1) Consider a "window" of 2l contiguous loci in a string of length k
such that 21/k = e. Clearly any schema having all its defining loci within this
window will be subject to a transcription error less than e under cross-over.

(2) There are

(2 l) = 221/[q.rl]-1/2

ways of selecting l defining positions in the window, and there are 2 t different
schemas that can be defined using any given set of I of defining loci. Therefore,
there are approximately 231/[~1] -1/2 distinct schemas with l defining positions
that can be defined in the window.

(3) A population of size M = Cl 2l, for c I a small integer, obtained by a
uniform random sampling of {1, 0} k can be expected to have cl instances of
every schema defined on l defining positions. Therefore, for the given window,
there will be approximately M3./(Cl)311rl]-]/2 schemas having instances in the
population and defined on some set of I loci in the window.

(4) The same argument can be given for schemas of length l - 1, ! - 2 , . . . ,
and for l + 1, l + 2 , . . . , with values of

(17)
decreasing in accord with the binomial distribution. There are also k - l - 1
distinct positionings of the window on strings of length k. It follows that many
more than M 3 schemas, with instances in the population of size M, increase or
decrease at a rate given by their observed marginal averages with a transcrip-
tion error less than e. []

From the point of view of sampling theory, 20 or 30 instances of a schema o"
constitute a sample large enough to give some confidence to the corresponding
estimate of u(tr). Thus, for such schemas, the biases p(cr, t) produced by a
genetic algorithm over a succession of generations are neither much distorted
by sampling error nor smothered by "cross-talk."

It is important to recognize that the genetic algorithm only manipulates M
strings while implicitly generating and testing the new instances of the very

264 L.B. BOOKER ET AL.

large number of schemas involved (~M 3, early on). Moreover, during this
procedure, samples (instances) of schemas not previously tried are generated.
This implicit manipulation of a great many schemas through operations on 2n
strings per step is called implicit parallelism (it is called intrinsic parallelism by
Holland [28]).

7. Comparison with Other Learning Methods

The rule discovery procedures in a classifier system--genetic algorithms--are
just as unconventional as the problem solving procedures. Here again, it is
important to look beyond the details and examine the core ideas. In terms of
the weak methods familiar to the AI community, a genetic algorithm can be
thought of as a complex hierarchical generate-and-test process. The generator
produces building blocks which are combined into complete objects. At various
points in the procedure, tests are made that help weed out poor building blocks
and promote the use of good ones. The information requirements of the
process are modest: a generator for building blocks and objects, and an
evaluator that allows them to be tested and compared with alternatives. It is
altogether appropriate to label the procedure a weak method, if one is
referring to its lack of domain-dependent requirements.

On closer examination, though, it is apparent that there are important
differences between genetic algorithms and the standard assortment of weak
methods. The differences are centered on the formulation of the search for
useful rules. The familiar weak methods focus on managing the complexity of
the search space, emphasizing ways to avoid computationally prohibitive
exhaustive searches. Such methods use small amounts of knowledge to focus
the search and prune the space of alternatives. Genetic algorithms proceed by
managing the uncertainty of the search space. Uncertainty enters in the sense
that the desirability of an element of the search space as a solution or partial
solution is unknown until it has been tested. Managing complexity reduces
uncertainty as more of the search space is explored; on the other hand, it is
also clear that reducing uncertainty makes the search more effective, with
complexity becoming more manageable in the process.

This shift of viewpoint is subtle, but has important consequences for the way
the search is carried out. Typical AI search procedures use heuristic evaluation
functions to prune search paths, and it often suffices that they provide bounds
on test outcomes. On the other hand, uncertainty management requires the use
of test outcomes (samples) to estimate regularities in the search space. Acquir-
ing and using this knowledge as the search proceeds requires that more
attention be paid to the distribution of test outcomes over the search space.
The focus is on subspaces and the kinds of elements they contain, rather than
on paths and their ultimate destinations. That is, the emphasis is on sample-
based induction [33].

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 265

This point of view is captured by a weak method we will call sample-select-
and-recombine. Assume that the elements of the search space are structured,
that is, that they are constructed of components or building blocks. To find an
element in this space:

Step 1. Draw a sample from the space.
Step 2. Order the elements in the sample according to some preference

criterion related to the goals of the search.
Step 3. Use this ranking to estimate the usefulness of the building blocks

present in the sample's elements.
Step 4. Generate a new sample by selecting building blocks on the basis of

this evaluation, recombining them to construct new elements.
Step 5. Repeat Steps 1-4 until the desired element is found.

This method has the obvious advantage that the memory requirements are
small and it can be used when a conventional generator or heuristic evaluation
function is hard to find. All that is needed is a set of building blocks and a
capability to order a sample in terms of a goal-relevant preference. Just as
generate-and-test procedures are made more effective by incorporating as
much of the test as possible into the generation process, genetic algorithms
derive their power by tightly coupling the sampling and selection process. It is
important that there are theoretical results that show that genetic algorithms
implement the sample-select-and-recombine method in a near-optimal way.

We can make a direct comparison of this approach with more familiar AI
learning procedures. This is most easily accomplished in the realm of concept
learning tasks where the problem is to find a concept description consistent
with a given set of (positive and negative) examples of the concept. Wilson [52]
gives a detailed account of the way in which genetic algorithms acting on
classifier systems learn complex multiple disjunctive concepts. Here we will
refer to the description of genetic algorithms given above, and will briefly
examine two well-known learning algorithms: the interference matching al-
gorithm (Hayes-Roth and McDermott [22]), and the candidate elimination
algorithm (Mitchell [39]).

7.1. Interference matching

Interference matching is a general technique for inferring the common attri-
butes of several positive examples. (Interference matching is closely related to
techniques, such as those examined by Valiant [49], for inferring boolean
functions from true and false instances, but interference matching makes less
stringent requirements on the match between problem, algorithm and repre-
sentation.) A schema describing the shared characteristics is constructed using
the attribute value for attributes shared, and a place holder symbol (essentially
a "don't care" symbol) for attributes that differ over the examples. For

266 L.B. BOOKER ET AL.

example, interference matching of the two descriptors [RED, ROUND, HEAVY]

and [RED, SQUARE, HEAVY] yields the schema [RED, HEAVY]. This technique
can be used to compute a set of schemas accounting for all positive examples of
a concept--called a maximal decomposition--by using the following algorithm:

Let S be the list of schemas, initially empty.
Let (E l, . . . , EN} be the set of N examples.
For i = 1 to N

For j = 1 to I sI
Form a schema s by interference matching E i with the jth

element of S .
Form a new schema s' by interference matching all examples

that satisfy (are instances of) s .
Add s' to the list S if it is not already there.

Repeat until no new schemas are created (for the given value of
i) .

Add E; to S unaltered.

A simple example is given in Fig. 7.
The list of schemas comprising a maximal decomposition is the minimal

complete set of nonredundant schemas that occur in the examples. For
instance, in Fig. 7, the schemas **.1 and **0. are redundant because they
designate the same subset of examples; they are therefore summarized by the
more restrictive schema *.01. The algorithm is more complicated when there is
more than one concept to be learned or, equivalently, negative examples are
available. A separate maximal decomposition is computed for each concept,
but, in addition, a performance value is computed for each schema. The
performance value rates each schema according to its ability to discriminate
instances of a concept from noninstances in the set of examples.

t x a m p l n M a x i m a l
D e c o m l m s i U o n

1001 1 # 1

1110 1 * s s
I I I 0

0101 ==01
8 1 S m

e l s e
0101

0010

Fig. 7. Example of a maximal

1~88

a*10
01SS
8010

decomposition.

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 267

Similar algorithms have been suggested for inferring the structure of boolean
functions from presentations of true instances (see, for example, Valiant [49]).

Because a maximal decomposition is an exhaustive list of the structural
characteristics of a concept, the size of the list becomes unmanageable as the
number of examples grows. Hayes-Roth suggests discarding schemas with low
performance values to keep the size of the list under control. This strategy can
only work, though, if all the examples are available at once. If the examples
occur incrementally, the performance value assigned to a schema at any given
time is an estimate subject to error. The only obvious way to recover from a
mistakenly discarded schema is to recompute the entire maximal decompo-
sition.

Therein lies the major difference between interference matching and genetic
algorithms. Genetic algorithms implicitly work with the building blocks for a
decomposition. Iterative application of a genetic algorithm produces a popula-
tion of concept descriptions in which the number of occurrences of each
building block is proportional to the observed average performance of its
carriers. In this sense, the population is a database that compactly and usefully
summarizes the examples so far encountered. If a ne~(example is introduced,
it is assimilated by an automatic revision of the proportions of the relevant
building blocks. This updating occurs without keeping explicit or exhaustive
records about performance, thereby avoiding the large computational burdens
associated with updating a maximal decomposition.

7.2. Candidate elimination

The candidate elimination algorithm is similar to genetic algorithms in that it
cleverly implements a procedure that would be intractable if attempted by
brute force. The basic idea is to enumerate the set of all possible concept
descriptions and, for each example, remove from consideration any description
that is inconsistent with that example. When there is only one description left
the problem is solved. Mitchell [39] makes this idea tractable by ordering the
set of possible descriptions according to generality. One description is more
general than another if it includes as instances all the instances specified by the
other description. Thus the schema **0. is more general than the schema *.01.
This is a partial ordering because not all descriptions are comparable--there
can be several maximally general or maximally specific descriptions in the
space. The key to this approach is the observation that the set of most specific
descriptions and the set of most general descriptions consistent with an
example bound the set of all descriptions consistent with the example. An
algorithm therefore need only keep track of these bounds to converge to the
description consistent with all examples.

In more detail, the candidate elimination algorithm maintains two sets that
bound the space of consistent descriptions: the set S of most specific possible

268 L.B. B O O K E R ET AL.

descriptions, and the set G of most general possible descriptions. Given a new
positive example, the elements of S are generalized the smallest amount that
allows inclusion of the new example as an instance. Any element of G that is
inconsistent with this example is removed. Similarly, given a new negative
example, the elements of G are specialized the smallest amount that precludes
the example as an instance. Any element of S that includes this example as an
instance is removed. This process is repeated for each new example, the set S
becoming more general and the set G becoming more specific, until S and G
are identical. The concept description remaining is the one that is consistent
with all the examples.

This algorithm obviously has no problems assimilating new examples and it
converges to a solution quickly. The basic limitations are: (i) the S and G can
be quite large, even for relatively simple concepts, (ii) only conjunctive
concepts can be learned, and (iii) the algorithm usually fails if the data are
noisy (some instances incorrect). Genetic algorithms avoid these limitations by
characterizing the search space in a fundamentally different way: (i) the data
set corresponding to the S and G sets is carried implicitly in the proportions of
the building blocks, (ii) disjunctions are handled by the parallelism of the rule
set, and (iii) noise is handled effortlessly because uncertainty reduction is at
the heart of the procedure. The price paid by the genetic algorithm is that it
robustly samples the space without concern for the difficulty of the problem; it
cannot use an obvious path to a solution to curtail its search unless there are
strong building blocks that can be combined to construct that path.

8. Applications

Research on genetic algorithms has paralleled work in mainstream artificial
intelligence in the sense that simpler studies of search and optimization in
straightforward problem domains have preceded the more complex investiga-
tions of machine learning. This is no surprise. Search and optimization
applications, with their well-defined problems, objective functions, constraints
and decision variables provide a tame environment where alternatives may be
compared easily. By contrast, machine learning problems, with their ill-defined
goal statements, subjective evaluation criteria and multitudinous decision
options, constitute an unwieldy environment not easily given to comparison or
analysis. The application of GAs in search and optimization has both tested
and improved GAs, and it has encouraged their successful application to search
problems that have not succumbed to more traditional procedures. According-
ly this review of applications starts by examining GA applications in search and
optimization.

8.1. Genetic algorithms in search and optimization

(Because much of the inspiration for early studies of genetic algorithms came

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 269

from genetics, much of the work described in this section was set forth using
the terminology of genetics. We have not explained these terms in detail, but
we have eliminated any terms that would not appear in a high-school biology
text.)

The first application of a GAmin fact, the first published use of the words
"genetic algorithm"--came in Bagley's [3] pioneering dissertation. At that time
there was much interest in game playing computer programs, and in that spirit
Bagley devised a controllable testbed of game tasks modeled after the game
hexapawn. Bagley's GA operated successfully on "diploid chromosomes"
(paired strings) which were decoded to construct parameter sets for a game
board evaluation function. The GA contained the three basic operators--
reproduction, cross-over, and mutation--along with dominance and inversion.
At about the same time, Rosenberg [41] was completing his Ph.D. study of the
simulated growth and genetic interaction of a population of single-celled
organisms. His organisms were characterized by a simple rigorous biochemis-
try, a permeable membrane, and a classical, one-gene/one-enzyme structure.
He introduced an interesting adaptive cross-over scheme that associated lin-
kage factors with each gene, thereby permitting different linkages between
adjacent genes. Rosenberg's work is sometimes overlooked by GA researchers
because of its emphasis on biological simulation, but its nearness to root
finding and function optimization make it an important contribution to the
search domain.

In 1971 Cavicchio [7] investigated the application of GAs to a subroutine
selection task and a pattern recognition task. He adopted the pixel weighting
scheme of Bledsoe and Browning [5] and used a GA to search for good sets of
detectors (subsets of pixels). His GA found good sets of detectors more quickly
than a competing "hill-climbing" algorithm. Cavicchio was one of the first to
implement a scheme for maintaining population diversity.

The first dissertation to apply GAs to well-posed problems in mathematical
optimization was Hollstien's [35] which used a testbed of 14 functions of two
variables. The work is notable in its use of allele dominance and schemes of
mating preference adopted from traditional breeding practices. Hollstien's GA
located optima for his functions much more rapidly than traditional algorithms,
but it was difficult to draw general conclusions because he used very small
populations (n--16). Frantz [17] studied positional effects on function op-
timatization. Specifically, he considered functions wherein the value assigned
to an argument string could not be well approximated by assigning a least mean
squares estimate to each component bit of the argument. (From the point of
view of a geneticist, this amounts to saying there are strong epistatic interac-
tions between the genes.) He tested the hypothesis that an inversion (string
permutation) operator might improve the efficiency of a GA for such functions.
Because the standard GA found near-optimal results quickly in all cases, the
inversion operator had little effect. However, for substantially more difficult

270 L.B. B O O K E R ET AL.

problems, such as the traveling salesman problem, job shop scheduling and bin
packing, Frantz's hypothesis remains a fruitful avenue of research (see Davis
[8, 9], Goldberg and Lingle [19], and Grefenstette, Gopal, Rosmaita and van
Gucht [21]). More recently, Bethke [4] has added rigor to the study of
functions that are hard for GAs through his investigation of schema averages
using Walsh transforms (following a suggestion of Andrew Barto). Goldberg
[19] has also contributed to the understanding of GA-hard functions with his
definition and analysis of the minimal deceptive problem.

De Jong's [11] dissertation was particularly important to subsequent applica-
tions of genetic algorithms. He recognized the importance of carefully con-
trolled experimentation in an uncluttered function optimization setting. Vary-
ing population size, mutation and cross-over probabilities, and other operator
parameters, he examined GA performance in a problem domain consisting of
five test functions ranging from a smooth, unimodal function of two variables
to functions characterized by high dimensionality (30 variables), great multi-
modality, discontinuity and noise. To quantify GA performance he defined
online and offline performance measures, emphasizing interim performance
and convergence, respectively. He also defined a measure of robustness of
performance over a range of environments and demonstrated by experiment
the robustness of GAs over the test set.

In Appendix A we display a representative group of GA search and
optimization applications ranging from an archeological model of the transition
from hunting and gathering to agriculture, through VLSI layout problems and
medical image registration, to structural optimization. (A complete bibliog-
raphy covering the entries in Appendices A and B is available from any one of
the authors.) The broad successes in these domains have encouraged experi-
ments with GAs in machine learning problems.

8.2. Machine learning using genetic algorithms

The goals for GAs in the context of machine learning have always been clear:

The study of adaptation involves the study of both the adaptive
system and its environment. In general terms, it is a study of how
systems can generate procedures enabling them to adjust efficiently
to their environments. If adaptability is not to be arbitrarily re-
stricted at the outset, the adapting system must be able to generate
any method or procedure capable of an effective definition. (Hol-
land [25])

The original intent, and the original outline of the attendant theory, en-
compassed a class of adaptive systems much broader than those concerned with
search and optimization. The theoretical foundation was used as a basis for
defining a series of increasingly sophisticated schemata processors (Holland

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 271

[26]). Although the 1968 conference at which this paper was presented
predates the first application of a classifier system by a full decade [34],
schemata processors resemble modern day classifier systems in both outline
and detail. The 1978 implementation of Holland and Reitman [34], called CS-1
(Cognitive System Level One), was trained to learn two maze-running tasks. It
used (i) a performance system with a message list and simple classifiers, (ii) a
credit assignment algorithm that retained information about all classifiers active
between successive payoffs and adjusted their strengths at the time of payoff,
and (iii) a GA with reproduction, cross-over, mutation and crowding that
generated new classifiers. The main result demonstrated that the system could
transfer its experience in a simpler maze to improve its rate of learning in a
more complex maze.

Smith's [46] study of a classifier system used a purely GA approach,
sidestepping the need for a credit assignment algorithm. He represented a rule
set by a single string, obtained by stringing the rules end to end. He then
devised a micro-level cross-over operator, for exchanging segments of individu-
al rules, and a macro-level cross-over operator, for exchanging segments of
rule strings (equivalent to exchanging subsets of rules). Smith successfully
applied this system, LS-1 (Learning System One) to the Holland and Reitman
maze-running task and to a draw poker betting task. In the draw poker task,
Smith's system learned to beat Waterman's [50] adaptive poker playing pro-
gram consistently, a substantial achievement given the amount of domain-
specific knowledge in Waterman's program.

The next major application of classifier systems was Booker's [6] study.
Booker concentrated on the formal connections between cognitive science and
classifier systems. His computer simulations investigated the adaptive behavior
of an artificial creature, moving about in a two-dimensional environment
containing "food" and "poison," controlled by a classifier system "brain."
Booker's classifier system contained a number of innovations including the use
of sharing to promote "niche" exploitation, and the use of mating restrictions
to reduce the production of ineffective offspring (lethals).

In 1983, Goldberg [18] applied a classifier system to the control of two
engineering systems: the pole-balancing problem and a natural gas pipeline-
compressor system. The simulations were in the SR (stimulus-response) for-
mat, with payoff being presented at each computational time step by a critic. In
both cases Goldberg observed the formation of stable subpopulations of rules
serving as default hierarchies. In a default hierarchy, fairly general rules cover
the most frequent cases and more specific rules (that typically contradict the
default rules) cover exceptions.

Wilson [51, 52], working along different lines, studied a number of applica-
tions of classifier systems. While at Polaroid, he was able to construct and test
a classifier system that learned to focus and center a moveable videocamera on
an object placed in its field of vision. These experiments, though successful,

272 L.B. BOOKER ET AL.

caused him to turn to a simpler environment and a simpler version of the
classifier system to better understand its behavior. In the later experiments,
performed at the Rowland Institute for Science, a classifier system called
ANIMAT operated in a two-dimensional environment, searching for food hidden
behind obstacles. ANIMAT did not use a message list and hence could not
employ a standard bucket brigade algorithm. Instead all classifiers contributing
to a chosen action, the action set, received strength increments derived either
from subsequent environmental payoff or from the bids of the next action set.
This bucket brigade-like algorithm successfully propagated credit to early
stage-setting rules under conditions of intermittent and noisy payoff.

A number of GA-based machine learning applications and extensions have
followed the early works. A representative list, ranging from the evolution of
cooperation (Axelrod [2]) and prediction of international events (Schrodt [44])
to VLSI compaction (Fourman [16]), is presented in Appendix B. There are
now standard software tools for exploring these systems, including Forrest's
[15] KL-ONE-to-classifier-system translator and Riolo's general-purpose, clas-
sifier system C-package. 1

Recent work on classifier systems and genetic algorithms may be found in
the books Genetic Algorithms and Simulated Annealing (Davis [10]) and
Genetic Algorithms and Their Applications (Grefenstette [20]), the latter book
containing papers presented at a conference held at MIT in the summer of
1987.

9. The Future: Advantages, Problems, Techniques, and
Prospects

Up to this point we have reviewed and commented upon established aspects of
classifier systems and their learning algorithms. Now we want to look to the
future. Section 9.1, as a prologue, reviews some properties of classifier systems
that afford future opportunities, while Section 9.2 points up some of the
problems that currently impede progress. Section 9.3 outlines some untried
techniques that broaden the possibilities for classifier systems, and Section 9.4
offers a look at some of the directions we think will be productive for future
research.

9.1. Advantages

When it comes to describing advantages, pride of place goes to the genetic
algorithm. The genetic algorithm operating on classifiers discovers potentially
useful building blocks, tests them, and recombines them to form plausible new
classifiers. It does this at the large "speedup" implied by Theorem 6.2 on

1Available on request from R. Riolo, Division of Computer Science and Engineering, 3116
EECS Building, The University of Michigan, Ann Arbor, MI 48109, U.S.A.

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 273

implicit parallelism, searching through and testing large numbers of building
blocks while manipulating relatively few classifiers.

Competition based on rule strength, in conjunction with the parallelism of
classifier systems provides several additional advantages. New rules can be
added without imposing the severe computational burden of checking their
consistency with all the extant rules. Indeed the system can retain large
numbers of mutually contradictory, partially confirmed rules, an important
advantage because these rules serve as alternative hypotheses to be invoked
when currently favored rules prove inadequate. Moreover, this approach in
conjunction with the genetic algorithm provides the overall system with a
robust incremental means of handling noisy data. The system has no need of an
archival memory of all past examples; its memory resides in the sets of
competing alternatives.

9.2. Problems

To this point in time our problems are largely those attending a new approach
wherein the experimental landmarks only sparsely cover the landscape of
possibilities.

The most serious problem we have encountered concerns the stability of
emergent default hierarchies. The hierarchies do emerge (see, for example,
Goldberg [18], a first as far as we know), but in long runs there may be a
catastrophic collapse in which whole subsets of good rules are lost. The rules,
or rules similar in effect, are then reacquired, but this instability is highly
undesirable.

Forrest [15] has demonstrated that semantic nets can be implemented simply
and directly with coupled classifiers, but the question of how such structures
can emerge in response to experience has been barely touched. This is, of
course, more a research objective than a fault.

We also have only the faintest guidelines as to the functioning of the bucket
brigade when the rule sequences are long and intertwined, Again, we have
uncovered no faults, we simply have very little knowledge.

9.3. Techniques

There are several new techniques that should substantially increase the power
and robustness of classifier systems. Chief among these is the triggering of
genetic operators. For example, when an input message receives only weak
bids from very general classifiers, it is a sign that the system has little specific
information for dealing with the current environmental situation. A cross
between the input message and the condition parts of some of the active
general rules will yield plausible new rules with more specific conditions. This
amounts to a bottom-up procedure for producing candidate rules that will
automatically be tested for usefulness when similar situations recur. As another

274 L.B. BOOKER ET AL.

example, when a rule makes a large profit under the bucket brigade, this can
be used as a signal to cross it with rules active on the immediately preceding
time step. An appropriate cross between the message part of the precursor and
the condition part of the profit making successor can produce a new pair of
coupled rules. (The trigger is only activated if the precursor is not coupled to
the active profit maker.) The coupled pair models the state transition mediated
by the original pair of (uncoupled) rules. Such coupled rules can serve as the
building blocks for models of the environment. Because the couplings serve as
"bridges" for the bucket brigade, these building blocks will be assigned credit
in accord with the efficacy of the models constructed from them. Interestingly
enough there seems to be a rather small number of robust triggering conditions
(see Holland et al. [33]), but each of them would appear to add substantially to
the responsiveness of the classifier system.

Support is another technique that adds considerably to the system's flexibili-
ty. Basically, support is a technique that enables the classifier system to
integrate many pieces of partial information (such as several views of a partially
obscured object) to arrive at strong conclusions. Support is a quantity that
travels with messages, rather than being a counterflow as in the case of bids.
When a classifier is satisfied by several messages from the message list, each
such message adds its support into that classifier's support counter. Unlike a
classifier's strength, the support accrued by a classifier lasts for only the time
step in which it is accumulated. That is, the support counter is reset at the end
of each time step (other techniques are possible, such as a long or short
half-life). Support is used to modify the size of the classifier's bid on that time
step; large support increases the bid, small support decreases it. If the classifier
wins the bidding competition, the message it posts carries a support propor-
tional to the size of its bid. The propagation of support over sets of coupled
classifiers acts somewhat like spreading activation (see [1]), but it is much more
directed. Like spreading activation, support can serve to bring associations
(coupled rules) into play; but, as mentioned at the outset, it is meant to act
primarily as a means of integrating partial information (as when several weakly
bidding, general rules bearing on the same topic are activated simultaneously).

9.4. Prospects

The number of feasible directions for exploring the possibilities and applica-
tions of classifier systems is almost daunting. Here we will mention only some
of the broader paths.

Perhaps the most important thing that can be done at this point is an
expansion of the theory. Classifier systems serve as a "testbed" for concepts
applicable to a wide range of complex adaptive systems. In developing a
mathematics to deal with the interaction of the genetic algorithm and classifier
systems we perforce develop a mathematics for dealing with a much wider
range of adaptive systems.

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 275

The process is reciprocal. For instance, in mathematical economics there are
pieces of mathematics that deal with (1) hierarchical organization, (2) retained
earnings (fitness) as a measure of past performance, (3) competition based on
retained earnings, (4) dislribution of earnings on the basis of local interactions
of consumers and suppliers, (5) taxation as a control on efficiency, and (6)
division of effort between production and research (exploitation versus explo-
ration). Many of these fragments, mutatis mutandis, can be used to study the
counterparts of these processes in classifier systems.

Similarly, in mathematical ecology there are pieces of mathematics dealing
with (1) niche exploitation (models exploiting environmental regularities), (2)
phylogenetic hierarchies, polymorphism and enforced diversity (competing
subsystems), (3) functional convergence (similarities of subsystem organization
enforced by environmental requirements on payoff attainment), (4) symbiosis,
parasitism, and mimicry (couplings and interactions in a default hierarchy, such
as an increased efficiency for extant generalists simply because related special-
ists exclude them from some regions in which they are inefficient), (5) food
chains, predator-prey relations, and other energy transfers (apportionment of
energy or payoff amongst component subsystems), (6) recombination of multi-
functional coadapted sets of genes (recombination of building blocks), (7)
assortative mating (biased recombination), (8) phenotypic markers affecting
interspecies and intraspecies interactions (coupling), (9) "founder" effects
(generalists giving rise to specialists), and (10) other detailed commonalities
such as tracking versus averaging over environmental changes (compensation
for environmental variability), allelochemicals (cross-inhibition), linkage (as-
sociation and encoding of features), and still others. Once again, though
mathematical ecology is a younger science than mathematical economics, there
is much in the mathematics already developed that is relevant to the study of
classifier systems and other nonlinear systems far from equilibrium.

In addition to attempting to adapt and extend these fragments, there are at
least two broader mathematical tasks that can be undertaken. One is an
attempt to produce a general characterization of systems that exhibit implicit
parallelism. Up to now all such attempts have led to sets of algorithms which
are easily recast as genetic algorithms--in effect, we still only know of one
example of an algorithm that exhibits implicit parallelism. The second task
involves developing a mathematical formulation of the process whereby a
system can develop a useful internal model of an environment exhibiting
perpetual novelty. In our (preliminary) experiments to date these models
typically exhibit a (tangled) hierarchical structure with associative couplings.
Such structures have been characterized mathematically as quasi-homomor-
phisms (see [33]). The perpetual novelty of the environment can be character-
ized by a Markov process in which each state has a recurrence time that is large
relative to any feasible observation time. Considerable progress has been made
along these lines (see [32]), but much remains to be done. In particular, we
need to construct an interlocking set of theorems based on:

276 L.B. BOOKER ET AL.

(1) a stronger set of fixed point theorems that relates the strengths of
classifiers under the bucket brigade to observed payoff statistics,

(2) a set of theorems that relates building blocks exploited by the "slow"
dynamics of the genetic algorithm to the sampling rates for rules at different
levels of the emerging default hierarchy (more general rules are tried more
often), and

(3) a set of theorems (based on the previous two sets) that detail the way in
which various kinds of environmental regularities are exploited by the genetic
algorithm acting in terms of the strengths assigned by the bucket brigade.

In the realm of experiment, aside from interesting new applications, the
design of experiments centered on the emergence of tags under triggered
coupling offers intriguing possibilities. Tags serve as the glue of larger systems,
providing both associative and temporal (model building) pointers (see Exam-
ple 3.5). Under certain kinds of triggered coupling (see the previous section)
the message sent by the precursor in the coupled pair can have a "hash-coded"
section (say a prefix or suffix). The purpose of this hash-coded tag is to prevent
accidental eavesdropping by other classifiers--a sufficient number of randomly
generated bits in the tag will prevent accidental matches with other conditions
(unless the conditions have a lot of # in the tag region). If the coupled pair
proves useful to the system then it will have further offspring under the genetic
algorithm, and these offspring often will be coupled to other rules in the
system. Typically, the tag will be passed on to the offspring, serving as a
common element in all the couplings; the tag will only persist if the resulting
cluster of rules proves to be a useful "subroutine." In this case, the "sub-
routine" can be "called" by messages that incorporate the tag, because the
conditions of the rules in the cluster are satisfied by such messages. In short,
the tag that was initially determined at random now "names" the developing
subroutine. It even has a meaning in terms of the actions it calls forth.
Moreover, the tag is subject to the same kinds of recombination as other parts
of the rules (it is, after all, a schema). As such it can serve as a building block
for other tags. It is as if the system were inventing symbols for its internal use.
Clearly, any simulation that provides for a test of these ideas will be an order
of magnitude more sophisticated than anything we have tried to date. Runs
involving hundreds of thousands of time steps will probably be required.

Another set of possibilities, far beyond anything we yet understand either
theoretically or empirically, is fully directed rule generation. In the broadcast
language that was the precursor of classifier systems, provision was made for
the generation of rules by other rules. With minor changes to the definition of
classifier systems, this possibility can be reintroduced. (Both messages and
rules are strings. By enlarging the message alphabet, lengthening the message
string, and introducing a special symbol that indicates whether a string is to be
interpreted as a rule or a message, the task can be accomplished.) With this

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 277

provision the system can invent its own candidate operators and rules of
inference. Survival of these meta- (operator-like) rules should then be made to
depend on the net usefulness of the rules they generate (much as a schema
takes its value from the average value of its carriers). It is probably a matter of
a decade or two before we can do anything useful in this area.

Another interesting possibility rests on the fact that classifier systems are
general-purpose systems. They can be programmed initially to implement
whatever expert knowledge is available to the designer; learning then allows
the system to expand, correct errors, and transfer information from one
domain to another. It is important to provide ways of instructing such systems
so that they can generate rules---tentative hypotheses----on the basis of advice.
Little has been done in this direction. It is also particularly important that we
understand how lookahead and virtual explorations can be incorporated with-
out disturbing other activities of the system.

Our broadest hopes turn on reincarnating in machine learning the cycle of
theory and experiment so fruitful in physics. The close control of initial
conditions, parameters, and environment made possible by simulation should
enable the design of critical tests of the unfolding theory. And the simulations
should suggest new directions for the theory. We hope to gain an understand-
ing, not just of classifier systems, but of the consequences of competition in a
changing population wherein subsystems are defined by combinations of
building blocks that interact in a nonlinear fashion. In this context, classifier
systems serve as a well-defined, precisely controllable testbed for a general
theory.

Appendix A. Genetic Algorithm Applications in Search
and Logic

Cat. Year Investigators Description

Biology
B 1967 Rosenberg

B 1970 Weinberg

B 1984 Perry

B 1985 Grosso

Computer science
CS 1967 Bagley

CS 1983 Gerardy

CS 1983 Gordon
CS 1984 Rendeli

Simulation of the evolution of single-celled organism
populations.

Outline of cell population simulation including meta-
level GA.

Investigation of niche theory and specification with
GAs.

Simulation of diploid GA with explicit subpopula-
tions and migration.

GA-directed parameter search for evaluation func-
tion in hexapawn-like game.

Probabilistic automaton identification attempt via
GA.

Adaptive document description using GA.
GA search for game evaluation function.

278 L.B. BOOKER ET AL.

Cat. Year Investigators Description

Engineering
E 1981 Goldberg

E 1982 Etter, Hicks, Cho
E 1983 Goldberg

E 1985 Davis
E 1985 Davis, Smith
E 1985 Fourman
E 1985 Goldberg, Kuo

E 1986 Goldberg, Samtani
E 1986 Minga
E 1987 Davis, Coombs

E 1987 Davis, Ritter

Function optimization
FO 1985 Ackley
FO 1985 Brady

FO 1985 Davis
FO 1985 Grefenstette, Gopal,

Rosmaita, van Gucht
FO 1986 Goldberg, Smith

Genetic algorithm parameters
GA 1971 Hollstien

GA 1972 Bosworth, Foo,
Zeigler

GA 1972 Frantz

GA 1973 Martin

GA 1975 DeJong

GA 1976 Bethke

GA 1977 Mercer
GA 1981 Bethke

GA 1981 Brindle
GA 1981 Grefenstette

GA 1983 Pettit, Swigger

GA 1983 Wetzel
GA 1984 Mauldin

Mass-spring-dashpot system identification with sim-
ple GA.

Recursive adaptive filter design using a simple GA.
Steady state and transient optimization of gas

pipeline using GA.
Outline of job shop scheduling procedure using GA.
VLSI circuit layout via GA.
VLSI layout compaction via GA.
On-off, steady state optimization of oil pump-

pipeline system via GA.
Structural optimization (plane truss) via GA.
Aircraft landing strut weight optimization via GA.
Communications network link size optimization

using GA plus advanced operators.
Classroom scheduling via simulated annealing with

meta-level GA.

Connectionist algorithm with GA-like properties.
Traveling salesman problem via genetic-like

operators.
Bin-packing and graph-coloring problems via GA.
Traveling salesman problem via knowledge-augmen-

ted genetic operators.
Blind knapsack problem via simple GA.

2-D function optimization with mating and selection
rules.

GA-like operators on simulated genes with sophisti-
cated mutation.

Investigation of positional nonlinearity and in-
version.

Theoretical study of GA-like probabilistic al-
gorithms.

Base-line parametric study of simple GA in 5-func-
tion testbed.

Brief theoretical investigation of possible parallel
GA implementation.

GA controlled by meta-level GA.
Application of Walsh functions to schema average

analysis.
Investigation of selection and dominance in GAs.
Brief theoretical investigation of possible parallel

GA implementation.
Cursory investigation of GAs in nonstationary

search problems.
Traveling salesman problem via GA.
Study of several heuristics to maintain diversity in

simple GA.

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 279

Cat. Year Investigators Description

GA 1985 Baker

GA 1985 Booker

GA 1985 Goldberg, Lingle

GA 1985 Schaffer

GA 1986 Goldberg

GA 1986 Grefenstette
GA 1986 Grefenstette,

Fitzpatrick
GA 1987 Goldberg

Image processing
IP 1970 Cavicchio

IP 1984 Fitzpatrick,
Grefenstette, van Gucht

IP 1985 Englander
IP 1985 Gillies

Physical sciences
PS 1985 Shaefer

Social sciences
SS 1979 Reynolds

SS 1981 Smith, DeJong

SS 1985 Axelrod

SS 1985 Axelrod

Trial of ranking selection procedure on DeJong test-
bed.

Suggestion for partial match scores, sharing, and
mating restrictions.

Traveling salesman problem using partially matched
cross-over and schema analysis.

Multi-objective optimization using GAs with sub-
populations.

Maximization of marginal schema content by optimi-
zation of estimated population size.

GA controlled by meta-level GA.
Test of simple genetic algorithm with noisy func-

tions.
Analysis of minimal deceptive problem for simple

GAs.

Selection of detectors for pixel-based pattern recog-
nition.

Image registration via GA to highlight selected prop-
erties.

Selection of detectors for known image classification.
GA search for diagnostic image feature subroutines

in Cytocomputer.

Nonlinear equation solving with GA for fitting
molecular potential surfaces.

GA-guided adaptation in hunter gatherer/agricultur-
al transition model.

Calibration of population migration model using GA
search.

Iterated prisoner's dilemma problem solution using
GA.

Simulation of the evolution of behavioral norms with
GA.

Appendix B. Genetic Algorithm Applications in Machine
Learning

Cat. Year Investigators Description

Business
BU 1986 Frey
BU 1986 Thompson, Thompson

Architectural classification using CS.
GA search for rule sets to predict company pro-

fitability.

280 L.B. BOOKER ET AL.

Cat. Year Investigators Description

Computer science
CS 1980 Smith

CS 1985 Cramer

CS 1985 Forrest
CS 1986 Riolo

CS 1986 Riolo
CS 1986 Robertson

CS 1986 Zeigler

CS 1986 Zhou

Engineering
E 1983 Goldberg

E 1984 Schaffer
E 1985 Kuchinski
E 1986 Liepins, HiUiard
E 1986 Wilson

Psychology and social sciences
SS 1978 Holland, Reitman

SS 1982 Booker

SS 1983 Wilson
SS 1985 Axelrod

SS 1985 Wilson

SS 1986 Schrodt
SS 1986 Haslev (Skanland)

Draw poker bet decisions learned by pure GA (LS-
1).

GA learning of multiplication task using assembler-
like instruction set.

Interpreter to convert KL-ONE networks to CSs.
General-purpose C-package for classifier system

study.
Letter sequence prediction task via CS.
LISP version of letter sequence prediction task im-

plemented on Connection Machine
GA searches for rule sets in symbolic rule-based

system.
GA builds finite automata from I /O examples.

Pole-balancing task and gas pipeline control tasks
learned by CS.

LS-2 (see Smith) learns parity and signal problems.
GA search for battle management system rules.
Simple scheduling problem learned via CS.
Boolean multiplexer task learned via CS.

CS-1 learns to transfer information between maze-
running tasks.

Animal-like automaton with CS "brain" learns in
simple 2-D environment.

Video eye learns to focus when driven by CS.
GA searches for rule-based strategies in iterated

prisoner's dilemma.
ANIMAT automaton with CS "brain" learns to

acquire obstacle-hidden objects in 2-D en-
vironment.

Prediction of international events using CS.
Past tense for Norwegian verb forms learned by CS.

REFERENCES

1. Anderson, J.R., The Architecture of Cognition (Harvard University Press, Cambridge, MA,
1983).

2. Axelrod, R., The evolution of strategies in the iterated prisoner's dilemma, in: L. Davis (Ed.),
Genetic Algorithms and Simulated Annealing (Pitman, London, 1987).

3. Bagley, J.D., The behavior of adaptive systems which employ genetic and correlation
algorithms, Ph.D. Dissertation, University Microfilms No. 68-7556, University of Michigan,
Ann Arbor, MI (1967).

4. Bethke, A.D., Genetic algorithms as function optimizers, Ph.D. Dissertation, University
Microfilms No. 8106101, University of Michigan, Ann Arbor, MI (1981).

5. Bledsoe, W.W. and Browning, I., Pattern recognition and reading by machine, in: Proceedings
Eastern Joint Computer Conference (1959) 225-232.

6. Booker, L.B., Intelligent behavior as an adaptation to the task environment, Ph.D. Disserta-
tion, University Microfilms No. 8214966, University of Michigan, Ann Arbor, MI (1982).

CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 281

7. Cavicchio, D.J., Adaptive search using simulated evolution, Ph.D. Dissertation, University of
Michigan, Ann Arbor, MI (1970).

8. Davis, L.D., Applying adaptive algorithms to epistatic domains, in: Proceedings IJCA1-85,
Los Angeles, CA (1985) 162-164.

9. Davis, L.D., Job shop scheduling with genetic algorithms, in: J.J. Grefenstette (Ed.),
Proceedings of an International Conference on Genetic Algorithms and Their Applications
(Carnegie-Mellon University Press, Pittsburgh, PA, 1985) 136-140.

10. Davis, L.D., Genetic Algorithms and Simulated Annealing (Morgan Kaufmann, Los Altos,
CA, 1987).

11. DeJong, K.A., An analysis of the behavior of a class of genetic adaptive systems, Ph.D.
Dissertation, University Microfilms No. 76-9381, University of Michigan, Ann Arbor, MI
(1975).

12. Erman, L.D., Hayes-Roth, F., Lesser, V.R. and Reddy, D.R., The Hearsay-II speech-
understanding system: Integrating knowledge to resolve uncertainty, Comput. Surv. 12 (1980)
213-253.

13. Fahlman, S., NETL: A System for Representing and Using Real World Knowledge (MIT Press,
Cambridge, MA, 1979).

14. Farmer, J.D., Packard, N.H. and Perelson, A.S., The immune system and artificial intellig-
ence, in: J.J, Grefenstette (Ed.), Proceedings of an International Conference on Genetic
Algorithms and Their Applications (Carnegie-Mellon University Press, Pittsburgh, PA, 1985)
supplement; revised: Phys. D 22 (1986) 187-204.

15. Forrest, S., A study of parallelism in the classifier system and its application to classification in
KL-ONE semantic networks, Ph.D. Dissertation, University of Michigan, Ann Arbor, MI
(1985).

16. Fourman, M.P., Compaction of symbolic layout using genetic algorithms, in: J.J. Grefenstette
(Ed.), Proceedings of an International Conference on Genetic Algorithms and Their Applica-
tions (Carnegie-Mellon University Press, Pittsburgh, PA, 1985) 141-153.

17. Frantz, D.R., Non-linearities in genetic adaptive search, Ph.D. Dissertation, University
Microfilms No. 73-11116, University of Michigan, Ann Arbor, MI (1973).

18. Goldberg, D.E., Computer-aided gas pipeline operation using genetic algorithms and rule
learning, Ph.D. Dissertation, University Microfilms No. 8402282, University of Michigan, Ann
Arbor, MI (1983).

19. Goldberg, D.E. and Lingle, R., Alleles, loci, and the travelling salesman problem, in: J.J.
Grefenstette (Ed.), Proceedings of an International Conference on Genetic Algorithms and
Their Applications (Carnegie-Mellon University Press, Pittsburgh, PA, 1985) 154-159.

20. Grefenstette, J.J., Genetic Algorithms and Their Applications (Erlbaum, Hillsdale, NJ, 1987).
21. Grefenstette, J.J., Gopal, R., Rosmaita, B.J. and van Gucht, D., Genetic algorithms for the

traveling salesman problem, in: J.J. Grefenstette (Ed.), Proceedings of an International
Conference on Genetic Algorithms and Their Applications (Carnegie-Mellon University Press,
Pittsburgh, PA, 1985) 160-168.

22. Hayes-Roth, F. and McDermott, J., An interference matching technique for inducing abstrac-
tions, Commun. ACM 21 (1978) 401-410.

23. Hinton, G.E. and Anderson, J.A., Parallel Models of Associative Memory (Erlbaum, Hills-
dale, NJ, 1981).

24. Hinton, G.E., McClelland, J.L. and Rumelhart, D.E., Distributed representations, in: D.E.
Rumelhart and J.L. McClelland (Eds.), Parallel Distributed Processing, I: Foundations (MIT
Press, Cambridge, MA, 1986).

25. Holland, J.H., Outline for a logical theory of adaptive systems, J. ACM 3 (1962) 297-314.
26. Holland, J.H., Processing and processors for schemata, in: E.L. Jacks (Ed.), Associative

Information Processing (American Elsevier, New York, 1971) 127-146.
27. Holland, J.H., Genetic algorithms and the optimal allocation of trials, SlAM J. Comput. 2

(1973) 88-105.
28. Holland, J.H., Adaptation in Natural and Artificial Systems (University of Michigan Press,

Ann Arbor, MI, 1975).

282 L.B. BOOKER ET AL.

29. Holland, J.H., Adaptation, in: R. Rosen and F.M. Snell (Eds.), Progress in Theoretical
Biology IV (Academic Press, New York, 1976) 263-293.

30. Holland, J.H., Adaptive algorithms for discovering and using general patterns in growing
knowledge-bases, Int. J. Policy Anal. Inf. Syst. 4 (1980) 245-268.

31. Holland, J.H., Escaping brittleness: The possibilities of general purpose learning algorithms
applied to parallel rule-based systems, in: R.S. Michalski, J.G. Carbonell and T.M. Mitchell
(Eds.), Machine Learning: An Artificial Intelligence Approach 2 (Morgan Kaufmann, Los
Altos, CA, 1986) 593-623.

32. Holland, J.H., A mathematical framework for studying learning in classifier systems, Phys. D
22 (1986) 307-317.

33. Holland, J.H., Holyoak, K.J., Nisbett, R.E. and Thagard, P.R., Induction: Processes of
Inference, Learning, and Discovery (MIT Press, Cambridge, MA 1986).

34. Holland, J.H. and Reitman, J.S., Cognitive systems based on adaptive algorithms, in: D.A.
Waterman and F. Hayes-Roth (Eds.), Pattern-Directed Inference Systems (Academic Press,
New York, 1978) 313-329.

35. Hollstien, R.B., Artificial genetic adaptation in computer control systems, Ph.D. Dissertation,
University Microfilms No. 71-23773, University of Michigan, Ann Arbor, MI (1971).

36. Hopfield, J.J., Neural networks and physical systems with emergent collective computational
abilities, Proc. Nat. Acad. Sci. USA 79 (1982) 2554-2558.

37. Jain, R., Dynamic scene analysis using pixel-based processes, 1EEE Computer 14 (1981)
12-18.

38. Laird, J.E., Newell, A. and Rosenbloom, P.S., SOAR: An architecture for general intellig-
ence, Artificial Intelligence 33 (1987) 1-64.

39. Mitchell, T.M., Version spaces: A candidate elimination approach to rule learning, in:
Proceedings IJCAI-77, Cambridge, MA (1977).

40. Newell, A. and Simon, H.A., Human Problem Solving (Prentice-Hall, Englewood Cliffs, NJ,
1972).

41. Rosenberg, R.S., Simulation of genetic populations with biochemical properties. Ph.D.
Dissertation, University Microfilms No. 67-17836, University of Michigan, Ann Arbor, MI
(1967).

42. Samuel, A.L., Some studies in machine learning using the game of checkers, IBM J. Res. Dev.
3 (1959) 210-229.

43. Schleidt, W.M., Die historische Entwicklung der Begriffe "Angeborenes Auslosendes
Schema" und "Angeborener Auslosmechanismus", Z. Tierpsychol. 21 (1962) 235-256.

44. Schrodt, P.A., Predicting international events, Byte 11 (12) (1986) 177-192.
45. Simon, H.A., The Sciences of the Artificial (MIT Press, Cambridge, MA, 1969).
46. Smith, S.F., A learning system based on genetic adaptive algorithms, Ph.D. Dissertation,

University of Pittsburg, Pittsburgh, PA (1980).
47. Sutton, R.S., Learning to predict by the methods of temporal difference, Tech. Rept.

TR87-509.1, GTE, Waltham, MA (1987).
48. Sutton, R.S. and Barto, A.G., Toward a modern theory of adaptive networks: Expectation

and prediction, Psychol. Rev. 88 (1981) 135-170.
49. Valiant, L.G., A theory of the learnable, Commun. ACM 27 (1984) 1134-1142.
50. Waterman, D.A., Generalization learning techniques for automating the learning of heuristics,

Artificial Intelligence 1 (1970) 121-170.
51. Wilson, S.W., On the retinal-cortical mapping, Int. J. Man-Mach. Stud. 18 (1983) 361-389.
52. Wilson, S.W., Knowledge growth in an artificial animal, in: J.J. Grefenstette (Ed.), Proceed-

ings of an International Conference on Genetic Algorithms and Their Applications (Carnegie-
Mellon University Press, Pittsburgh, PA, 1985) 16-23.

53. Winston, P.H., Learning structural descriptions from examples, in: P.H. Winston (Ed.), The
Psychology of Computer Vision (McGraw-Hill, New York, 1975).

