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ABSTRACT 

Classifier systems are massively parallel, message-passing, rule-based systems that learn through 
credit assignment (the bucket brigade algorithm) and rule discovery (the genetic algorithm). They 
typically operate in environments that exhibit one or more of the following characteristics: (1) 
perpetually novel events accompanied by large amounts of  noisy or irrelevant data; (2) continual, 
often real-time, requirements for action; (3) implicitly or inexactly defined goals; and (4) sparse 
payoff or reinforcement obtainable only through long action sequences. Classifier systems are 
designed to absorb new information continuously from such environments, devising sets of compet- 
ing hypotheses (expressed as rules) without disturbing significantly capabilities already acquired. 
This paper reviews the definition, theory, and extant applications of classifier systems, comparing 
them with other machine learning techniques, and closing with a discussion of advantages, problems, 
and possible extensions of  classifier systems. 

1. Introduction 

Consider the simply defined world of checkers. We can analyze many of its 
complexities and with some real effort we can design a system that plays a 
pretty decent game. However, even in this simple world novelty abounds. A 
good player will quickly learn to confuse the system by giving play some novel 
twists. The real world about us is much more complex. A system confronting 
this environment faces perpetual novelty--the flow of visual information 
impinging upon a mammalian retina, for example, never twice generates the 
same firing pattern during the mammal's lifespan. How can a system act other 
than randomly in such environments? 

It is small wonder, in the face of such complexity, that even the most 
carefully contrived systems err significantly and repeatedly. There are only two 
cures. An outside agency can intervene to provide a new design, or the system 
can revise its own design on the basis of its experience. For the systems of most 
interest here----cognitive systems or robotic systems in realistic environments, 
ecological systems, the immune system, economic systems, and so on--the first 
option is rarely feasible. Such systems are immersed in continually changing 
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environments wherein timely outside intervention is difficult or impossible. The 
only option then is learning or, using the more inclusive word, adaptation. 

In broadest terms, the object of a learning system, natural or artificial, is the 
expansion of its knowledge in the face of uncertainty. More directly, a learning 
system improves its performance by generalizing upon past experience. Clear- 
ly, in the face of perpetual novelty, experience can guide future action only if 
there are relevant regularities in the system's environment. Human experience 
indicates that the real world abounds in regularities, but this does not mean 
that it is easy to extract and exploit them. 

In the study of artificial intelligence the problem of extracting regularities is 
the problem of discovering useful representations or categories. For a machine 
learning system, the problem is one of constructing relevant categories from 
the system's primitives (pixels, features, or whatever else is taken as given). 
Discovery of relevant categories is only half the job; the system must also 
discover what kinds of action are appropriate to each category. The overall 
process bears a close relation to the Newell-Simon [40] problem solving 
paradigm, though there are differences arising from problems created by 
perpetual novelty, imperfect information, implicit definition of the goals, and 
the typically long, coordinated action sequences required to attain goals. 

There is another problem at least as difficult as the representation problem. 
In complex environments, the actual attainment of a goal conveys little 
information about the overall process required to attain the goal. As Samuel 
[42] observed in his classic paper, the information (about successive board 
configurations) generated during the play of a game greatly exceeds the few 
bits conveyed by the final win or a loss. In games, and in most realistic 
environments, these "intermediate" states have no associated payoff or direct 
information concerning their "worth." Yet they play a stage-setting role for 
goal attainment. It may be relatively easy to recognize a triple jump as a 
critical step toward a win; it is much less easy to recognize that something done 
many moves earlier set the stage for the triple jump. How is the learning 
system to recognize the implicit value of certain stage-setting actions? 

Samuel points the way to a solution. Information conveyed by intermediate 
states can be used to construct a model of the environment, and this model can 
be used in turn to make predictions. The verification or falsification of a 
prediction by subsequent events can be used then to improve the model. The 
model, of course, also includes the states yielding payoff, so that predictions 
about the value of certain stage-setting actions can be checked, with revisions 
made where appropriate. 

In sum, the learning systems of most interest here confront some subset of 
the following problems: 

(1) a perpetually novel stream of data concerning the environment, often 
noisy or irrelevant (as in the case of mammalian vision), 
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(2) continual, often real-time, requirements for action (as in the case of an 
organism or robot, or a tournament game), 

(3) implicitly or inexactly defined goals (such as acquiring food, money, or 
some other resource, in a complex environment), 

(4) sparse payoff or reinforcement, requiring long sequences of action (as in 
an organism's search for food, or the play of a game such as chess or go). 

In order to tackle these problems the learning system must: 

(1) invent categories that uncover goal-relevant regularities in its en- 
vironment, 

(2) use the flow of information encountered along the way to the goal to 
steadily refine its model of the environment, 

(3) assign appropriate actions to stage-setting categories encountered on the 
way to the goal. 

It quickly becomes apparent that one cannot produce a learning system of 
this kind by grafting learning algorithms onto existing (nonlearning) AI 
systems. The system must continually absorb new information and devise 
ranges of competing hypotheses (conjectures, plausible new rules) without 
disturbing capabilities it already has. Requirements for consistency are re- 
placed by competition between alternatives. Perpetual novelty and continual 
change provide little opportunity for optimization, so that the competition aims 
at satisficing rather than optimization. In addition, the high-level interpreters 
employed by most (nonlearning) AI systems can cause difficulties for learning. 
High-level interpreters, by design, impose a complex relation between primi- 
tives of the language and the sentences (rules) that specify actions. Typically 
this complex relation makes it difficult to find simple combinations of primi- 
tives that provide plausible generalizations of experience. 

A final comment before proceeding: Adaptive processes, with rare excep- 
tions, are far more complex than the most complex processes studied in the 
physical sciences. And there is as little hope of understanding them without the 
help of theory as there would be of understanding physics without the 
attendant theoretical framework. Theory provides the maps that turn an 
uncoordinated set of experiments or computer simulations into a cumulative 
exploration. It is far from clear at this time what form a unified theory of 
learning would take, but there are useful fragments in place. Some of these 
fragments have been provided by the connectionists, particularly those follow- 
ing the paths set by Sutton and Barto [98], Hinton [23], Hopfield [36] and 
others. Other fragments come from theoretical investigations of complex 
adaptive systems such as the investigations of the immune system pursued by 
Farmer, Packard and Perelson [14]. Still others come from research centering 
on genetic algorithms and classifier systems (see, for example, [28]). This paper 
focuses on contributions deriving from the latter studies, supplying some 
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illustrations of the interaction between theory, computer modeling, and data in 
that context. A central theoretical concern is the process whereby structures 
(rule clusters and the like) emerge in response to the problem solving demands 
imposed by the system's environment. 

2. Overview 

The machine learning systems discussed in this paper are called classifier 
systems. It is useful to distinguish three levels of activity (see Fig. 1) when 
looking at learning from the point of view of classifier systems: 

At the lowest level is the performance system. This is the part of the overall 
system that interacts directly with the environment. It is much like an expert 
system, though typically less domain-dependent. The performance systems we 
will be talking about are rule-based, as are most expert systems, but they are 
message-passing, highly standardized, and highly parallel. Rules of this kind 
are called classifiers. The performance system is discussed in detail in Section 
3; Section 4 relates the terminology and procedures of classifier systems to their 
counterparts in more typical AI systems. 

Because the system must determine which of its rules are effective, a second 
level of activity is required. Generally the rules in the performance system are 
of varying usefulness and some, or even most, of them may be incorrect. 
Somehow the system must evaluate the rules. This activity is often called credit 
assignment (or apportionment of credit); accordingly this level of the system 
will be called the credit assignment system. The particular algorithms used here 
for credit assignment are called bucket brigade algorithms; they are discussed in 
Section 5. 

The third level of activity, the rule discovery system, is required because, 
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Fig. 1. General organization of a classifier system. 
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even after the system has effectively evaluated millions of rules, it has tested 
only a minuscule portion of the plausibly useful rules. Selection of the best of 
that minuscule portion can give little confidence that the system has exhausted 
its possibilities for improvement; it is even possible that none of the rules it has 
examined is very good. The system must be able to generate new rules to 
replace the least useful rules currently in place. The rules could be generated at 
random (say by "mutation" operators) or by running through a predetermined 
enumeration, but such "experience-independent" procedures produce 
improvements much too slowly to be useful in realistic settings. Somehow the 
rule discovery procedure must be biased by the system's accumulated ex- 
perience. In the present context this becomes a matter of using experience to 
determine useful "building blocks" for rules; then new rules are generated by 
combining selected building blocks. Under this procedure the new rules are at 
least plausible in terms of system experience. (Note that a rule may be 
plausible without necessarily being useful of even correct.) The rule discovery 
system discussed here employs genetic algorithms. Section 6 discusses genetic 
algorithms. Section 7 relates the procedures implicit in genetic algorithms to 
some better-known machine learning procedures. 

Section 8 reviews some of the major applications and tests of genetic 
algorithms and classifier systems, while the final section of the paper discusses 
some open questions, obstacles, and major directions for future research. 

Historically, our first attempt at understanding adaptive processes (and 
learning) turned into a theoretical study of genetic algorithms. This study was 
summarized in a book titled Adaptation in Natural and Artificial Systems 
(Holland [28]). Chapter 8 of that book contained the germ of the next phase. 
This phase concerned representations that lent themselves to manipulation by 
genetic algorithms. It built upon the definition of the broadcast language 
presented in Chapter 8, simplifying it in several ways to obtain a standardized 
class of parallel, rule-based systems called classifier systems. The first descrip- 
tions of classifier systems appeared in Holland [29]. This led to concerns with 
apportioning credit in parallel systems. Early considerations, such as those of 
Holland and Reitman [34], gave rise to an algorithm called the bucket brigade 
algorithm (see [31]) that uses only local interactions between rules to distribute 
credit. 

3. Classifier Systems 

The starting point for this approach to machine learning is a set of rule-based 
systems suited to rule discovery algorithms. The rules must lend themselves to 
processes that extract and recombine "building blocks" from currently useful 
rules to form new rules, and the rules must interact simply and in a highly 
parallel fashion. Section 4 discusses the reasons for these requirements, but we 
define the rule-based systems first to provide a specific focus for that dis- 
cussion. 
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3.1. Definition of the basic elements 

Classifier systems are parallel, message-passing, rule-based systems wherein all 
rules have the same simple form. In the simplest version all messages are 
required to be of a fixed length over a specified alphabet, typically k-bit binary 
strings. The rules are in the usual condition~action form. The condition part 
specifies what kinds of messages satisfy (activate) the rule and the action part 
specifies what message is to be sent when the rule is satisfied. 

A classifier system consists of four basic parts (see Fig. 2). 

- T h e  input interface translates the current state of the environment into 
standard messages. For example, the input interface may use property detec- 
tors to set the bit values (1: the current state has the property, 0: it does not) at 
given positions in an incoming message. 

- The classifiers, the rules used by the system, define the system's procedures 
for processing messages. 

- T h e  message list contains all current messages (those generated by the 
input interface and those generated by satisfied rules). 

- The output interface translates some messages into effector actions, actions 
that modify the state of the environment. 

A classifier system's basic execution cycle consists of the following steps: 

Step 1. Add all messages from the input interface to the message list. 
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Step 2. Compare all messages on the message list to all conditions of all 
classifiers and record all matches (satisfied conditions). 

Step 3. For each set of matches satisfying the condition part of some 
classifier, post the message specified by its action part to a list of new messages. 

Step 4. Replace all messages on the message list by the list of new messages. 
Step 5. Translate messages on the message list to requirements on the 

output interface, thereby producing the system's current output. 
Step 6. Return to Step 1. 

Individual classifiers must have a simple, compact definition if they are to 
serve as appropriate grist for the learning mill; a complex, interpreted defini- 
tion makes it difficult for the learning algorithm to find and exploit building 
blocks from which to construct new rules (see Section 4). 

The major technical hurdle in implementing this definition is that of provid- 
ing a simple specification of the condition part of the rule. Each condition must 
specify exactly the set of messages that satisfies it. Though most large sets can 
be defined only by an explicit listing, there is one class of subsets in the 
message space that can be s~ecified quite compactly, the hyperplanes in that 
space. Specifically, let {1, 0} be the set of possible k-bit messages; if we use 
" # "  as a "don't care" symbol, then the set of hyperplanes can be designated 
by the set of all ternary strings of length k over the alphabet {1, 0, # ) .  For 
example, the string 1 # # . . .  # designates the set of all messages that start with 
a 1, while the string 0 0 . . .  0#  specifies the set { 0 0 . . .  01, 0 0 . . .  00) consisting 
of exactly two messages, and so on. 

It is easy to check whether a given message satisfies a condition. The 
condition and the message are matched position by position, and if the entries 
at all non-# positions are identical, then the message satisfies the condition. 
The notation is extended by allowing any string c over {1, 0, #} to be prefixed 
by a " - "  with the intended interpretation that - c  is satisfied just in case no 
message satisfying c is present on the message list. 

3.2. Examples 

At this point we can introduce a small classifier system that illustrates the 
"programming" of classifiers. The sets of rules that we'll look at can be thought 
of as fragments of a simple simulated organism or robot. The system has a 
vision field that provides it with information about its environment, and it is 
capable of motion through that environment. Its goal is to acquire certain kinds 
of objects in the environment ("targets") and avoid others ("dangers"). Thus, 
the environment presents the system with a variety of problems such as "What 
sequence of outputs will take the system from its present location to a visible 
target?" The system must use classifiers with conditions sensitive to messages 
from the input interface, as well as classifiers that integrate the messages from 
other classifiers, to send messages that control the output interface in appropri- 
ate ways. 
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In the examples that follow, the system's input interface produces a message 
for each object in the vision field. A set of detectors produces these messages 
by inserting in them the values for a variety of properties, such as whether or 
not the object is moving, whether it is large or small, etc. The detectors and 
the values they produce will be defined as needed in the examples. 

The system has three kinds of effectors that determine its actions in the 
environment. One effector controls the VISION VECTOR, a vector indicating the 
orientation of the center of the vision field. The VISION VECTOR can be rotated 
incrementally each time step (V-LEFF or V-RIGHT, say in 15-degree increments). 
The system also has a MOTION VECTOR that indicates its direction of motion, 
often independent of the direction of vision (as when the system is scanning 
while it moves). The second effector controls rotation of the MOTION VECTOR 
(M-LEFT or M-RIGHT) in much the same fashion as the first effector controls the 
VISION VECTOR. The second effector may also align the MOTION VECTOR with 
the VISION VECTOR, or set it in the opposite direction (ALIGN and OPPOSE, 
respectively), to facilitate behaviors such as pursuit and flight. The third 
effector sets the rate of motion in the indicated direction (FAST, CRUISE, SLOW, 
STOP). The classifiers process the information produced by the detectors to 
provide sequences of effector commands that enable the system to achieve 
goals. 

For the first examples let the system be supplied with the following property 
detectors: 

1, if the object is moving, 
d l =  0 ,  otherwise; 

(0, 0) ,  if the object is centered in the vision field, 
(d2, d3) = ~(1, 0 ) ,  if the object is left of center, 

[ (0 ,  1),  if the object is right of center ; 

1, if the system is adjacent to the object ,  
d4 : 0 ,  otherwise ; 

1, if the object is large, 
d s=  0,  otherwise; 

1, if the object is striped, 
d6 --- 0,  otherwise. 

Let the detectors specify the rightmost six bits of messages from the input interface, 
d, setting the rightmost bit, d 2 the next bit to the left, etc. (see Fig. 3). 

Example 3.1. A simple stimulus-response classifier. 

IF there is "prey" (small, moving, nonstriped object), centered in 
the vision field (centered), and not adjacent (nonadjacent), 

THEN move toward the object (ALIGN) rapidly (FAST). 
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Fig. 3. Input interface for a simple classifier system. 

Somewhat fancifully, we can think of the system as an "insect eater" that seeks 
out small, moving objects unless they are striped ("wasps"). To implement this 
rule as a classifier we need a condition that attends to the appropriate detector 
values. It is also important that the classifier recognize that the message is 
generated by the input interface (rather than internally). To accomplish this we 
assign messages a prefix or tag that identifies their ofigin--a two-bit tag that 
takes the value (0, 0) for messages from the input interface will serve for 
present purposes (see Example 3.5 for a further discussion of tags). Following 
the conventions of the previous subsection the classifier has the condition 

00########000001, 

where the leftmost two loci specify the required tag, the # specify the loci 
(detectors) not attended to, and the rightmost 6 loci specify the required 
detector values (d 1 = 1 = moving, being the fightmost locus, etc.). When this 
condition is satisfied, the classifier sends an outgoing message, say 

0100000000000000, 

where the prefix 01 indicates that the message is not from the input interface. 
(Though these examples use 16-bit messages, in realistic systems much longer 
messages would be advantageous.) We can think of this message as being used 
directly to set effector conditions in the output interface. For convenience 
these effector settings, ALIGN and FAST in the present case, will be indicated in 
capital letters at the fight end of the classifier specification. The complete 
specification, then, is 

0 0 # # # # # # # # 0 0 0 0 0 1  /0100000000000000, ALIGN, FAST. 
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Example 3.2. A set of classifiers detecting a compound object defined by the 
relations between its parts. 

The following pair of rules emits an identifying message when there is a 
moving T-shaped object in the vision field. 

IF there is a centered object that is large, has a long axis, and is 
moving along the direction of that long axis, 

THEN move the vision vector FORWARD (along the axis in the 
direction of motion) and record the presence of a moving object 
of type 'T ' .  

IF there was a centered object of type "1" observed on the previous 
time step, and IF there is currently a centered object in contact 
with 'T '  that is large, has a long axis, and is moving crosswise to 
the direction of that long axis, 

THEN record the presence of a moving object of type "T" (blunt 
end forward). 

The first of these rules is "triggered" whenever the system "sees" an object 
moving in the same direction as its long axis. When this happens the system 
scans forward to see if the object is preceded by an attached cross-piece. The 
two rules acting in concert detect a compound object defined by the relation 
between its parts (cf. Winston's [53] "arch"). Note that the pair of rules can be 
fooled; the moving "cross-piece" might be accidentally or temporarily in 
contact with the moving 'T' .  As such the rules constitute only a first approxi- 
mation or default, to be improved by adding additional conditions or exception 
rules as experience accumulates. Note also the assumption of some sophistica- 
tion in the input and output interfaces: an effector "subroutine" that moves the 
center of vision along the line of motion, a detector that detects the absence of 
a gap as the center of vision moves from one object to another, and beneath all 
a detector "subroutine" that picks out moving objects. Because these are 
intended as simple examples, we will not go into detail about the interfaces--- 
suffice it to say that reasonable approximations to such "subroutines" exist 
(see, for example, [37]). 

If we go back to our earlier fancy of the system as an insect eater, then 
moving T-shaped objects can be thought of as "hawks" (not too farfetched, 
because a "T" formed of two pieces of wood and moved over newly hatched 
chicks causes them to run for cover, see [43]). 

To redo these rules as classifiers we need two new detectors: 

dT={~' ,  
if the object is moving in the direction of its long axis, 
otherwise ; 

if the object is moving in the direction of its short axis, 
otherwise. 
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We also need a command for the effector subroutine that causes the vision 
vector to move up the long axis of an object in the direction of its motion, call 
it V-FORWARD. Finally, let the message 0100000000000001 signal the detection 
of the moving 'T '  and let the message 010000000006(~10 signal the detection of 
the moving T-shaped object. The classifier implementing the first rule then has 
the form 

0 0 # # # # # # 0 1 # 1 # 0 0 1  /0100000000000001, V-FORWARD. 

The second rule must be contingent upon b o t h  the just previous detection of 
the moving 'T ' ,  signalled by the message 0100000000000001, and the current 
presence of the cross-piece, signalled by a message from the environment 
starting with tag 00 and having the value 1 for detector d 8. 

0100000000000001, 0 0 # # # # # # 1 0 # 1 # 0 0 1  / 0100000000000010. 

Example 3.3. Simple memory. 
The following set of three rules keeps the system on alert status if there has 

been a moving object in the vision field recently. The duration of the alert is 
determined by a timer, called the ALERT TIMER, that is set by a message, say 
0100000000000011, when the object appears. 

IF there is a moving object in the vision field, 
THEN set the ALERT TIMER and send an alert message. 

IF the ALERT TIMER is not zero ,  
THEN send an alert message.  

IF there is n o  moving object in the vision field and the ALERT TIMER 
is not zero ,  

THEN decrement the ALERT TIMER. 

To translate these rules into classifiers we need an effector subroutine that sets 
the alert timer, call it SET ALERT, and another that decrements the alert timer, 
call it DECREMENT ALERT. We also need a detector that determines whether or 
not the alert timer is zero. 

I10 , if the ALERT TIMER is n o t  zero ,  
d9 -- , otherwise.  

The classifiers implementing the three rules then have the form 

0 0 # # # # # # # # # # # # # 1  / 0100000000000011, SET ALERT 
0 0 # # # # # 1 # # # # # # # #  / 0 1 ~ 1 1  
0 0 # # # # # 1 # # # # # # # 0  / DECREMENT ALERT. 
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Note that the first two rules send the same message, in effect providing an OR 

of the two conditions, because satisfying either the first condition o r  the second 
will cause the message to appear on the message list. Note also that these rules 
check on an i n t e r n a l  condition via the detector d9, thus providing a system that 
is no longer driven solely by external stimuli. 

Example 3.4. Building blocks. 
To illustrate the possibility of combining several active rules to handle 

complex situations we introduce the following three pairs of rules. 

(A) IF there is an alert and the moving object is near ,  
THEN move at FAST in the direction of the MOTION VECTOR. 

IF there is an alert and the moving object is fa r ,  
THEN move at CRUISE in the direction of the MOTION VECTOR. 

(B) IF there is an alert, and a small, nonstriped object in the vision 
field, 

THEN ALIGN the motion vector with the vision vector.  

IF there is an alert, and a large T-shaped object in the vision field, 
THEN OPPOSE the motion vector to the vision vector.  

(C) IF there is an alert, and a moving object in the vision field, 
THEN send a message that causes the vision effectors to CENTER the 

object .  

IF there is an alert, and n o  moving object in the vision field, 
THEN send a message that causes the vision effectors to SCAN. 

(Each of the rules in pair (C) sends a message that invokes additional rules. 
For example "centering" can be accomplished by rules of the form, 

IF there is an object in the left vision field, 
THEN execute V-LEFT. 

IF there is an object in the right vision field, 
THEN execute V-RIGHT. 

realized by the pair of classifiers 

0 0 # # # # # # # # # # # 1 0 #  / V-LEFT 
0 0 # # # # # # # # # # # 0 1 #  / V-RIGHT.) 

Any combination of rules obtained by activating one rule from each of the 
three subsets (A), (B), (C) yields a potentially useful behavior for the system. 
Accordingly the rules can be combined to yield behavior in eight distinct 
situations; moreover, the system need encounter only two situations (involving 
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disjoint sets of three rules) to test all six rules. The example can be extended 
easily to much larger numbers of subsets. The number of potentially useful 
combinations increases as an exponent of the number of subsets; that is, n 
subsets, of two alternatives apiece, yield 2 n distinct combinations of n simulta- 
neously active rules. Once again, only two situations (appropriately chosen) 
need be encountered to provide testing for all the rules. 

The six rules are implemented as classifiers in the same way as in the earlier 
examples, noticing that the system is put on alert status by using a condition 
that is satisfied by the alert message 0100000000000011. Thus the first rule 
becomes 

0100000000000011, 0 0 # # # # 0 # # # # # # # # 1  / FAST, 

where a new detector dl0 , supplying values at the tenth position from the fight 
in environmental messages, determines whether the object is far (value 1) or 
near (value 0). 

It is clear that the building block approach provides tremendous combina- 
torial advantages to the system (along the lines described so well by Simon 
[45]). 

Example 3.5. Networks and tagging. 
Networks are built up in terms of pointers that couple the elements (nodes) 

of the network, so the basic problem is that of supplying classifier systems with 
the counterparts of pointers. In effect we want to be able to couple classifiers 
so that activation of a classifier C in turn causes activation of the classifiers to 
which it points. The passing of activation between coupled classifiers then acts 
much like Fahlman's [13] marker-passing scheme, except that the classifier 
system is passing, and processing, messages. In general we will say a classifier 
C 2 is coupled to a classifier C 1 if some condition of C 2 is satisfied by the 
message(s) generated by the action part of C 1. Note that a classifier with very 
specific conditions (few #) will be coupled typically to only a few other 
classifiers, while a classifier with very general conditions (many #) will be 
coupled to many other classifiers. Looked at this way, classifiers with very 
specific conditions have few incoming "branches," while classifiers with very 
general conditions have many incoming "branches." 

The simplest way to couple classifiers is by means of tags, bits incorporated 
in the condition part of a classifier that serve as a kind of identifier or address. 
For example, a condition of the form 1 1 0 1 # # . . .  # will accept any message 
with the prefix 1101. Thus, to send a message to this classifier we need only 
prefix the message with the tag 1101. We have already seen an example of this 
use of tags in Example 3.1, where messages from the input interface are 
"addressed" only to classifiers that have conditions starting with the prefix 00. 
Because b bits yield 2 b distinct tags, and tags can be placed anywhere in a 
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condition (the component bits need not even be contiguous), large numbers of 
conditions can be "addressed" uniquely at the cost of relatively few bits. 

By using appropriate tags one can define a classifier that attends to a specific 
set of classifiers. Consider, for example, a pair of classifiers C1 and C 2 that send 
messages prefixed with 1101 and 1001, respectively. A classifier with the 
condition 1 1 0 1 # # . . .  # will attend only to C1, whereas a classifier with 
condition 1 # 0 1 # # . . .  # will attend to both C 1 and C 2. This approach, in 
conjunction with recodings (where the prefix of the outgoing message differs 
from that of the satisfying messages), provides great flexibility in defining the 
sets of classifiers to which a given classifier attends. Two examples will 
illustrate the possibilities: 

Example 3.5.1. Produdng a message in response to an arbitrarily chosen subset of 
messages. 

An arbitrary logical (boolean) combination of conditions can be realized through 
a combination of couplings and recodings. The primitives from which more com- 
plex expressions can be constructed are AND, OR, and NOT. An AND- 
condition is expressed by a single multi-condition classifier such as M1,M2/M, 
for M is only added to the message list if both M 1 and M 2 are on the list. Similarly the 
pair of classifiers M1/M and M z / M  express an OR-condition, for M is added to the 
message list if either MI or M 2 is on the list. NOT, of course, is expressed by a classifier 
with the condition - M. As an illustration, consider the boolean expression 

(M 1 AND M2) OR ((NOT M3) AND M4).  

This is expressed by the following set of classifiers with the message M 
appearing if and only if the boolean expression is satisfied. 

MI,M2/M , - M 3 , M J M  . 

The judicious use of # and recodings often substantially reduces the number of 
classifiers required when the boolean expressions are complex. 

Example 3.5.2. Representing a network 
The most direct way of representing a network is to use one classifier for 

each pointer (arrow) in the network (though it is often possible to find clean 
representations using one classifier for each node in the network). 

As an illustration of this approach consider the following network fragment 
(Fig. 4). In marker-passing terms, the ALERT node acquires a marker when 
there is a MOVING object in the vision field. For the purposes of this example, 
we will assume that the conjunction of arrows at the TARGET node is a 
requirement that all three nodes (ALERT, SMALL, and NOT STRIPED) be marked 
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Fig. 4. A network fragment. 

before TARGET is marked. Similarly, PURSUE will only be marked if both 
TARGET and NEAR are marked, etc. 

To transform this network into a set of classifiers, begin by assigning an 
identifying tag to each node. (The tags used in the diagram are 5-bit prefixes). 
The required couplings between the classifiers are then simply achieved by 
coordinating the tags used in conditions with the tags on the messages 
("markers") to be passed. Henceforth, we extend the notation to allow # ' s  in 
the action part of classifiers, where they designate pass-throughs: Wherever the 
message part contains a # ,  the bit value of the outgoing message is identical to 
the bit value of the message satisfying the classifier's first condition. That is, the 
bit value of the incoming (satisfying) message is "passed through" to the 
outgoing message. 

On the basis, assuming that the MOVING node is marked by the detector dl, 
the arrow between MOVING and ALERT would be implemented by the classifier 

0 0 # # # # # # # # # # # # # 1  / 0 1 0 0 1 # # # # # # # # # # #  , 

while the arrows leading from SMALL, NOT STRIPED, and ALERT to TARGET 
could be implemented by the single classifier 

~ # # # # # # # # ~ # # # # ,  0 1 ~ 1 # # # # # # # # # # # /  

1 0 ~ 1 # # # # # # # # # # # .  

In turn, the arrows from NEAR and TARGET to PURSUE could be implemented 
by 

0 0 # # # # 0 # # # # # # # # # ,  1 0 0 0 1 # # # # # # # # # # #  / 

1 1 0 0 1 # # # # # # # # # # #  . 
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The remainder of the network would be implemented similarly. 

Some comments are in order. First, the techniques used in Example 3.5.1 to 
implement boolean connectives apply equally to arrows. For example, we 
could set conditions so that TARGET would be activated if e i ther  MOVING and 
SMALL o r  MOVING and NOT STRIPED were activated. Relations between 
categories can be introduced following the general lines of Example 3.2. 
Second, tags can be assigned in ways that provide direct information about the 
structure of the network. For example, in the network above the first two bits 
of the tag indicate the level of the corresponding category (the number of 
arrows intervening between the category and the input from the environment). 
Finally, effector-oriented categories such as PURSUE would presumably "call 
subroutines" (sets of classifiers) that carry out the desired actions. For instance, 
the message from PURSUE would involve such operations as centering the 
object (see the classifiers just after (C) in Example 3.4), followed by rapid 
movement toward the object (see the classifier in Example 3.1). 

Forrest [15] has produced a general complier for producing coupled clas- 
sifiers implementing any semantic net specified by KL-ONE expressions. 

A final comment on the use of classifiers: Systems of classifiers, when used 
with learning algorithms, are n o t  adjusted for consistency. Instead individual 
rules are treated as partially confirmed hypotheses, and conflicts are resolved 
by competition. The specifics of this competition are presented in Section 5. 

4. The Relation of Classifier Systems to Other AI Problem 
Solving Systems 

As noted previously, many of the problem solving and learning mechanisms in 
classifier systems have been motivated by broad considerations of adaptive 
processes in both natural and artificial systems. This point of view leads to a 
collection of computation procedures that differ markedly from the symbolic 
methods familiar to the AI community. It is therefore worthwhile to step back 
from the details of classifier systems and examine the core ideas that make 
classifier systems an important part of machine learning research. 

When viewed solely as rule-based systems, classifier systems have two 
apparently serious weaknesses. First, the rules are written in a language that 
lacks descriptive power in comparison to what is available in other rule-based 
systems. The left-hand side of each rule is a simple conjunctive expression 
having a limited number of terms. It clearly cannot be used to express 
arbitrary, general relationships among attributes. Even though sets of such 
expressions are adequate in principle, most statements in the classifier language 
can be expressed more concisely or easily as statements in LISP or logic. 
Second, because several rules are allowed to fire simultaneously, control issues 
are raised that do not come up in conventional rule-based systems. Coherency 
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can be difficult to achieve in a distributed computation. Explicit machinery is 
needed for insuring a consistent problem solving focus, and the requisite 
control knowledge may be hard to come by unless the problem is inherently 
parallel to begin with. These two properties suggest an unconventional ap- 
proach if a classifier system is to be used to build a conventional expert system, 
though the computational completeness of classifier systems assures it could be 
done in the usual way. 

The key to understanding the advantages of classifier systems is to under- 
stand the kind of problems they were designed to solve. A perpetually novel 
stream of data constitutes an extremely complex and uncertain problem solving 
environment. A well-known strategy for resolving uncertainty is exemplified by 
the blackboard architecture (see [12]). By coordinating multiple sources of 
hierarchically organized knowledge, hypotheses and constraints, problem solv- 
ing can proceed in an opportunistic way, guided by the summation of converg- 
ing evidence and building on weak or partial results to arrive at confident 
conclusions. However, managing novelty requires more than this kind of 
problem solving flexibility. A system must dynamically construct and modify 
the representation of the problem itself! Flexibility is required at the more 
basic level of concepts, relations, and the way they are organized. Classifier 
systems were designed to make this kind of flexibility possible. 

Building blocks are the technical device used in classifier systems to achieve 
this flexibility. The message list is a global database much like a blackboard, 
but the possibilities for organizing hypotheses are not predetermined in 
advance. Messages and tags are building blocks that provide a flexible way of 
constructing arbitrary hierarchical or heterarchical associations among rules 
and concepts. Because the language is simple, modifying these associations can 
be done with local syntactic manipulations that avoid the need for complex 
interpreters or knowledge-intensive critics. In a similar way, rules themselves 
are building blocks for representing complex concepts, constraints and problem 
solving behaviors. Because rules are activated in parallel, new combinations of 
existing rules and rule clusters can be used to handle novel situations. This is 
tantamount to building knowledge sources as needed during problem solving. 

The apparently unsophisticated language of classifier systems is therefore a 
deliberate tradeoff of descriptive power for adaptive efficiency. A simple 
syntax yields building blocks that are easy to identify, evaluate, and recombine 
in useful ways. Moreover, the sacrifice of descriptive power is not as severe as 
it might seem. A complex environment will contain concepts that cannot be 
specified easily or precisely even with a powerful logic. For example, a concept 
might be an equivalence class in which the members share no common 
features. Or it might be a relation with a strength that is measured by the 
distance from some prototype. Or it might be a network of relationships so 
variable that there are no clearly defined concept boundaries. Rather than 
construct a syntactically complex representation of such a concept that would 
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be difficult to use or modify, a classifier system uses groups of rules as the 
representation. The structure of the concept is modeled by the organization, 
variability, and distribution of strength among the rules. Because the members 
of a group compete to become active (see Section 5), the appropriate aspects 
of the representation are selected only when they are relevant in a given 
problem solving context. The modularity of the concept thereby makes it easier 
to use as well as easier to modify. 

This distributed approach to representing knowledge is similar to the way 
complex concepts are represented in connectionist systems (see [24]). Both 
frameworks use a collection of basic computing elements as epistemic building 
blocks. Classifier systems use condition/action rules that interact by passing 
messages. Connectionist systems use simple processing units that send excita- 
tory and inhibitory signals to each other. Concepts are represented in both 
systems by the simultaneous activation of several computing elements. Every 
computing element is involved in representing several concepts, and the 
representations for similar concepts share elements. Retrieval of a concept is a 
constructive process that simultaneously activates constituent elements best 
fitting the current context. This technique has the important advantage that 
some relevant generalizations are achieved automatically. Modifications to 
elements of one representation automatically affect all similar representations 
that share those elements. 

There are important differences between classifier systems and connectionist 
systems, however, that stem primarily from the properties of the building 
blocks they use. The interactions among computing elements in a connectionist 
system make "best-fit" searches a primitive operation. Activity in a partial 
pattern of elements is tantamount to an incomplete specification of a concept. 
Such patterns are automatically extended into a complete pattern of activity 
representing the concept most consistent with the given specification. Content- 
addressable memory can therefore be implemented effortlessly. The same 
capability is achieved in a classifier system using pointers and tags to link 
related rules. A directed spreading activation is then required to efficiently 
retrieve the appropriate concept. 

Other differences relate to the way inductions are achieved. Modification of 
connection strengths is the only inductive mechanism available in most connec- 
tionist systems (see [36, 48]). Moreover, the rules for updating strength are 
part of the initial system design that cannot be changed except perhaps by 
tuning a few parameters. Classifier systems, on the other hand, permit a broad 
spectrum of inductive mechanisms ranging from strength adjustments to ana- 
logies. Many of these mechanisms can be controlled by, or can be easily 
expressed in terms of, inferential rules. These inferential rules can be 
evaluated, modified and used to build higher-level concepts in the same way 
that building blocks are used to construct lower-level concepts. 

Classifier systems are like connectionist systems in emphasizing micro- 
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structure, multiple constraints and the emergence of complex computations 
from simple processes. However, classifier systems use rules as a basic epi- 
stemic unit, thereby avoiding the reduction of all knowledge to a set of 
connection strengths. Classifier systems thus occupy an important middle 
ground between the symbolic and connectionist paradigms. 

We conclude this section by comparing classifier systems to SOAR (see [38]), 
another system architecture motivated by broad considerations of cognitive 
processes. SOAR is a general-purpose architecture for goal-oriented problem 
solving and learning. All behavior in SOAR is viewed as a search through a 
problem space for some state that satisfies the goal (problem solution) criteria. 
Searching a problem space involves selecting appropriate operators to trans- 
form the initial problem state, through a sequence of operations, into an 
acceptable goal state. Whenever there is an impasse in this process, such as a 
lack of sufficient criteria for selecting an operator, SOAR generates a subgoal to 
resolve the impasse. Achieving this subgoal is a new problem that SOAR solves 
recursively by searching through the problem space characterizing the subgoal. 
SOAR's knowledge about problem states, operators, and solution criteria is 
represented by a set of condition/action rules. When an impasse is resolved, 
SOAR seizes the opportunity to learn a new rule (or set of rules) that 
summarizes important aspects of the subgoal processing. The new rule, or 
chunk of knowledge, can then be used to avoid similar impasses in the future. 
The learning mechanism that generates these rules is called chunking. 

There are some obvious points of comparison between classifier systems and 
the SOAR architecture. Both emphasize the flexibility that comes from using 
rules as a basic unit of representation, and both emphasize the importance of 
tightly coupling induction mechanisms with problem solving. However, clas- 
sifier systems do not enforce any one particular problem solving regime the 
way SOAR does. At a broader level, these systems espouse very different points 
of view about the mechanisms necessary for intelligent behavior. SOAR empha- 
sizes the sufficiency of a single problem solving methodology coupled with a 
single learning mechanism. The only way to break a problem solving impasse is 
by creating subgoals, and the only way to learn is to add rules to the knowledge 
base by chunking. Classifier systems, on the other hand, place an emphasis on 
flexibly modeling the problem solving environment. A good model allows for 
prediction-based evaluation of the knowledge base, and the assignment of 
credit to the model's building blocks. This, in turn, makes it possible to 
modify, replace, or add to existing rules via inductive mechanisms such as the 
recombination of highly rated building blocks. Moreover, a model can provide 
the constraints necessary to generate plausible reformulations of the repre- 
sentation of a problem. To resolve problem solving impasses, then, classifier 
systems hypothesize new rules (by recombining building blocks), instead of 
recompiling (chunking) existing rules. 

We will make comparisons to other machine learning methods (Section 7), 



254 L.B. BOOKER ET AL. 

after we have defined and discussed the learning algorithms for classifier 
systems. 

5. Bucket Brigade Algorithms 

The first major learning task facing any rule-based system operating in a 
complex environment is the credit assignment task, Somehow the performance 
system must determine both the rules responsible for its successes and the 
representativeness of the conditions encountered in attaining the successes. 
(The reader will find an excellent discussion of credit assignment algorithms in 
Sutton's [47] report.) The task is difficult because overt rewards are rare in 
complex environments; the system's behavior is mostly "stage-setting" that 
makes possible later successes. The problem is even more difficult for parallel 
systems, where only some of the rules active at a given time may be 
instrumental in attaining later success. An environment exhibiting perpetual 
novelty adds still another order of complexity. Under such conditions the 
performance system can never have an absolute assurance that any of its rules 
is "correct." The perpetual novelty of the environment, combined with an 
always limited sampling of that environment, leaves a residue to uncertainty. 
Each rule in effect serves as a hypothesis that has been more or less confirmed. 

The bucket brigade algorithm is designed to solve the credit assignment 
problem for classifier systems. To implement the algorithm, each classifier is 
assigned a quantity called its strength. The bucket brigade algorithm adjusts the 
strength to reflect the classifier's overall usefulness to the system. The strength 
is then used as the basis of a competition. Each time step, each satisfied 
classifier makes a bid based on its strength, and only the highest bidding 
classifiers get their messages on the message list for the next time step. 

It is worth recalling that there are no consistency requirements on posted 
messages; the message list can hold any set of messages, and any such set can 
direct further competition. The only point at which consistency enters is at the 
output interface. Here, different sets of messages may specify conflicting 
responses. Such conflicts are again resolved by competition. For example, the 
strengths of the classifiers advocating each response can be summed so that one 
of the conflicting actions is chosen with a probability proportional to the sum of 
its advocates. 

The bidding process is specified as follows. Let s(C, t) be the strength of 
classifier C at time t. Two factors clearly bear on the bidding process: (1) 
relevance to the current situation, and (2) past "usefulness." Relevance is 
mostly a matter of the specificity of the rule's condition part--a more specific 
condition satisfied by the current situation conveys more information about 
that situation. The rule's strength is supposed to reflect its usefulness. In the 
simplest versions of the competition the bid is a product of these two factors, 
being 0 if the rule is irrelevant (condition not satisfied) or useless (strength 0), 
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and being high when the rule is highly specific to the situation (detailed 
conditions satisfied) and well confirmed as useful (high strength). 

To implement this bidding procedure, we modify Step 3 of the basic 
execution cycle (see Section 3.1). 

Step 3. For each set of matches satisfying the condition part of classifier C, 
calculate a bid according to the following formula, 

B( C, t) = bR( C)s( C, t) , 

where R(C) is the specificity, equal to the number of non-# in the condition 
part of C divided by the length thereof, and b is a constant considerably less 
than 1 (e.g., ~ or ~6 ). The size of the bid determines the probability that the 
classifier posts its message (specified by the action part) to the new message 
list. (E.g., the probability that the classifier posts its message might decrease 
exponentially as the size of the bid decreases.) 

The use of probability in the revised step assures that rules of lower strength 
sometimes get tested, thereby providing for the occasional testing of less- 
favored and newly generated (lower strength) classifiers ("hypotheses"). 

The operation of the bucket brigade algorithm can be explained informally 
via an economic analogy. The algorithm treats each rule as a kind of "mid- 
dleman" in a complex economy. As a "middleman," a rule only deals with its 
"suppliers"--the rules sending messages satisfying its conditions--and its "con- 
sumers"--the rules with conditions satisfied by the messages the "middleman" 
sends. Whenever a rule wins a bidding competition, it initiates a transaction 
wherein it pays out part of its strength to its suppliers. (If the rule does not bid 
enough to win the competition, it pays nothing.) As one of the winners of the 
competition, the rule becomes active, serving as a supplier to its consumers, 
and receiving payments from them in turn. Under this arrangement, the rule's 
strength is a kind of capital that measures its ability to turn a "profit." If a rule 
receives more from its consumers than it paid out, it has made a profit; that is, 
its strength has increased. 

More formally, when a winning classifier C places its message on the 
message list it pays for the privilege by having its strength s(C, t) reduced by 
the amount of the bid B(C, t), 

s ( C ,  t + 1)  = s ( C ,  t )  - B(C, t). 

The Classifiers { C'} sending messages matched by this winner, the "suppliers," 
have their strengths increased by the amount of the bid--it  is shared among 
them in the simplest version-- 

s(C', t + 1) = s(C', t) + ag(C, t) , 

where a = 1/(no. of members of {C'}). 
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A rule is likely to be profitable only if its consumers, in their local 
transactions, are also (on the average) profitable. The consumers, in turn, will 
be profitable only if their consumers are profitable. The resulting chains of 
consumers lead to the ultimate consumers, the rules that directly attain goals 
and receive payoff directly from the environment. (Payoff is added to the 
strengths of all rules determining responses at the time the payoff occurs.) A 
rule that regularly attains payoff when activated is of course profitable. The 
profitability of other rules depends upon their being coupled into sequences 
leading to these profitable ultimate consumers. The bucket brigade ensures 
that early acting, "stage-setting" rules eventually receive credit if they are 
coupled into (correlated with) sequences that (on average) lead to payoff. 

If a rule sequence is faulty, the final rule in the sequence loses strength, and 
the sequence will begin to disintegrate, over time, from the final rule back- 
wards through its chain of precursors. As soon as a rule's strength decreases to 
the point that it loses in the bidding process, some competing rule will get a 
chance to act as a replacement. If the competing rule is more useful than the 
one displaced, a revised rule sequence will begin to form using the new rule. 
The bucket brigade algorithm thus searches out and repairs "weak links" 
through its pervasive local application. 

Whenever rules are coupled into larger hierarchical knowledge structures, 
the bucket brigade algorithm is still more powerful than the description so far 
would suggest. Consider an abstract rule C* of the general form, "if the goal is 
G, and if the procedure P is executed, then G will be achieved." C* will be 
active throughout the time interval in which the sequence of rules comprising P 
is executed. If the goal is indeed achieved, this rule serves to activate the 
response that attains the goal, as well as the stage-setting responses preceding 
that response. Under the bucket brigade C* will be strengthened immediately 
by the goal attainment. On the very next trial involving P, the earliest rules in 
P will have their strengths substantially increased under the bucket brigade. 
This happens because the early rules act as suppliers to the strengthened C* 
(via the condition "if the procedure P is executed"). Normally, the process 
would have to be executed on the order of n times to backchain strength 
through an n-step process P. C* circumvents this necessity. 

6. Genetic Algorithms 

The rule discovery process for classifier systems uses a genetic algorithm (GA). 
Basically, a genetic algorithm selects high strength classifiers as "parents," 
forming "offspring" by recombining components from the parent classifiers. 
The offspring displace weak classifiers in the system and enter into competi- 
tion, being activated and tested when their conditions are satisfied. Thus, a 
genetic algorithm crudely, but at high speed, mimics the genetic processes 
underlying evolution. It is vital to the understanding of genetic algorithms to 
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know that even the simplest versions act much more subtly than "random 
search with preservation of the best," contrary to a common misreading of 
genetics as a process primarily driven by mutation. (Genetic algorithms have 
been studied intensively by analysis, Holland [28] and Bethke [4], and simula- 
tion, DeJong [11], Smith [46], Booker [6], Goldberg [18], and others.) 

Though genetic algorithms act subtly, the basic execution cycle, the "central 
loop," is quite simple: 

Step 1. From the set of classifiers, select pairs according to strength--the 
stronger the classifier, the more likely its selection. 

Step 2. Apply genetic operators to the pairs, creating "offspring" classifiers. 
Chief among the genetic operators is cross-over, which simply exchanges a 
randomly selected segment between the pairs (see Fig. 5). 

Step 3. Replace the weakest classifiers with the offspring. 

The key to understanding a genetic algorithm is an understanding of the way 
it manipulates a special class of building blocks called schemas.  In brief, under 
a GA, a good building block is a building block that occurs in good rules. The 
GA biases future constructions toward the use of good building blocks. We will 
soon see that a GA rapidly explores the space of schemas, a very large space, 
implicitly rating and exploiting schemas according to the strengths of the rules 
employing them. (The term schema as used here is related to, but should not 
be confused with, the broader use of that term in psychology). 

The first step in making this informal description precise is a careful 
definition of schema.  To start, recall that a condition (or an action) for a 
classifier is defined by a string of letters a 1 a 2 . . .  a j . . .  a k of length k over the 
3-letter alphabet {1, 0, #}.  It is reasonable to look upon these strings as built 
up from the component letters {1, 0, #}.  It is equally reasonable to look upon 
certain combinations of letters, say 11 or 0##1 ,  as components. All such 
possibilities can be defined with the help of a new "don't care" symbol "*." To 
define a given schema,  we specify the letters at the positions of interest, filling 
out the rest of the string with "don't cares." (The procedure mimics that for 
defining conditions, but we are operating at a different level now.) Thus, 
• 0 # # 1 . * . . . *  focuses attention on the combination 0 # # 1  at positions 2 
through 5. Equivalently, . 0 # # 1 . * . . .  * specifies a set of conditions, the set of 
all conditions that can be defined by using the combination 0 # # 1  at positions 2 
through 5. Any condition that has 0 # # 1  at the given positions is an instance of 
schema . 0 # # 1 . * . . .  *. The set of all schemas is just the set {1, 0, # ,  .}k of all 
strings of length k over the alphabet (1, 0, # ,  *}. (Note that a schema defines a 
subset of the set of all possible conditions, while each condition defines a 
subset of the set of all possible messages.) 

A classifier system, at any given time t, typically has many classifiers that 
contain a given component or schema tr; that is, the system has many instances 
of cr. We can assign a value s(tr, t) to o- at time t by averaging the strengths of 
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its instances. For example, let the system contain classifier C1, with condition 
1 0 # # 1 1 0 . . .  0 and strength s(C~, t ) =  4, and classifier Cz, with condition 
0 0 # # 1 0 1 1 . . .  1 and strength s(C2, t) = 2. If these are the only two instances of 
schema o- = * 0 # # 1 . * . . .  * at time t, then we assign to the schema the value 

s(cr, t) = ½ [s(CI, t) + s(C2, t)] = 3 ,  

the average of the strengths of the two instances. The general formula is 

s(cr, t) = (1/[no. of instances of or]) ~] s(C, t) .  
C an instances of o" 

s(cr, t) can be looked upon as an estimate of the mean value of o-, formed by 
taking the average value of the samples (instances) of o- present in the classifier 
system at time t. It is a crude estimate and can mislead the system; nevertheless 
it serves well enough as a heuristic guide if the system has procedures that 
compensate for misleading estimates. This the algorithm does, as we will see, 
by evaluating additional samples of the schema; that is, it constructs new 
classifiers that are instances of the schema and submits them to the bucket 
brigade. 

Consider now a system with M classifiers that uses the observed averages 
{s(cr, t)) to guide the construction of new classifiers from schemas. Two 
questions arise: (1) How many schemas are present (have instances) in the set 
of M classifiers? (2) How is the system to calculate and use the {s(o', t)}? 

The answer to the first question has important implications for the use of 
schemas as building blocks. A single condition (or action) is an instance of 2 k 
schemas! (This is easily established by noting that a given condition is an 
instance of every schema obtained by substituting an "*"  for one or more 
letters in the definition of the condition.) In a system of M single-condition 
classifiers, there is enough information to calculate averages for somewhere 
between 2 k and M2 k schemas. Even for very simple classifiers and a small 
system, k = 32 and M = 1000, this is an enormous number,  M2 k -  4 trillion. 

The natural way to use the averages would be to construct more instances of 
above-average schemas, while constructing fewer instances of below-average 
schemas. That is, the system would make more use of above-average building 
blocks, and less use of below-average building blocks. More explicitly: Let s(t) 
be the average strength of the classifiers at time t. Then schema cr is above 
average if s(~r, t ) / s ( t )> 1, and vice versa. Let M(cr, t) be the number of 
instances of schema or in the system at time t, and let M(o', t + T) be the 
number of instances of or after M new classifiers (samples) have been con- 
structed. The simplest heuristic for using the information s(o~, t)/s(t) would be 
to require that the number of instances (uses) of or increase (or decrease) at 
time t + T according to that ratio, 

M(cr, t + T) = c[s(o', t)/s(t)lM(cr, t) , 
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where c is an arbitrary constant. It is even possible, in principle, to construct 
the new classifiers so that every schema o- with at least a few instances present at 
t receives the requisite number of samples. (This is rather surprising since there 
are so many schemas and only M new classifiers are constructed; however a 
little thought and some calculation, exploiting the fact that a single classifier is 
an instance of 2 k distinct schemas, shows that it is possible.) 

A generating procedure following this heuristic, setting aside problems of 
implementation for the moment, has many advantages. It samples each schema 
with above-average instances with increasing intensity, thereby further confirm- 
ing (or disconfirming) its usefulness and exploiting it (if it remains above 
average). This also drives the overall average s(t) upward, providing an 
ever-increasing criterion that a schema must meet to be above average. 
Moreover, the heuristic employs a distribution of instances, rather than 
working only from the "most recent best" instance. This yields both robustness 
and insurance against being caught on "false peaks" (local optima) that 
misdirect development. Overall, the power of this heuristic stems from its rapid 
accumulation of better-than-average building blocks. Because the strengths 
underlying the s(tr, t) are determined (via the bucket brigade) by the reg- 
ularities and interactions in the environment, the heuristic provides a sophisti- 
cated way of exploiting such regularities and interactions. 

Though these possibilities exist in principle, there is no feasible direct way to 
calculate and use the large set of averages {s(tr, t)/s(t)}. However, genetic 
algorithms do implicitly what is impossible explicitly. To see this, we must 
specify exactly the steps by which a genetic algorithm generates new classifiers. 

The algorithm acts on a set B(t) of M strings {C1, C2 . . . .  , CM} over the 
alphabet {1, 0, #} with assigned strengths s(Cj, t) via the following steps: 

Step 1. Compute the average strength s(t) of the strings in B(t), and assign 
the normalized value s(Cj, t)/s(t) to each string Cj. in B(t). 

Step 2. Assign each string in B(t) a probability proportional to its normal- 
ized value. Then, using this probability distribution, select n pairs of strings, 
n ~ M, from B(t), and make copies of them. 

Step 3. Apply cross-over (and, possibly, other genetic operators) to each 
copied pair, forming 2n new strings. Cross-over is applied to a pair of strings as 
follows: Select at random a position i, 1 ~< i ~  < k, and then exchange the 
segments to the left of position i in the two strings (see Fig. 5). 

Step 4. Replace the 2n lowest strength strings in B(t) with the 2n strings 
newly generated in Step 3. 

Step 5. Set t to t + 1 in preparation for the next use of the algorithm and 
return to Step 1. 

Figure 6 illustrates the operation of the algorithm. In more sophisticated 
versions of the algorithm, the selection of pairs for recombination may be 
biased toward classifiers active at the time some triggering condition is satis- 
fied. Also Step 4 may be modified to prevent one kind of string from 
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"overcrowding" B(t) (see [4, 11] for details). 
Contiguity of constituents, and the building blocks constructed from them, 

are significant under the cross-over operator. Close constituents tend to be 
exchanged together. Operators for rearranging the atomic constituents defining 
the rules, such as the genetic operator inversion, can bias the rule generation 
process toward the use of certain kinds of building blocks. For example, if 
"color" is nearer to "shape" than to "taste" in a condition, then a particular 
"color"-"shape" combination will be exchanged as a unit more often than a 
"color"-"taste" combination. Inversion, by rearranging the positions of 
"shape" and "taste," could reverse this bias. Other genetic operators, such as 
mutation, have lesser roles in this use of the algorithm, mainly providing 
"insurance" (see [28, Chapter 6, Sections 2-4] for details). 

To see how the genetic algorithm implicitly carries out the schema search 
heuristic described earlier, it is helpful to divide the algorithm's action into two 
phases: phase 1 consists of Steps 1-2; phase 2 consists of Steps 3-4. 

First consider what would happen if phase 1 were iterated, without the 
execution of phase 2, but with the replacement of strings in B(t). In particular, 
let phase 1 be iterated M/2n times (assuming for convenience that M is a 
multiple of 2n). Under M/2n repetitions of phase 1, each instance C of a given 
schema or can be expected to produce s(or, t)/s(t) "offspring" copies. The total 
number of instances of schema or after the action of phase 1 is just the sum of 
the copies of the individual instances. Dividing this total by the original 
number of instances, M(or, t), gives the average rate of increase, and is just 
s(or, t)/s(t) as required by the heuristic. This is true of every schema with 
instances in B(t), as required by the heuristic. 

Given that phase 1 provides just the emphasis for each schema required by 
the heuristic, why is phase 2 necessary? Phase 2 is required because phase 1 
introduces no new strings (samples) into B(t), it merely introduces copies of 
strings already there. Phase 1 provides emphasis but no new trials. The genetic 
operators, applied in phase 2, obviously modify strings. It can be proved (see 
[28, Theorem 6.2.3]) that the genetic operators of Step 3 leave the emphasis 
provided by phase 1 largely undisturbed, while providing new instances of the 
various schemas in B(t) in accord with that emphasis. Thus, phase 1 combined 
with phase 2 provides, implicitly, just the sampling scheme suggested by the 
heuristic. 

The fundamental theorem for genetic algorithms [28, Theorem 6.2.3] can be 
rewritten as a procedure for progressively biasing a probability distribution 
over the space {1, 0, #}k: 

Theorem 6.1. Let Pcross be the probability that a selected pair will be crossed, 
and let Pmut be the probability that a mutation will occur at any given locus. I f  
p(or, t) is the fraction of  the population occupied by the instances of  or at time t, 
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p(CT t + 1) 3 [I - A(a, t)l[l - ~m”tld’“‘[4~, 0~4t)lp(c+, t> 

gives the expected fraction of the population occupied by instances of (T at time 
t + 1 under the genetic algorithm. 

The right-hand side of this equation can be interpreted as follows: [~(a, t)l 
u(t)], the ratio of the observed average value of the schema s compared to the 
overall population average, determines the rate of change of p(a, t), subject to 
the “error” terms [l - h(c+, t)][l - P,,,,,] ‘@) If u((T, t) is above average, then . 
schema u tends to increase, and vice versa. 

The “error” terms are the result of breakup of instances of u because of 
cross-over and mutation, respectively. In particular, h(a, t) = 

P,,,,,(l(o) lk)P(UY t) is an upper bound on the loss of instances of u resulting 
from crosses that fall within the interval of length I(a) determined by the 
outermost defining loci of the schema, and [l - P,,JdCu) gives the proportion 
of instances of (T that escape a mutation at one of the d(o) defining loci of cx 

(The underlying algorithm is stochastic so the equation only provides a 
bound on expectations at each time step. Using the terminology of mathemati- 
cal genetics, the equation supplies a deterministic model of the algorithm under 
the assumption that the expectations are the values actually achieved on each 
time step.) 

In any population that is not too small-from a biological view, a population 
not so small as to be endangered from a lack of genetic variation---distinct 
schemas will almost always have distinct subsets of instances. For example, in a 
randomly generated population of size 2500 over the space { 1, 0} k, any schema 
defined on 8 loci can be expected to have about 10 instances. (For ease of 
calculation, we consider populations of binary strings in the rest of this section, 
but the same results hold for n-letter alphabets.) There are 

2500 ( 1 10 
= 3 x 1oZ6 

ways of choosing this subset, so that it is extremely unlikely that the subsets of 
instances for two such schemas will be identical. (Looked at another way, the 
chance that two schemas have even one instance in common is less than 
10 x 2+ = & if they are defined on disjoint subsets of loci.) Because the sets of 
instances are overwhelmingly likely to be distinct, the observed averages 
a(~, t), will have little cross-correlation. As a consequence, the rate of increase 
(or decrease) of a schema o under a genetic algorithm is largely uncontami- 
nated by the rates associated other such schemas. Loosely, the rate is un- 
influenced by “cross-talk” from the other schemas. 
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To gain some idea of how many schemas are so processed consider the 
following: 

Theorem 6.2. Select some bound e on the transcription error under reproduc- 
tion and cross-over, and pick l such that l /k  <- l e. Then in a population o f  size 
M = Cl 2Ilk, obtained as a uniform random sample f rom {1, 0} k, the number o f  
schemas propagated with an error less than e greatly exceeds M 3. 

Proof. (1) Consider a "window" of 2l contiguous loci in a string of length k 
such that 21/k = e. Clearly any schema having all its defining loci within this 
window will be subject to a transcription error less than e under cross-over. 

(2) There are 

( 2 l )  = 221/[q.rl]-1/2 

ways of selecting l defining positions in the window, and there are 2 t different 
schemas that can be defined using any given set of I of defining loci. Therefore, 
there are approximately 231/[~1] -1/2 distinct schemas with l defining positions 
that can be defined in the window. 

(3) A population of size M = Cl 2l, for c I a small integer, obtained by a 
uniform random sampling of {1, 0} k can be expected to have cl instances of 
every schema defined on l defining positions. Therefore, for the given window, 
there will be approximately M3./(Cl)311rl]-]/2 schemas having instances in the 
population and defined on some set of I loci in the window. 

(4) The same argument can be given for schemas of length l - 1, ! - 2 , . . . ,  
and for l + 1, l + 2 , . . . ,  with values of 

(17 ) 
decreasing in accord with the binomial distribution. There are also k -  l -  1 
distinct positionings of the window on strings of length k. It follows that many 
more than M 3 schemas, with instances in the population of size M, increase or 
decrease at a rate given by their observed marginal averages with a transcrip- 
tion error less than e. [] 

From the point of view of sampling theory, 20 or 30 instances of a schema o" 
constitute a sample large enough to give some confidence to the corresponding 
estimate of u(tr). Thus, for such schemas, the biases p(cr, t) produced by a 
genetic algorithm over a succession of generations are neither much distorted 
by sampling error nor smothered by "cross-talk." 

It is important to recognize that the genetic algorithm only manipulates M 
strings while implicitly generating and testing the new instances of the very 
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large number of schemas involved (~M 3, early on). Moreover, during this 
procedure, samples (instances) of schemas not previously tried are generated. 
This implicit manipulation of a great many schemas through operations on 2n 
strings per step is called implicit parallelism (it is called intrinsic parallelism by 
Holland [28]). 

7. Comparison with Other Learning Methods 

The rule discovery procedures in a classifier system--genetic algorithms--are 
just as unconventional as the problem solving procedures. Here again, it is 
important to look beyond the details and examine the core ideas. In terms of 
the weak methods familiar to the AI community, a genetic algorithm can be 
thought of as a complex hierarchical generate-and-test process. The generator 
produces building blocks which are combined into complete objects. At various 
points in the procedure, tests are made that help weed out poor building blocks 
and promote the use of good ones. The information requirements of the 
process are modest: a generator for building blocks and objects, and an 
evaluator that allows them to be tested and compared with alternatives. It is 
altogether appropriate to label the procedure a weak method, if one is 
referring to its lack of domain-dependent requirements. 

On closer examination, though, it is apparent that there are important 
differences between genetic algorithms and the standard assortment of weak 
methods. The differences are centered on the formulation of the search for 
useful rules. The familiar weak methods focus on managing the complexity of 
the search space, emphasizing ways to avoid computationally prohibitive 
exhaustive searches. Such methods use small amounts of knowledge to focus 
the search and prune the space of alternatives. Genetic algorithms proceed by 
managing the uncertainty of the search space. Uncertainty enters in the sense 
that the desirability of an element of the search space as a solution or partial 
solution is unknown until it has been tested. Managing complexity reduces 
uncertainty as more of the search space is explored; on the other hand, it is 
also clear that reducing uncertainty makes the search more effective, with 
complexity becoming more manageable in the process. 

This shift of viewpoint is subtle, but has important consequences for the way 
the search is carried out. Typical AI search procedures use heuristic evaluation 
functions to prune search paths, and it often suffices that they provide bounds 
on test outcomes. On the other hand, uncertainty management requires the use 
of test outcomes (samples) to estimate regularities in the search space. Acquir- 
ing and using this knowledge as the search proceeds requires that more 
attention be paid to the distribution of test outcomes over the search space. 
The focus is on subspaces and the kinds of elements they contain, rather than 
on paths and their ultimate destinations. That is, the emphasis is on sample- 
based induction [33]. 
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This point of view is captured by a weak method we will call sample-select- 
and-recombine. Assume that the elements of the search space are structured, 
that is, that they are constructed of components or building blocks. To find an 
element in this space: 

Step 1. Draw a sample from the space. 
Step 2. Order the elements in the sample according to some preference 

criterion related to the goals of the search. 
Step 3. Use this ranking to estimate the usefulness of the building blocks 

present in the sample's elements. 
Step 4. Generate a new sample by selecting building blocks on the basis of 

this evaluation, recombining them to construct new elements. 
Step 5. Repeat Steps 1-4 until the desired element is found. 

This method has the obvious advantage that the memory requirements are 
small and it can be used when a conventional generator or heuristic evaluation 
function is hard to find. All that is needed is a set of building blocks and a 
capability to order a sample in terms of a goal-relevant preference. Just as 
generate-and-test procedures are made more effective by incorporating as 
much of the test as possible into the generation process, genetic algorithms 
derive their power by tightly coupling the sampling and selection process. It is 
important that there are theoretical results that show that genetic algorithms 
implement the sample-select-and-recombine method in a near-optimal way. 

We can make a direct comparison of this approach with more familiar AI 
learning procedures. This is most easily accomplished in the realm of concept 
learning tasks where the problem is to find a concept description consistent 
with a given set of (positive and negative) examples of the concept. Wilson [52] 
gives a detailed account of the way in which genetic algorithms acting on 
classifier systems learn complex multiple disjunctive concepts. Here we will 
refer to the description of genetic algorithms given above, and will briefly 
examine two well-known learning algorithms: the interference matching al- 
gorithm (Hayes-Roth and McDermott [22]), and the candidate elimination 
algorithm (Mitchell [39]). 

7.1. Interference matching 

Interference matching is a general technique for inferring the common attri- 
butes of several positive examples. (Interference matching is closely related to 
techniques, such as those examined by Valiant [49], for inferring boolean 
functions from true and false instances, but interference matching makes less 
stringent requirements on the match between problem, algorithm and repre- 
sentation.) A schema describing the shared characteristics is constructed using 
the attribute value for attributes shared, and a place holder symbol (essentially 
a "don't care" symbol) for attributes that differ over the examples. For 
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example, interference matching of the two descriptors [RED, ROUND, HEAVY] 

and [RED, SQUARE, HEAVY] yields the schema [RED, HEAVY]. This technique 
can be used to compute a set of schemas accounting for all positive examples of 
a concept--called a maximal decomposition--by using the following algorithm: 

Let S be the list of schemas, initially empty. 
Let (E  l, . . . ,  EN} be the set of N examples. 
For i = 1 to N 

For j = 1 to I sI 
Form a schema s by interference matching E i with the jth 

element of S .  
Form a new schema s' by interference matching all examples 

that satisfy (are instances of) s .  
Add s' to the list S if it is not already there. 

Repeat until no new schemas are created (for the given value of 
i ) .  

Add E; to S unaltered. 

A simple example is given in Fig. 7. 
The list of schemas comprising a maximal decomposition is the minimal 

complete set of nonredundant schemas that occur in the examples. For 
instance, in Fig. 7, the schemas **.1 and **0. are redundant because they 
designate the same subset of examples; they are therefore summarized by the 
more restrictive schema *.01. The algorithm is more complicated when there is 
more than one concept to be learned or, equivalently, negative examples are 
available. A separate maximal decomposition is computed for each concept, 
but, in addition, a performance value is computed for each schema. The 
performance value rates each schema according to its ability to discriminate 
instances of a concept from noninstances in the set of examples. 

t x a m p l n  M a x i m a l  
D e c o m l m s i U o n  

1001 1 # 1  

1110 1 * s s  
I I I 0  

0101 ==01 
8 1 S m  

e l s e  
0101 

0010 

Fig. 7. Example of a maximal 

1~88 

a*10 
01SS 
8010  

decomposition. 
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Similar algorithms have been suggested for inferring the structure of boolean 
functions from presentations of true instances (see, for example, Valiant [49]). 

Because a maximal decomposition is an exhaustive list of the structural 
characteristics of a concept, the size of the list becomes unmanageable as the 
number of examples grows. Hayes-Roth suggests discarding schemas with low 
performance values to keep the size of the list under control. This strategy can 
only work, though, if all the examples are available at once. If the examples 
occur incrementally, the performance value assigned to a schema at any given 
time is an estimate subject to error. The only obvious way to recover from a 
mistakenly discarded schema is to recompute the entire maximal decompo- 
sition. 

Therein lies the major difference between interference matching and genetic 
algorithms. Genetic algorithms implicitly work with the building blocks for a 
decomposition. Iterative application of a genetic algorithm produces a popula- 
tion of concept descriptions in which the number of occurrences of each 
building block is proportional to the observed average performance of its 
carriers. In this sense, the population is a database that compactly and usefully 
summarizes the examples so far encountered. If a ne~( example is introduced, 
it is assimilated by an automatic revision of the proportions of the relevant 
building blocks. This updating occurs without keeping explicit or exhaustive 
records about performance, thereby avoiding the large computational burdens 
associated with updating a maximal decomposition. 

7.2. Candidate elimination 

The candidate elimination algorithm is similar to genetic algorithms in that it 
cleverly implements a procedure that would be intractable if attempted by 
brute force. The basic idea is to enumerate the set of all possible concept 
descriptions and, for each example, remove from consideration any description 
that is inconsistent with that example. When there is only one description left 
the problem is solved. Mitchell [39] makes this idea tractable by ordering the 
set of possible descriptions according to generality. One description is more 
general than another if it includes as instances all the instances specified by the 
other description. Thus the schema **0. is more general than the schema *.01. 
This is a partial ordering because not all descriptions are comparable--there 
can be several maximally general or maximally specific descriptions in the 
space. The key to this approach is the observation that the set of most specific 
descriptions and the set of most general descriptions consistent with an 
example bound the set of all descriptions consistent with the example. An 
algorithm therefore need only keep track of these bounds to converge to the 
description consistent with all examples. 

In more detail, the candidate elimination algorithm maintains two sets that 
bound the space of consistent descriptions: the set S of most specific possible 
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descriptions, and the set G of most general possible descriptions. Given a new 
positive example, the elements of S are generalized the smallest amount that 
allows inclusion of the new example as an instance. Any element of G that is 
inconsistent with this example is removed. Similarly, given a new negative 
example, the elements of G are specialized the smallest amount that precludes 
the example as an instance. Any element of S that includes this example as an 
instance is removed. This process is repeated for each new example, the set S 
becoming more general and the set G becoming more specific, until S and G 
are identical. The concept description remaining is the one that is consistent 
with all the examples. 

This algorithm obviously has no problems assimilating new examples and it 
converges to a solution quickly. The basic limitations are: (i) the S and G can 
be quite large, even for relatively simple concepts, (ii) only conjunctive 
concepts can be learned, and (iii) the algorithm usually fails if the data are 
noisy (some instances incorrect). Genetic algorithms avoid these limitations by 
characterizing the search space in a fundamentally different way: (i) the data 
set corresponding to the S and G sets is carried implicitly in the proportions of 
the building blocks, (ii) disjunctions are handled by the parallelism of the rule 
set, and (iii) noise is handled effortlessly because uncertainty reduction is at 
the heart of the procedure. The price paid by the genetic algorithm is that it 
robustly samples the space without concern for the difficulty of the problem; it 
cannot use an obvious path to a solution to curtail its search unless there are 
strong building blocks that can be combined to construct that path. 

8. Applications 

Research on genetic algorithms has paralleled work in mainstream artificial 
intelligence in the sense that simpler studies of search and optimization in 
straightforward problem domains have preceded the more complex investiga- 
tions of machine learning. This is no surprise. Search and optimization 
applications, with their well-defined problems, objective functions, constraints 
and decision variables provide a tame environment where alternatives may be 
compared easily. By contrast, machine learning problems, with their ill-defined 
goal statements, subjective evaluation criteria and multitudinous decision 
options, constitute an unwieldy environment not easily given to comparison or 
analysis. The application of GAs in search and optimization has both tested 
and improved GAs, and it has encouraged their successful application to search 
problems that have not succumbed to more traditional procedures. According- 
ly this review of applications starts by examining GA applications in search and 
optimization. 

8.1. Genetic algorithms in search and optimization 

(Because much of the inspiration for early studies of genetic algorithms came 
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from genetics, much of the work described in this section was set forth using 
the terminology of genetics. We have not explained these terms in detail, but 
we have eliminated any terms that would not appear in a high-school biology 
text.) 

The first application of a GAmin fact, the first published use of the words 
"genetic algorithm"--came in Bagley's [3] pioneering dissertation. At that time 
there was much interest in game playing computer programs, and in that spirit 
Bagley devised a controllable testbed of game tasks modeled after the game 
hexapawn. Bagley's GA operated successfully on "diploid chromosomes" 
(paired strings) which were decoded to construct parameter sets for a game 
board evaluation function. The GA contained the three basic operators--  
reproduction, cross-over, and mutation--along with dominance and inversion. 
At about the same time, Rosenberg [41] was completing his Ph.D. study of the 
simulated growth and genetic interaction of a population of single-celled 
organisms. His organisms were characterized by a simple rigorous biochemis- 
try, a permeable membrane, and a classical, one-gene/one-enzyme structure. 
He introduced an interesting adaptive cross-over scheme that associated lin- 
kage factors with each gene, thereby permitting different linkages between 
adjacent genes. Rosenberg's work is sometimes overlooked by GA researchers 
because of its emphasis on biological simulation, but its nearness to root 
finding and function optimization make it an important contribution to the 
search domain. 

In 1971 Cavicchio [7] investigated the application of GAs to a subroutine 
selection task and a pattern recognition task. He adopted the pixel weighting 
scheme of Bledsoe and Browning [5] and used a GA to search for good sets of 
detectors (subsets of pixels). His GA found good sets of detectors more quickly 
than a competing "hill-climbing" algorithm. Cavicchio was one of the first to 
implement a scheme for maintaining population diversity. 

The first dissertation to apply GAs to well-posed problems in mathematical 
optimization was Hollstien's [35] which used a testbed of 14 functions of two 
variables. The work is notable in its use of allele dominance and schemes of 
mating preference adopted from traditional breeding practices. Hollstien's GA 
located optima for his functions much more rapidly than traditional algorithms, 
but it was difficult to draw general conclusions because he used very small 
populations (n--16).  Frantz [17] studied positional effects on function op- 
timatization. Specifically, he considered functions wherein the value assigned 
to an argument string could not be well approximated by assigning a least mean 
squares estimate to each component bit of the argument. (From the point of 
view of a geneticist, this amounts to saying there are strong epistatic interac- 
tions between the genes.) He tested the hypothesis that an inversion (string 
permutation) operator might improve the efficiency of a GA for such functions. 
Because the standard GA found near-optimal results quickly in all cases, the 
inversion operator had little effect. However, for substantially more difficult 
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problems, such as the traveling salesman problem, job shop scheduling and bin 
packing, Frantz's hypothesis remains a fruitful avenue of research (see Davis 
[8, 9], Goldberg and Lingle [19], and Grefenstette, Gopal, Rosmaita and van 
Gucht [21]). More recently, Bethke [4] has added rigor to the study of 
functions that are hard for GAs through his investigation of schema averages 
using Walsh transforms (following a suggestion of Andrew Barto). Goldberg 
[19] has also contributed to the understanding of GA-hard functions with his 
definition and analysis of the minimal deceptive problem. 

De Jong's [11] dissertation was particularly important to subsequent applica- 
tions of genetic algorithms. He recognized the importance of carefully con- 
trolled experimentation in an uncluttered function optimization setting. Vary- 
ing population size, mutation and cross-over probabilities, and other operator 
parameters, he examined GA performance in a problem domain consisting of 
five test functions ranging from a smooth, unimodal function of two variables 
to functions characterized by high dimensionality (30 variables), great multi- 
modality, discontinuity and noise. To quantify GA performance he defined 
online and offline performance measures, emphasizing interim performance 
and convergence, respectively. He also defined a measure of robustness of 
performance over a range of environments and demonstrated by experiment 
the robustness of GAs over the test set. 

In Appendix A we display a representative group of GA search and 
optimization applications ranging from an archeological model of the transition 
from hunting and gathering to agriculture, through VLSI layout problems and 
medical image registration, to structural optimization. (A complete bibliog- 
raphy covering the entries in Appendices A and B is available from any one of 
the authors.) The broad successes in these domains have encouraged experi- 
ments with GAs in machine learning problems. 

8.2. Machine learning using genetic algorithms 

The goals for GAs in the context of machine learning have always been clear: 

The study of adaptation involves the study of both the adaptive 
system and its environment. In general terms, it is a study of how 
systems can generate procedures enabling them to adjust efficiently 
to their environments. If adaptability is not to be arbitrarily re- 
stricted at the outset, the adapting system must be able to generate 
any method or procedure capable of an effective definition. (Hol- 
land [25]) 

The original intent, and the original outline of the attendant theory, en- 
compassed a class of adaptive systems much broader than those concerned with 
search and optimization. The theoretical foundation was used as a basis for 
defining a series of increasingly sophisticated schemata processors (Holland 
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[26]). Although the 1968 conference at which this paper was presented 
predates the first application of a classifier system by a full decade [34], 
schemata processors resemble modern day classifier systems in both outline 
and detail. The 1978 implementation of Holland and Reitman [34], called CS-1 
(Cognitive System Level One), was trained to learn two maze-running tasks. It 
used (i) a performance system with a message list and simple classifiers, (ii) a 
credit assignment algorithm that retained information about all classifiers active 
between successive payoffs and adjusted their strengths at the time of payoff, 
and (iii) a GA with reproduction, cross-over, mutation and crowding that 
generated new classifiers. The main result demonstrated that the system could 
transfer its experience in a simpler maze to improve its rate of learning in a 
more complex maze. 

Smith's [46] study of a classifier system used a purely GA approach, 
sidestepping the need for a credit assignment algorithm. He represented a rule 
set by a single string, obtained by stringing the rules end to end. He then 
devised a micro-level cross-over operator, for exchanging segments of individu- 
al rules, and a macro-level cross-over operator, for exchanging segments of 
rule strings (equivalent to exchanging subsets of rules). Smith successfully 
applied this system, LS-1 (Learning System One) to the Holland and Reitman 
maze-running task and to a draw poker betting task. In the draw poker task, 
Smith's system learned to beat Waterman's [50] adaptive poker playing pro- 
gram consistently, a substantial achievement given the amount of domain- 
specific knowledge in Waterman's program. 

The next major application of classifier systems was Booker's [6] study. 
Booker concentrated on the formal connections between cognitive science and 
classifier systems. His computer simulations investigated the adaptive behavior 
of an artificial creature, moving about in a two-dimensional environment 
containing "food" and "poison," controlled by a classifier system "brain." 
Booker's classifier system contained a number of innovations including the use 
of sharing to promote "niche" exploitation, and the use of mating restrictions 
to reduce the production of ineffective offspring (lethals). 

In 1983, Goldberg [18] applied a classifier system to the control of two 
engineering systems: the pole-balancing problem and a natural gas pipeline- 
compressor system. The simulations were in the SR (stimulus-response) for- 
mat, with payoff being presented at each computational time step by a critic. In 
both cases Goldberg observed the formation of stable subpopulations of rules 
serving as default hierarchies. In a default hierarchy, fairly general rules cover 
the most frequent cases and more specific rules (that typically contradict the 
default rules) cover exceptions. 

Wilson [51, 52], working along different lines, studied a number of applica- 
tions of classifier systems. While at Polaroid, he was able to construct and test 
a classifier system that learned to focus and center a moveable videocamera on 
an object placed in its field of vision. These experiments, though successful, 
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caused him to turn to a simpler environment and a simpler version of the 
classifier system to better understand its behavior. In the later experiments, 
performed at the Rowland Institute for Science, a classifier system called 
ANIMAT operated in a two-dimensional environment, searching for food hidden 
behind obstacles. ANIMAT did not use a message list and hence could not 
employ a standard bucket brigade algorithm. Instead all classifiers contributing 
to a chosen action, the action set, received strength increments derived either 
from subsequent environmental payoff or from the bids of the next action set. 
This bucket brigade-like algorithm successfully propagated credit to early 
stage-setting rules under conditions of intermittent and noisy payoff. 

A number of GA-based machine learning applications and extensions have 
followed the early works. A representative list, ranging from the evolution of 
cooperation (Axelrod [2]) and prediction of international events (Schrodt [44]) 
to VLSI compaction (Fourman [16]), is presented in Appendix B. There are 
now standard software tools for exploring these systems, including Forrest's 
[15] KL-ONE-to-classifier-system translator and Riolo's general-purpose, clas- 
sifier system C-package. 1 

Recent work on classifier systems and genetic algorithms may be found in 
the books Genetic Algorithms and Simulated Annealing (Davis [10]) and 
Genetic Algorithms and Their Applications (Grefenstette [20]), the latter book 
containing papers presented at a conference held at MIT in the summer of 
1987. 

9. The Future: Advantages, Problems, Techniques, and 
Prospects 

Up to this point we have reviewed and commented upon established aspects of 
classifier systems and their learning algorithms. Now we want to look to the 
future. Section 9.1, as a prologue, reviews some properties of classifier systems 
that afford future opportunities, while Section 9.2 points up some of the 
problems that currently impede progress. Section 9.3 outlines some untried 
techniques that broaden the possibilities for classifier systems, and Section 9.4 
offers a look at some of the directions we think will be productive for future 
research. 

9.1. Advantages 

When it comes to describing advantages, pride of place goes to the genetic 
algorithm. The genetic algorithm operating on classifiers discovers potentially 
useful building blocks, tests them, and recombines them to form plausible new 
classifiers. It does this at the large "speedup" implied by Theorem 6.2 on 

1Available on request from R. Riolo, Division of Computer Science and Engineering, 3116 
EECS Building, The University of Michigan, Ann Arbor, MI 48109, U.S.A. 



CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS 273 

implicit parallelism, searching through and testing large numbers of building 
blocks while manipulating relatively few classifiers. 

Competition based on rule strength, in conjunction with the parallelism of 
classifier systems provides several additional advantages. New rules can be 
added without imposing the severe computational burden of checking their 
consistency with all the extant rules. Indeed the system can retain large 
numbers of mutually contradictory, partially confirmed rules, an important 
advantage because these rules serve as alternative hypotheses to be invoked 
when currently favored rules prove inadequate. Moreover, this approach in 
conjunction with the genetic algorithm provides the overall system with a 
robust incremental means of handling noisy data. The system has no need of an 
archival memory of all past examples; its memory resides in the sets of 
competing alternatives. 

9.2. Problems 

To this point in time our problems are largely those attending a new approach 
wherein the experimental landmarks only sparsely cover the landscape of 
possibilities. 

The most serious problem we have encountered concerns the stability of 
emergent default hierarchies. The hierarchies do emerge (see, for example, 
Goldberg [18], a first as far as we know), but in long runs there may be a 
catastrophic collapse in which whole subsets of good rules are lost. The rules, 
or rules similar in effect, are then reacquired, but this instability is highly 
undesirable. 

Forrest [15] has demonstrated that semantic nets can be implemented simply 
and directly with coupled classifiers, but the question of how such structures 
can emerge in response to experience has been barely touched. This is, of 
course, more a research objective than a fault. 

We also have only the faintest guidelines as to the functioning of the bucket 
brigade when the rule sequences are long and intertwined, Again, we have 
uncovered no faults, we simply have very little knowledge. 

9.3. Techniques 

There are several new techniques that should substantially increase the power 
and robustness of classifier systems. Chief among these is the triggering of 
genetic operators. For example, when an input message receives only weak 
bids from very general classifiers, it is a sign that the system has little specific 
information for dealing with the current environmental situation. A cross 
between the input message and the condition parts of some of the active 
general rules will yield plausible new rules with more specific conditions. This 
amounts to a bottom-up procedure for producing candidate rules that will 
automatically be tested for usefulness when similar situations recur. As another 
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example, when a rule makes a large profit under the bucket brigade, this can 
be used as a signal to cross it with rules active on the immediately preceding 
time step. An appropriate cross between the message part of the precursor and 
the condition part of the profit making successor can produce a new pair of 
coupled rules. (The trigger is only activated if the precursor is not coupled to 
the active profit maker.) The coupled pair models the state transition mediated 
by the original pair of (uncoupled) rules. Such coupled rules can serve as the 
building blocks for models of the environment. Because the couplings serve as 
"bridges" for the bucket brigade, these building blocks will be assigned credit 
in accord with the efficacy of the models constructed from them. Interestingly 
enough there seems to be a rather small number of robust triggering conditions 
(see Holland et al. [33]), but each of them would appear to add substantially to 
the responsiveness of the classifier system. 

Support is another technique that adds considerably to the system's flexibili- 
ty. Basically, support is a technique that enables the classifier system to 
integrate many pieces of partial information (such as several views of a partially 
obscured object) to arrive at strong conclusions. Support is a quantity that 
travels with messages, rather than being a counterflow as in the case of bids. 
When a classifier is satisfied by several messages from the message list, each 
such message adds its support into that classifier's support counter. Unlike a 
classifier's strength, the support accrued by a classifier lasts for only the time 
step in which it is accumulated. That is, the support counter is reset at the end 
of each time step (other techniques are possible, such as a long or short 
half-life). Support is used to modify the size of the classifier's bid on that time 
step; large support increases the bid, small support decreases it. If the classifier 
wins the bidding competition, the message it posts carries a support propor- 
tional to the size of its bid. The propagation of support over sets of coupled 
classifiers acts somewhat like spreading activation (see [1]), but it is much more 
directed. Like spreading activation, support can serve to bring associations 
(coupled rules) into play; but, as mentioned at the outset, it is meant to act 
primarily as a means of integrating partial information (as when several weakly 
bidding, general rules bearing on the same topic are activated simultaneously). 

9.4. Prospects 

The number of feasible directions for exploring the possibilities and applica- 
tions of classifier systems is almost daunting. Here we will mention only some 
of the broader paths. 

Perhaps the most important thing that can be done at this point is an 
expansion of the theory. Classifier systems serve as a "testbed" for concepts 
applicable to a wide range of complex adaptive systems. In developing a 
mathematics to deal with the interaction of the genetic algorithm and classifier 
systems we perforce develop a mathematics for dealing with a much wider 
range of adaptive systems. 
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The process is reciprocal. For instance, in mathematical economics there are 
pieces of mathematics that deal with (1) hierarchical organization, (2) retained 
earnings (fitness) as a measure of past performance, (3) competition based on 
retained earnings, (4) dislribution of earnings on the basis of local interactions 
of consumers and suppliers, (5) taxation as a control on efficiency, and (6) 
division of effort between production and research (exploitation versus explo- 
ration). Many of these fragments, mutatis mutandis, can be used to study the 
counterparts of these processes in classifier systems. 

Similarly, in mathematical ecology there are pieces of mathematics dealing 
with (1) niche exploitation (models exploiting environmental regularities), (2) 
phylogenetic hierarchies, polymorphism and enforced diversity (competing 
subsystems), (3) functional convergence (similarities of subsystem organization 
enforced by environmental requirements on payoff attainment), (4) symbiosis, 
parasitism, and mimicry (couplings and interactions in a default hierarchy, such 
as an increased efficiency for extant generalists simply because related special- 
ists exclude them from some regions in which they are inefficient), (5) food 
chains, predator-prey relations, and other energy transfers (apportionment of 
energy or payoff amongst component subsystems), (6) recombination of multi- 
functional coadapted sets of genes (recombination of building blocks), (7) 
assortative mating (biased recombination), (8) phenotypic markers affecting 
interspecies and intraspecies interactions (coupling), (9) "founder" effects 
(generalists giving rise to specialists), and (10) other detailed commonalities 
such as tracking versus averaging over environmental changes (compensation 
for environmental variability), allelochemicals (cross-inhibition), linkage (as- 
sociation and encoding of features), and still others. Once again, though 
mathematical ecology is a younger science than mathematical economics, there 
is much in the mathematics already developed that is relevant to the study of 
classifier systems and other nonlinear systems far from equilibrium. 

In addition to attempting to adapt and extend these fragments, there are at 
least two broader mathematical tasks that can be undertaken. One is an 
attempt to produce a general characterization of systems that exhibit implicit 
parallelism. Up to now all such attempts have led to sets of algorithms which 
are easily recast as genetic algorithms--in effect, we still only know of one 
example of an algorithm that exhibits implicit parallelism. The second task 
involves developing a mathematical formulation of the process whereby a 
system can develop a useful internal model of an environment exhibiting 
perpetual novelty. In our (preliminary) experiments to date these models 
typically exhibit a (tangled) hierarchical structure with associative couplings. 
Such structures have been characterized mathematically as quasi-homomor- 
phisms (see [33]). The perpetual novelty of the environment can be character- 
ized by a Markov process in which each state has a recurrence time that is large 
relative to any feasible observation time. Considerable progress has been made 
along these lines (see [32]), but much remains to be done. In particular, we 
need to construct an interlocking set of theorems based on: 
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(1) a stronger set of fixed point theorems that relates the strengths of 
classifiers under the bucket brigade to observed payoff statistics, 

(2) a set of theorems that relates building blocks exploited by the "slow" 
dynamics of the genetic algorithm to the sampling rates for rules at different 
levels of the emerging default hierarchy (more general rules are tried more 
often), and 

(3) a set of theorems (based on the previous two sets) that detail the way in 
which various kinds of environmental regularities are exploited by the genetic 
algorithm acting in terms of the strengths assigned by the bucket brigade. 

In the realm of experiment, aside from interesting new applications, the 
design of experiments centered on the emergence of tags under triggered 
coupling offers intriguing possibilities. Tags serve as the glue of larger systems, 
providing both associative and temporal (model building) pointers (see Exam- 
ple 3.5). Under certain kinds of triggered coupling (see the previous section) 
the message sent by the precursor in the coupled pair can have a "hash-coded" 
section (say a prefix or suffix). The purpose of this hash-coded tag is to prevent 
accidental eavesdropping by other classifiers--a sufficient number of randomly 
generated bits in the tag will prevent accidental matches with other conditions 
(unless the conditions have a lot of # in the tag region). If the coupled pair 
proves useful to the system then it will have further offspring under the genetic 
algorithm, and these offspring often will be coupled to other rules in the 
system. Typically, the tag will be passed on to the offspring, serving as a 
common element in all the couplings; the tag will only persist if the resulting 
cluster of rules proves to be a useful "subroutine." In this case, the "sub- 
routine" can be "called" by messages that incorporate the tag, because the 
conditions of the rules in the cluster are satisfied by such messages. In short, 
the tag that was initially determined at random now "names" the developing 
subroutine. It even has a meaning in terms of the actions it calls forth. 
Moreover, the tag is subject to the same kinds of recombination as other parts 
of the rules (it is, after all, a schema). As such it can serve as a building block 
for other tags. It is as if the system were inventing symbols for its internal use. 
Clearly, any simulation that provides for a test of these ideas will be an order 
of magnitude more sophisticated than anything we have tried to date. Runs 
involving hundreds of thousands of time steps will probably be required. 

Another set of possibilities, far beyond anything we yet understand either 
theoretically or empirically, is fully directed rule generation. In the broadcast 
language that was the precursor of classifier systems, provision was made for 
the generation of rules by other rules. With minor changes to the definition of 
classifier systems, this possibility can be reintroduced. (Both messages and 
rules are strings. By enlarging the message alphabet, lengthening the message 
string, and introducing a special symbol that indicates whether a string is to be 
interpreted as a rule or a message, the task can be accomplished.) With this 
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provision the system can invent its own candidate operators and rules of 
inference. Survival of these meta- (operator-like) rules should then be made to 
depend on the net usefulness of the rules they generate (much as a schema 
takes its value from the average value of its carriers). It is probably a matter of 
a decade or two before we can do anything useful in this area. 

Another interesting possibility rests on the fact that classifier systems are 
general-purpose systems. They can be programmed initially to implement 
whatever expert knowledge is available to the designer; learning then allows 
the system to expand, correct errors, and transfer information from one 
domain to another. It is important to provide ways of instructing such systems 
so that they can generate rules---tentative hypotheses----on the basis of advice. 
Little has been done in this direction. It is also particularly important that we 
understand how lookahead and virtual explorations can be incorporated with- 
out disturbing other activities of the system. 

Our broadest hopes turn on reincarnating in machine learning the cycle of 
theory and experiment so fruitful in physics. The close control of initial 
conditions, parameters, and environment made possible by simulation should 
enable the design of critical tests of the unfolding theory. And the simulations 
should suggest new directions for the theory. We hope to gain an understand- 
ing, not just of classifier systems, but of the consequences of competition in a 
changing population wherein subsystems are defined by combinations of 
building blocks that interact in a nonlinear fashion. In this context, classifier 
systems serve as a well-defined, precisely controllable testbed for a general 
theory. 

Appendix A. Genetic Algorithm Applications in Search 
and Logic 

Cat. Year Investigators Description 

Biology 
B 1967 Rosenberg 

B 1970 Weinberg 

B 1984 Perry 

B 1985 Grosso 

Computer science 
CS 1967 Bagley 

CS 1983 Gerardy 

CS 1983 Gordon 
CS 1984 Rendeli 

Simulation of the evolution of single-celled organism 
populations. 

Outline of cell population simulation including meta- 
level GA. 

Investigation of niche theory and specification with 
GAs. 

Simulation of diploid GA with explicit subpopula- 
tions and migration. 

GA-directed parameter search for evaluation func- 
tion in hexapawn-like game. 

Probabilistic automaton identification attempt via 
GA. 

Adaptive document description using GA. 
GA search for game evaluation function. 



278 L.B. BOOKER ET AL. 

Cat. Year Investigators Description 

Engineering 
E 1981 Goldberg 

E 1982 Etter, Hicks, Cho 
E 1983 Goldberg 

E 1985 Davis 
E 1985 Davis, Smith 
E 1985 Fourman 
E 1985 Goldberg, Kuo 

E 1986 Goldberg, Samtani 
E 1986 Minga 
E 1987 Davis, Coombs 

E 1987 Davis, Ritter 

Function optimization 
FO 1985 Ackley 
FO 1985 Brady 

FO 1985 Davis 
FO 1985 Grefenstette, Gopal, 

Rosmaita, van Gucht 
FO 1986 Goldberg, Smith 

Genetic algorithm parameters 
GA 1971 Hollstien 

GA 1972 Bosworth, Foo, 
Zeigler 

GA 1972 Frantz 

GA 1973 Martin 

GA 1975 DeJong 

GA 1976 Bethke 

GA 1977 Mercer 
GA 1981 Bethke 

GA 1981 Brindle 
GA 1981 Grefenstette 

GA 1983 Pettit, Swigger 

GA 1983 Wetzel 
GA 1984 Mauldin 

Mass-spring-dashpot system identification with sim- 
ple GA. 

Recursive adaptive filter design using a simple GA. 
Steady state and transient optimization of gas 

pipeline using GA. 
Outline of job shop scheduling procedure using GA. 
VLSI circuit layout via GA. 
VLSI layout compaction via GA. 
On-off, steady state optimization of oil pump- 

pipeline system via GA. 
Structural optimization (plane truss) via GA. 
Aircraft landing strut weight optimization via GA. 
Communications network link size optimization 

using GA plus advanced operators. 
Classroom scheduling via simulated annealing with 

meta-level GA. 

Connectionist algorithm with GA-like properties. 
Traveling salesman problem via genetic-like 

operators. 
Bin-packing and graph-coloring problems via GA. 
Traveling salesman problem via knowledge-augmen- 

ted genetic operators. 
Blind knapsack problem via simple GA. 

2-D function optimization with mating and selection 
rules. 

GA-like operators on simulated genes with sophisti- 
cated mutation. 

Investigation of positional nonlinearity and in- 
version. 

Theoretical study of GA-like probabilistic al- 
gorithms. 

Base-line parametric study of simple GA in 5-func- 
tion testbed. 

Brief theoretical investigation of possible parallel 
GA implementation. 

GA controlled by meta-level GA. 
Application of Walsh functions to schema average 

analysis. 
Investigation of selection and dominance in GAs. 
Brief theoretical investigation of possible parallel 

GA implementation. 
Cursory investigation of GAs in nonstationary 

search problems. 
Traveling salesman problem via GA. 
Study of several heuristics to maintain diversity in 

simple GA. 
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Cat. Year Investigators Description 

GA 1985 Baker 

GA 1985 Booker 

GA 1985 Goldberg, Lingle 

GA 1985 Schaffer 

GA 1986 Goldberg 

GA 1986 Grefenstette 
GA 1986 Grefenstette, 

Fitzpatrick 
GA 1987 Goldberg 

Image processing 
IP 1970 Cavicchio 

IP 1984 Fitzpatrick, 
Grefenstette, van Gucht 

IP 1985 Englander 
IP 1985 Gillies 

Physical sciences 
PS 1985 Shaefer 

Social sciences 
SS 1979 Reynolds 

SS 1981 Smith, DeJong 

SS 1985 Axelrod 

SS 1985 Axelrod 

Trial of ranking selection procedure on DeJong test- 
bed. 

Suggestion for partial match scores, sharing, and 
mating restrictions. 

Traveling salesman problem using partially matched 
cross-over and schema analysis. 

Multi-objective optimization using GAs with sub- 
populations. 

Maximization of marginal schema content by optimi- 
zation of estimated population size. 

GA controlled by meta-level GA. 
Test of simple genetic algorithm with noisy func- 

tions. 
Analysis of minimal deceptive problem for simple 

GAs. 

Selection of detectors for pixel-based pattern recog- 
nition. 

Image registration via GA to highlight selected prop- 
erties. 

Selection of detectors for known image classification. 
GA search for diagnostic image feature subroutines 

in Cytocomputer. 

Nonlinear equation solving with GA for fitting 
molecular potential surfaces. 

GA-guided adaptation in hunter gatherer/agricultur- 
al transition model. 

Calibration of population migration model using GA 
search. 

Iterated prisoner's dilemma problem solution using 
GA. 

Simulation of the evolution of behavioral norms with 
GA. 

Appendix B. Genetic Algorithm Applications in Machine 
Learning 

Cat. Year Investigators Description 

Business 
BU 1986 Frey 
BU 1986 Thompson, Thompson 

Architectural classification using CS. 
GA search for rule sets to predict company pro- 

fitability. 
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Cat. Year Investigators Description 

Computer science 
CS 1980 Smith 

CS 1985 Cramer 

CS 1985 Forrest 
CS 1986 Riolo 

CS 1986 Riolo 
CS 1986 Robertson 

CS 1986 Zeigler 

CS 1986 Zhou 

Engineering 
E 1983 Goldberg 

E 1984 Schaffer 
E 1985 Kuchinski 
E 1986 Liepins, HiUiard 
E 1986 Wilson 

Psychology and social sciences 
SS 1978 Holland, Reitman 

SS 1982 Booker 

SS 1983 Wilson 
SS 1985 Axelrod 

SS 1985 Wilson 

SS 1986 Schrodt 
SS 1986 Haslev (Skanland) 

Draw poker bet decisions learned by pure GA (LS- 
1). 

GA learning of multiplication task using assembler- 
like instruction set. 

Interpreter to convert KL-ONE networks to CSs. 
General-purpose C-package for classifier system 

study. 
Letter sequence prediction task via CS. 
LISP version of letter sequence prediction task im- 

plemented on Connection Machine 
GA searches for rule sets in symbolic rule-based 

system. 
GA builds finite automata from I /O examples. 

Pole-balancing task and gas pipeline control tasks 
learned by CS. 

LS-2 (see Smith) learns parity and signal problems. 
GA search for battle management system rules. 
Simple scheduling problem learned via CS. 
Boolean multiplexer task learned via CS. 

CS-1 learns to transfer information between maze- 
running tasks. 

Animal-like automaton with CS "brain" learns in 
simple 2-D environment. 

Video eye learns to focus when driven by CS. 
GA searches for rule-based strategies in iterated 

prisoner's dilemma. 
ANIMAT automaton with CS "brain" learns to 

acquire obstacle-hidden objects in 2-D en- 
vironment. 

Prediction of international events using CS. 
Past tense for Norwegian verb forms learned by CS. 
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