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ABSTRACT 

Many complex systems of great interest- ecologies, economies, immune systems, 
etc. - can be described as cz&z@ir,e nonlinear networks (ANNs), wherein the network 
specifies the allowed nonlinear interactions of a large number of components. With an 
appropriate representation, the adaptation of an ANN can be looked upon as a search 
in the space { l,Ojk, using a progressively biased probability distribution, p(t). 
Samples of this space return a value that measures the current performance of the 
ANN. The corresponding function u : { l,O}* --) Reals is usually badly nonlinear with 
multitudes of local optima. The possibilities for biasing p(t), as information accumu- 
lates, are more readily seen if {l,Olk is treated as a kdimensional space re-repre- 
sented via a h~perpkzne transfm. Sampling then supplies estimates of the expected 
value of u, under p(t), over hyperplanes of various dimensions. Though it is possible 
in principle, it is not feasible to calculate the estimated expectations for even a small 
proportion of the hyperplanes for which information is available. However, it can be 
proved that there is a class of procedures, called gmtic algorithm, that rapidly bias 
p( t ) to take advantage of large numbers of aboveaverage hyperplanes. Several 
properties of genetic algorithms are discussed using this point of view. 

INTRODUCTION 

Some of the most difficult problems facing humankind involve adaptive 
nonlinear networks-the systems of evolutionary genetics, immune systems, 
cognitive systems, ecologies, and economies, to name a few. The behavior of 
such systems emerges from the aggregate influence of a multitude of parts, 
each of which acts locally in response to the context provided by the activity 
of a limited number of other parts. Because the interactions are nonlinear, the 
state trajectory induced by the interactions cannot be determined by a 
simple superposition of the individual acts. The state space itself is so 
complex that individual states never recur over feasible observation times. 
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The complexity is further exacerbated because the networks are adaptive- 
they autonomously modify the interactions of their parts, and indeed the 
parts themselves, to improve overall performance. 

It is common to model the behavior of complex systems as an approach to 
some attractor, say the search for an extremum. However, as Simon [7] 
pointed out some years ago, it is better to think of a system such as an 
adaptive raonlinear network as sati@dng. The system confronts the problems 
presented by its environment by “developing solutions” that are adequate, 
not optimal. These systems have many levels of organization, and within each 
level there are subsystems that act and react to exploit limited resources 
(roughly, energy and material). A subsystem that does a bit better in this 
competition will soon exert a substantial influence on the overall behavior, 
even though its “solution” is far from optimal. 

Ihe usual evolution of an adaptive nonlinear network (ANN hereafter) 
exhibits perpetual novelty. The subsystems of the ANN are contindy 
revising their “boundaries,” and the procedures within these boundaries (a 
process Hebb [4 typifies as fractionation and recruitment). Even -when we 
ignore details within subsystems, the trajectory typically exhibits no repeti- 
tions (cf. the evolution of a species in biology). It is a consequence of this 
perpetual novelty, a consequence to be made plausible later, that these 
systems operate far from any global attractor. Improvements are always 
possible and, indeed, occur regularly. 

HOW does one sbddy 3Jch systems? Many of the tools of mathematics (e.g. 
lbarity, %xed points, convergence) offer only limited help. The very size and 
complexity of the underlying state space is daunting. An exhaustive search of 
possibilities is not even conceivable; only samples are possible. There is at 
least a bit of comfort associated with sampling. Estimates produced by a 
legitimate sampling technique have a reliability that does not depend upon 
the size of the underlying sample space (as long as the size of the sample 
remains n%mscule relative to the size of the space). The present paper, to 
exploit this advantage, views ANNs as searching for better performance by 
executing a progressively biased sample of the space of possibilities. We will 
assume that the states have some worth (payoff in game theory, utility in 
economics, error in control theory, @TUBS in genetics, and so on), and that 
the sampling is directed toward attaining states of high worth. In keeping 
with 0u.r earlier comments, emphasis will be placed upon efficiency in 
attaining improvements, rather than upon efficiency in approaching some 
optimum. 

In outline, the paper proceeds as follows: 

(1) The paper takes as its starting point the assumption that the ANN’s 
component structures (rules, strategies, chromosomes, policies, or the like) 
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can be represented as a collection of k-bit strings, and that each of these 
strings can be assigned some value. There is little loss in generality in using 

k-bit strings -any computer model ultimately rests upon a representation in 
terms of binary words. However, the assumption that we can assign some 
value to individual components of the AWN is more problematical. The 
problem is one of assigning credit. One must assign values to individuals on 
the basis of their contributions to overall performance, as when one assigns 
jitness to individuals in an evolving biological population, or worth to 
individual corporations in a economy, and so on. While this is a problem of 
interest in its own right, we will not consider it here (the interested reader 
will find discussions in [6]). On the basis of this assumption we can model the 
ANN’s search as a sampling of the space of strings { 1, O}k using a probability 
distribution p(t) that changes progressively as time t increases. Each x E 
( 1, O}k represents a structure to tried, and the function u : ( 1, 0) k + Reals 
determines the value u(x) returned when x is tried. For an ANN, u(x) will 
be a complex nonlinear function. The evaluation cf a single x will be a 
time-consuming task as, for example, when x is a stratee for playing a game. 
Here we are only concerned with conditions under which the infonnation 
returned-the value u(x) of the structure x-will be helpful in biasing the 
distribution p(t) that directs the search of (1,0)! 

(2) The information accumqulated by sampling u’s argument space ( 1, 0)” 

can be more transparently related to possibilities for further biasing p(t) if u 
is re-represented using a hyperplane transform. The hyperplane transform 
uses the fact that, under the distribution p( t ), the function u is a random 
variable and subsets of the argument space { 1, Ojk are euents having well- 
defined expectations. T%e hyperplane transform uses &e expectations of 
selected sets of hyperplanes in ( l,O)k to re-represent u. It can be shown that 
this transform provides a unique, invertible representation for any finite, 
nonlinear function u. 

(3) Biasing a search toward (or away from) some subset of (l,O)k, if it is 
to be information-based, requires an estimate that elements of that subset are, 
on average, better (worse) than elements elsewhere. Concentrating on hyper- 
planes, we note that hyperplanes of higher dimension, being larger subsets of 
(1, O)k, typically receive a larger fraction of any set of samples drawn from 
( 1, 0) k. As a consequence, estimates of the expectation u(s) associated with a 
higherdimensional hyperplane s will be confirmed faster than similar esti- 
mates for lower_dCimensional refinements of s. Accordingly, as the number of 
samples increases, biases should proceed from biases based on estimates for 
highdimensional hyperplanes to biases involving lower-dimensional refine- 
ments of those hyperplanes. 

(4) The problem, &en, is to design a feasible algorithm that, as infonna- 
tion accumulates, provides thy biases suggested by the hyperplaw trabwfm- 
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It is easy to see that, for large k, it is not feasible to carry out an explicit 
calculation of the hyperplane transform each time Pt is changed. However, it 
can be proved that gmdc algorithm rapidly provide the biasing implied by 
the hyperplane transform without explicitly carrying out the calculations 
involved. 

[Throughout the remainder of this paper, when the term random is used 
without further qualification, as in “randomly generated,” it implies a sample 
space with a uni$ii distribution.] 

THE HYPEFU’LANE TFUJSISFORMATION 

The hype&me transformation represents u in terms of its averages over 
certain easily defined hyperplanes in the space (l,O)! These hyperplanes, 
called whenas in [S], are specified by strings from the set (l,O, *}k. In 
s E {l,O,*}k the “*” is interpreted as a “wildcard” or “don’t care” symbol. 
The positions occupied by 1 or 0 (i.e., those positions not occupied by *‘s) 
are called the deJirring loci of s. s specifies a subset (hyperplane) of (1, O}k 
under the rule that x E s if and only if x matches s at every defining locus of 
s. Thus, 1** . . . * designates the subset of all strings that start with a 1, and 
11.. .l* designates the two-element subset (11.. .ll, ll... lo}. 

DESINITION. 2or convenience, a hyperplane defined with c defining loci 
will be called a hyperplane of level c (it is a hyperplane of dimension k - c). 

Each choice of a set of defining loci partitions the space (1,O)” into 
disjoint subsets containing equal numbers of elements. For example, schemas 
having positions 1 and 2 from the right as defining loci partition (1,O)” into 
the disjoint subsets (**. . . “11, **. . . *PO, ** l l l “01, **. . . *OO}. We will use 
strings from (d, *)k to designate the partitions specified by defining loci. 

DEFINITION. Each partition n E (d, *)k can be assigned a unique index 
j(r) by the simple expedient of substituting l’s for d’s and O’s for *‘s 
throughout the string designating the partition, treating the result as a binary 
integer. 

DEFINITION. For an arbitrary schema s, define j(s) = j(v), where ?T E 
(d, *}k is the (unique) partition containing the schema s. 
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Thus, the partition {**...*11,**...*10,*~...*Ol,4~...*OO} is named by 
** . . . *dd, and it has the index 00.. .Oll = 3,,. It follows that j(**. . . *ll) = 
j(**. . . *lo) = j(**. . . “01) = j(**. . . *OO) = 3,,. 

DEFINITION. It will be convenient to speak of the set of partitions 
specified by c defining bits as being the partitions at level c. 

To define averages over the hyperplanes, we must convert {l,O}k to a 
sample space by imposing a probability distribution, p : ( l,O}k + [0, 11. Then 
u becomes a random oariable, and each ewnt (subset) X c ( l,O}k has a 
well-defined marginal expectation, 

c XEX PWW 
4x)= c 

( ) 
. 

XEXP * 

The average of a set of samples drawn from X constitutes an estimate of 
u(X). In particular, each schema s can be assigned the expectation u(s). 

Under an algorithm that biases p as information accumulates, p becomes 
a function of time, p( t ); u( s, t ) then designates the expected value of u on s 
under the current probability distribution p(t). In the development that 
follows, p(s) = C, Es p(x) will designate the probability of the event s 
under p. 

Because ** . . . ** designates the whole space, u(** . . . * *) is just the ex- 
pected value of u under p. Consider now a partition specified by a single 
defining locus, say the partition ** . . . *d. The two schemas that are the 
elements of this partition, ** . . . * 1 and ** . . . “0, have well-defined marginal 
expectations under p, u(** . . . * 1) and u( ** . . . *0) respectively. Using the 
index 1 associated with the partition **. . . *d, define 

S,=6(**...*d) 

=,(**...*1)[u(**...*1)-u(**...**)]. 

Roughly, 6, measures the departure of the marginal expectation of the 
elements of the partition from the overall average u(**. . . **). It follows at 
once from the definition that 
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It also follows that 

u(**... *o) = u(**...**) - p(**81 *o), 

. . . 

because u(**... **) = p(**. . . *l)u(**. . . *l)+ p(**. . . *O)u(**. . . *O). Clearly 
a 8 can be assigned in the same way to each 2-clement partition specified by 
a single defining locus, yiekhg a set (6,,~~,6,,...,8,~-1). 

diven any schema s defined on m loci, one can partition s into two 
subsets by selecting one addithcl defining locus. Two schemas partitioning 
s, call them sr and sO, result; they are defined on the selected m + P loci. s1 
and s0 play much the same role with respect to s that **. . . *1 and ** . . . “0 
played with respect to ** . . . **. With a little care, we can set up an induction 
based on this analogy. It assigns a unique 6 to every indexed partition, such 
that for an arbitrary schema s, 

1 
u(s) = 6, + - c 

P(s) s’3s 

2-[mcs,-~llcs'~l,(,~)~ 
j(s’)’ 

S’#**...** 

where 

s,= u(**... **), the expectation of u under p, 
m(s’) =z the number of defining bits in s’, and 

( 

+ 1 if s’ has no O’s or an even number of O’s 
u(s’) = in its defining bits, 

- 1 otherwise. 

Because ( l,O}k contains 2k points and because there are 2k selected parti- 
tions with associated ~j’s, it is easy to show that the hyperplane representa- 
tion is unique for each distinct function u and distribution p. The inverse 
transform is given by 

6 j(s) = 
c (- 2) --[m(s~-m(s’)lp(s~)[u(s’) -is(J) 

s’3 s 
s’ # +*. . . l * 

using a schema s for which the defining bits are all 1’s. 
The following two lemmas are quickly established by inspection of the 

transform. 

LEMMA’ ‘j(s) contrihtes a positive (negative) increment to u(x) for 
enzctly half of the points x E ( 1, o)k. 
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DEFINITION. A partition r’ E (d, *}k will be called a superpartition of 
v E ( d, *}k when the defining bits of r’ constitute a subset of the defining 
bits of ?T. (That is, each element of the superpartition ?T’ is the union of a 
distinct set of elements of ‘12,) 

LEMMA. Zf s' is an element of any superpartition of j(s), then 6j(SI 
makes no net contribution to u(s’), the expected i;alue of u mer s’. 

Because the u(s) are marginal expectations, the average of any 
drawn from s under the distribution p( t ) constitutes an estimate of 
The 6(s, t), as functions of the u(s, t) and the biasing probabilities 
can also be estimated. 

sample 

u(s, t )* 
Pb th 

USING ESTIMATES OF u(s) TO BIAS THE SEARCH OF ( l,Ojk 

The hyperplane averages take a particularly simple form when the func- 
tion u is linear over individual loci and the probabilities assigned to individ- 
ual alleles are independent of one another. We will consider this case first, 
and then proceed to the general case. In this discussion two useful pieces of 
terminology from genetics will be adopted: The positions along a string will 
be called loci, and the values that can be inserted at any position will be 
called alleles. 

u is a linear function of values assigned to individual loci when 

44 = CUhfXhh 
h 

where x = xrxs... xkE (O,ljk, and uh:(O,I} + Reals+ assigns values to the 
two alleles at locus h. The probabilities of the individual alleles are indepen- 
dent of each other when the probability of an arbitrary string x is given by 
p(x) =&p&h), where p&h) is the probability that allele xh occurs at 
locus h. 

Consider now the 6’s at level 1, that is, the Sj(s) for which j(s) = 2h. Each 
hyperplane at level I is specified by the single allele at its defining locus. For 
example, the partition of index 2 has as elements the two hyperplanes 
** *.. *I* and **... “0”. When u is linear and the probabilities of the alleles 
in a string are independently assigned, it is a simple exercise to show that 

s sh = Ph(l)Ph(O)[ uh(l) - uh(")l l 
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Note that the formula for t&h involves oniy values and probabilities assigned 
to the a&&s, 1 and 0, at locus h. It is also easy to show that the 6’~ for 
partitions of level higher than 1 are all zero. To detetine the global 
optimum of U, we select the allele at each locus that corresponds to the 
above-average hyperplane at that locus. The string made up of the alleles so 
selected optimizes u. Stated another way, the optimizing string lies in the 
intersection of all the above-average level-l hyperplanes. Thus, if the esti- 
mates of u(s) for these level-l hyperplanes reflect the true values, an optimal 
string is easily determined. It follows that linear functions can be solved via 

es involving only the level-l hyperplanes, as intuition might suggest. 
In the general case, a hyperplane s supplies nontrivial information when 

the sjts) associated with patition j(s) is nonzero. Drawing on the terminol- 
ogy of mathematical genetics, the QsI for which j(s) is not a power of 2 
amount to epistatic effects-departures from the expectations that would 
hold if u were linear. If the epistatic effects are such that best hyperplanes 
are different from those determined by the linear estimate based on the 
level-l hyperplanes, then, typically, the search for better values of the 
evaluation function will be hampered until the corresponding u(s) can be 
estimated. 

To arrive at some idea of the difficulty posed by epistatic effects, note that 
a hyperplane at level c can be expected ti> receive a fraction 2-” of a 
uniformly distributed set of samples. Thus, about half of all samples can be 
used to estimate u(s) for any level-l hyperplane, while the proportion drops 
by half each time the level is increased by 1. Since the reliability of an 
estimate of u(s) depends upon the number of samples s receives, the rate at 
which relevant information accumulates drops by half each time the level is 
increased by 1. 

Consider, now, a function u with nonzero 6’s at several different levels. 
By the earlier lemma, a deeper-level, nonzero si has no effect on the averages 
u( s’) of elements s’ of the shaJlower superpartitions of j. On the other hand, 
the effects of 8j on U(S), for any schema s in partition j can be hidden in the 
contributions to u(s) made by nonzero 8’s at shallower levels. To exploit a 
deeper 8j one must find a schema s that (I) belongs to the partition j, (2) is 
above average under the distribution p, and (3) receives a positive contribu- 
tion from 8.. The effect of 6j(yI 

aIil 
on u(s), when confounded by the contribu- 

tions of sh ower 6’s, can only be determined when s has received enough 
samples to permit a reasonable estimate of u(s). The deeper the level of ~j, 
the longer it will take typically to accumulate information about schemas 
belonging to partition j. Accordingly, nonzero 8’s at deeper levels typically 
increase the difficulty of a search. 

Matters also become more complicated lvhen the probabilities assigned to 
loci are no longer independent of one another. Then even linear functions 
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may yield nonzero 6’s at deep levels. :ntuitively, the information supplied by 
a samp’hng procedure depends upon the underlying distribution. A biased 
distribution emphasizes certain regions, and the information supplied by the 
Si 'S is modified accordingly. 

The rate at which information accumulates about the u(s) adictates the 
order in which the search of the argument space ( l,O)k should be biased. 
Under uniform random sampling, estimates of a given level of reliability 
accumulate first for level-l hyperplaues, then, at half that rate, for level-2 
hyperplanes, and so on. Thus we should expect a realistic search to produce 
biases that, at first, are largely dependent upon estimates for a(s) associated 
with low-level hyperplanes. Biases based on higher-level hyperplanes enter as 
the number of samples increases. A search so directed has the concomitant 
advantage that a simpler problem is solved more quickly. 

THE GENETIC ALGORITHM AS A 
HYPERPLANE-DIRECTED SEARCH BROCEDURE 

(r) Description of the Genetic Algorithm 
[The algorithm acts on a set B(t) of M strings (xi, x2,. . . , x1: ) over the 
alphabet ( l,O)k ~9th observed values u(xi). For convenience M will be 
taken to be an even number.] 

Briefly, a genetic algorithm has the following form [6] for more details, and 
[3] for a wide range of variants and applications): 

(I) Compute the average strength u A (t ) of the strings in B( t ), and assign 
the normalized v&e u(ri)/un (t) to each string xj E B(t ). 

(2) Assign each “j E B( t ) a probability p( X j, t ) proportional to its normal- 
ized value. Using this probability distribution, select M strings from I?( t ), 
forming a new population B’. 

(3) Pair all of the strings in B’ at random, forming M/2 pairs. Apply 
crossover with probability PC_ to each pair (and, possibly, apply other 
genetic operators such as mutation with probabilities Pmut , etc.), forming a 
new population B” of M strings. Crossooer is applied to a pair of strings as 
follows: Select at random a position i, 1~ i < k, and then exchange the 
segments to the left of position i in the two strings (see Figure 1). 

(4) Increase t by 1, set B(t) = B”, and return to step (I). 

[Step (4) in the algorithm may be modified to prevent one kind of string from 
“overcrowding” B(t ) (see [I] and [2] for details). Contiguity of constituents, 
and the building blocks constructed from them, is significant under the 



264 JOHN H. ZIOLLAND 
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FIG. 1. An example of the crossover operator. 

crossover operator. Close constituents tend to be exchanged I together. Opera- 
tors for rearranging the loci, such as the genetic operator inversion, can bias 
the rule-generation process so that loci that interact usefully tend to be 
contiguous. Other genetic operators, such as mutation, have lesser roles in 
this use of the algorithm, mainly providing “insurance” (see [S, Chapter 6, 
Sections 2, 3, 41 for details).] 

An example of the action of the algorithm is shown in Figure 2. 
The fundamental theorem for genetic algorithms (see [S]) can be rewritten 

as a theorem about progressively biasing a probability distribution over the 
space ( l,O}k: 

THEOREM. P(& t + 1) 2 [l - X(s, t>l[l - P,,,ld(“)[~(S, t)/f.#)lp(s, t), 

whew p(s, t + 1) is the expected fiaction of the populution that will be 
occupied by the instances of s at time t + 1 under the genetic ulgorithm, 
given thut p(s, t ) is the fraction occupied by s at t. 

The factors on the right-hand side are: 

(1) [u(s, t)/u( t)], the ratio of the observed average value of the schema s 
to the overall popul+oz average. ‘II& term determines the rate of change 
of p( s, t), subject to the “error” terms [I - A@, t )][l - Pmut] d(S). If u(s, t) is 
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X. 
J U(xj>/u(t) Pt. Of Interche~e X.’ 

[ Pareds 1 [No. Offspring ] [Crossover ] (Off&ing] 

111010001 . ..- 

101011100 . . . . . . __...: i, .:j. .:::. 
0001i1111... 

-.~~~~:~, 

010010000 ..:--+J 
.:i;‘::i::‘.“‘:j.. 

1661hIll 
. g __z Ipi ;;; ; ::_ 

010110101 . . ..- 

110100100. - .. .i ::.: :i:. ““: .i., 

lObO’i0 111 - 

] ffhl;; ::: 

. . . . . . 
defining bits in instances 

2+2+1 
m(*OO.l....*) = - = 1.67 

of sc!u?ma •00~100~0o 
3 

1 

encloaee segments in offspring from first parent 

r___ _______ ___ point of interchange 
(10~~ of Cr0550VQr j 

The populatio;l consists of strings (“chromosomes”) of length k from the set 

(1, Ojk based on the 2-letter alphabet { 1 , 0) (2 possible “alleles” at each locus). 

FIG. 2. An example of the genetic algorithm acting on schemas. 



!266 JOHN H. HOLLAND 

aboveaverage the proportion of schema s increases (if the error terms are 
small), and vice versa. 

(2) Ms,t) and p&t> tke %rd tems rmiltiqg jhn the breakup of 
instances of s because of crossmer and mutation, respectively. Specifically, 
X(s, t)p(s, t) = P,_[l(s)/(k L I&~<s, t) is an upper ttiund oz the crossmet 
loss, the loss of instances of s resulting k0m crosses that fall within the 
interval of length Z(s) determined by the outermost defining loci of the 
schema. [l - PmUJys) gives the proportion of instances of s that escape a 
mutation at one of the cl(s) defining loci of s. 

(The underlying algorithm is stochastic, so this equation only provides a 
bound on expectations at each time step. Using the terminology of mathemat- 
ical genetics, this equation supplies a &&&Gstic model of the algorithm 
under the assumption that the expectations are actually achieved on each. 
time step.) 

Proof outline (see [5] for details). 

(1) Consider a schema with M( s, t ) instances in the population B( t ). The 
average value of these instances is given by IL@, t) = C,,,u(x)/M(s, t). If 

each of these instances is copied with probability u( X)/W (t ), there will be 
c ,,,u(x)/u^(t)= u(s, t)M(s, t)/u^(t) instances of s expected in B’ after 
the copying. (‘The actual number of course will be subject to sampling error). 

- (2) When the point of crossover falls within the outer limits of the 
defining positions for a schema, the defining bits of the schema will be 
separated in the offspring (otherwise they are passed on intact). Under such 
circumstances, it is possible (but not necessary) that neither offspring is an 
instance of the schema, so that there is a “10s~” of one instance in the 
process. &cause the point of crossover is chosen at random in each case, the 
probability that the cross falls within the outer defining positions is given by 
Z(s)/(k - 1), where I(s) is the number of crossover points between the outer 
defining positions of s. Thus P_[l(s)/(k - l)] gives an upper bound on the 
probability that a given instance of s will be lost because of crossover during 
the formation of B.” A similar calculation provides the loss rate because of 
mutation. 

(3) It follows that the number M(s, t + 1) of instances of s to be expected 
after copying and crossover is bounded below by 
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(4) But p(sg e ), the tracticn of instances of s in the population B( t ), is b> 
definition _M( s, t )/M, so that 

p(s,t -i-l)>, [I-“(S,t)][l--P,,t]d(S) u(u) 
-P(S, t)- 

u(t) 
m! 

In any population that is not too small, distinct schemas will almost always 
have distinct subsets of instances if the number of instances is relatively 
small. For example, in a randomly generated population of size 2SOO, 
any schema defined on 8 loci can be expected to have about 10 instances. 
There are 

2X)0 
t 1 10 

=3x102’ 

ways of choosing this subset, so that it is extremely unlikely that the subsets 
of instances for tws such schema will be identical. (Looked at another way, 
the chance that two schemas have even one instance in common is less than 
1Ox2-8 = & if they are defined on disjoint subsets of loci.) Because the sets 
of instances are overwhelmingly likely to be distinct, the observed averages 
uA (s, t) will be determined mostly by independent samples. As a conse- 
quence, the rate of increase (or decrease) of a schema s under a genetic 
algorithm is largely uncontaminated by the rates associated with other such 
schemas, Loosely, the rate is uninfhrenced by “crosstalk” from the other 
schemas. 

From the point of view of sampling theory (applied to populations large 
enough that sampling without replacement is insignifieantly different from 
sampling with replacement), 20 or 30 instances of a schema s constitutes a 
sample large enough to give some confidence to the corresponding estimate 
of u(s). Thus, for such schemas, the biases p(s, t) produced by a genetic 
algorithm over a succession of generations are neither much distorted by 
sampling error nor smothered by “crosstalk.” 

To gain some idea of how many schemas are so processed, consider the 
following: 

THEOREM. Se&t some bound e on the crossover error, and pick k’ such 
that k’/k < e/Z (The theorem is ody of interest when ek/2 >> I.) Consider 
a population of size M = ~~2~: where cr is Q: small integer (say ci < k1j3). If 
M is obtained as a uniform random vmpk from (l,Ojk, th.e number of 
schemes propagate& with an error bw than e grdiy PI-CC FL& M3. 
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Proof outline. 

(1) Consider a “window” of 2k’ contiguous loci in a string of length k 
such that 2k’/k < e. Ch-iy any schema having all its defining loci within 
this window will be subject to a crossover error less than e. 

(2) There are 

22k' 

(Izk’) -1’2 

ways tif selecting k’ defining positions in the window, and there are 2k’ 
different schemas that can be defined using any given set of k’ defining loci. 
Therefore, there are approximately 23k’/( wk’)- l/2 distinct schemas with k’ 
defining positions that can be defined in the window. 

(3) A population of size M = ~~2~’ obtained by a uniform random sam- 
pling of ( l,O}k can be expected to have ci instances of every schema defined 
on k’ defining positions. Therefore, for the given window, there will be 
approximately M3/cf( wk’)- ‘I2 schemLas having instances in the population 
and defined on some set of k’ loci in the window. 

(4) The same argument can be given for schemas of length k’- 1, 
k’- 2,..., and for k’+l, k’+2,..., with values of 

decreasing in accord with the binomial distribution. There are also k - k’- 1 
distict positionings of the window on strings of length k. It follows that 
many more than M3 schemas, with instances in the population of size M, 
increase or decrease at a rate given by their observed marginal averages with 
a crossover error less than e. m 

A genetic algorithm’s ability to meaningfully bias the sampling rate of a 
large number of schemas while processing a relatively small set of instances is 
called implicit parallelism (ne intrinsic parallelism [5]). 

(2) Effects of the Q’s on the Search Generated by a Genetic Algorithm 
The fundamental theorem makes it clear that the biases p(s, t + 1) pro- 

duced by a genetic algorithm at time t + 1 depend directly upon the 
observations uA (s, t ) and biases p( s, t ) at time t. The hyperplane transform 
IS, applied to the sample space defined by the new dktribution p(t + l), 
determines a new set of ai( t + 1). 
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Consider a function that is complex enough that a random sample of M 
arguments is very unlikely to contain an argument that yields the optimum 
value of the function. (Typically a function with m or more nonzero 8’s will 
be such a function if logs M (< 7~) Let partition i be a deeper partition w& 
a large associated 8i(t + 1). By the earlier lemmas, ~i( t + 1) will contribute 
positively to u(s) for half the elements s of this partition, but it will not 
contribute to u(s’) for any elements s’ of superpartitions of partition i. Pt 
follows that 6i(t + 1) cm be exploited only if the population B( t + I) 
contains one or more instances of a schema s in partition i for which 
(1) Qi( t + 1) makes a positive contribution (i.e., it has the appropriate sign), 
and (2) the contributions of the 6’s from shallower levels are such that u(s) 
is above average. If there is no instance of such an s in the population at 
B(t), then s can only be formed by recombination (crossover) or mutation. 
That is, if there are no instances of such an s in the population, dint + 1) can 
be exploited in the near future only if the schema s can be reached from 
currently exploited hyperplanes via a few recombinations and mutations. 

By looking at the levels in which the nonzero 6’s are distributed, one can 
attain a qualitative understanding of the trajectory induced by a given 
nonlinear function u. Consider again an initial population B(O) that has been 
generated using a uniform random distribution over (l,O)! If the size M of 
that population is 2m, then we can expect multiple copies of all schemas with 
fewer than TT defining loci. If, as earlier, we set a bound e on the error 
produced by the genetic operators, requiring [l - A( s, t )][l - Pmutld@) < e, 
then in excess of M3 of these schemas will be processed with an error less 
than e (for an apprc+,_ Ga+ely chosen M and a sufficiently small mutation rate). 
Because the abovey:v-rage schemas increase their instances exponentially 
(with exponent [l - e][u(s, t)/u(t)]), they soon come to occupy a substan- 
tial fraction of the population. Sampling then is concentrated on these 
hyperplanes and their intersections (though not exclusively). 

While the above-average schemas with instances in the initial population 
are being exploited, new schemas exploiting deeper 6’s are discovered in IWO 
ways: (1) mutation of loci that are near the loci defining one of the initially 
exploited schema, (2) recombination, under crossover, of fragments of the 
initially exploited schemas. These new schemas will join the set of schemes 
that occupy a substantial fraction of the population, and hence are sampled 
intensively, only if [l - e][u(s, t)/u(t)] > 1. 

Each of these discovery processes is worth looking at in more detail: 
Mutations of loci contiguous to the defining loci of an above-average 

schema s can provide instances of schemas not previously present in the 
population. Ea,... A such schema, s’, is a refinement of s (i.e., s contains SI) 
and hence is an element of a deeper level partition. Consider, then, a 
partition of s composed of 2h hyperplanes obtained by specifying the values 
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for some set of tr loci contiguous to s. &cause the mutations are allocated 
randomly, the number of samples n( s’) of s’ will be approximately 2- ‘n(s), 
where n(s) is the number of samples allocated to s. The central limit 
tJaeorm assures that the averages of different sets of samples of any s’ will be 
distributed approximately as a Gaussian distribution, whatever the probabili- 
ties assigned to the elements x in s’. The sampling process (mutation 
operator) thus srod-uces an estimate of ~(8’) with a variance that decreases as 

1. very roug&, then, one would expect to reliably discover s’ for 

which u(s’) > u(s) at a rate on the order of /m. In other words, 
mutation will discover improvements in ‘he vicinity of s at a rate that falls off 
as the square root of the number of samples allocated to s. In biological 
terms, this would correspond to or; adaptioe radiation wherein variants of the 
prototype s provide incremental improvements. 

This process of “exploring the neighborhood’ via mutations contrasts 
sharply with the jumps produced by crossover. To develop the contrast, 
consider a randomly generated population with instances of two above-aver- 
age schemas si and sa, where d(s,) >, c&s,). Let the defining bits of si and 
sa be such that there are no instances of the schema s designating the 
intersection at si and ss, and let u(s) > max( u( si), u(ss)}. 

Under these conditions, on the order of d&)/2 mutations must accumu- 
late in some instance of si before an instance of s appears in the population. 
The mutation rate can of \.purse be increased to make the accumulation more 
rapid, but only at the cost of making it increasingly unlike2y that s will be 
“copied” into successive generations (see the example just below). Mutations 
tend to explore in a linear way -the depth of the exploration is a linear 
function of the number of generations elapsed. 

On the other hand, a single crossover between parents that are instances 
of s1 and s2, respectively, can yield an instance of s. That is, an above-aver- 
age schema s at depth 2b that falls in the intersection of established schemas 
s1 and s2 at depth b can be discovered in a sir:& generation. This doubling 
of depth in successive generations comes about whenever established schemas 
can be combined as “building blocks” to yield improved schemas. Under 
these conditions, crossover explores with directed exponential increases in 
depth. 

(3) An Exumpik 
The following example gives a quantitative measure of the difference 

between mutation and crossover: 
Let schema s be defined on contiguous loci, i.e. Z(s) = d(s) - 1. Divide 

the defining loci of s into disjoint subsets of contiguous loci, forming schemas 
s’ and s” that have s as their intersection. Let e(s) be an upper bound on 
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the allowable rate of transcription errors for s. [That is, if the transcription 
error rate exceeds e(s), then even an above-average schema s with an 
instance in1 the population B(t) is unlikely to have instances that persist 
through successive generations.] ’ 

Let s* be any schema properly contained in s’ and properly containing s. 
Assume that for all such s*, u(s’) > tl(s*), while u(s) > I. That is, the 
schema s’ is “surrounded” by a “desert” of lesser-valued schemas (s*}, at 
the edge of which is a “higher peak” s. For ease of calculation, assume that 
s’ has a single persistent instance in the population. 

Consider, first, the time expected to elapse, under mutation alone, before 
the “peak” s is attained from s’. Note that the bound on transcription error 
sets an upper bound on the mutation rate because (1 - Pmu#@) > 1 - e(s), 
and this yields the inequality 

For an instance of s’ to be an instance of s, the alleles at all the defining loci 
D(s”) of s” must match the corresponding alleles of s. Schemas s* that are 
refinements of s’ (but not equal to s) cannot persist, because U( s*) < u(s’). 
As a consequence, there is no way for instances of s’ to gradually accumulate 
the mutations that “lie on the way” to s. To attain s all the required 
mutations must occur simultaneously in some single instance of s’. In a 
randomly generated population, we can expect that half of the alleles at the 
loci D(s”) match the corresponding alleles of s. Thus d(s”)/2 mutations 
must occur simultaneously in some instance of s’. This will occur with 
probability 

d( s”)/2 

with a corresponding search time 

\ 4s”P 

J . 
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If we loo!; to the corresponding calculations for crossover we first find that 
the bound 3n transcription error sets a bound 

l(S) 
l-P_- k >l-e(s), 

or 

w 
COSS- 

k 
<e(s), 

which implies that 

using the fact that Z(s) = d(s) - 1 for schema s. Under crossover, an instance 
of s’ wilI have an offspring that is an instance of s if two things happen: 
(1) the other parent in the cross is an instance of s”, and (2) the cross occurs 
exactly at the juncture of s’ and s”. In a randomly generated population, a 
randomly selected parent will be an instance of s” with a probability 2-d(s”), 
and the crossover will occur at the required juncture with probability l/k. 
Thus the overall event will occur with probability 

2-d(s”) 2-d(s”) 

-= 

k Gxs( Cd(s) - 11 /e(s) 1 

with a corresponding search time 

d( s”) 

using the fact that PCross < 1. 
Even for relatively small “deserts” these waiting times are enormously 

different. For example, with d(s’) = 16, d(s”) = 8, and e(s) = 0.1, 

Tmut > 3.4 x 10’ 
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T cross < 6.2 x 104. 

COMMENTS 

Most searches of complex spaces conducted by genetic algorithms should 
exhibit the same broad characteristics; 

14t the outset, there should be a rapid biasing of sampling probabilities 
toward hyperplanes s that 

(I) have instances in the initial population, and _ 

(2) have an average value w (s,c)) sufficiently above the population 
average W(O) to overbalance errors in copying s induced by the genetic 
operators. 

In particular, if the mutation rate is low, this is a requirement that the 
“length” Z(s) of the schema be short enough that I( s)/k < [ ZP (s, 0)/w (0)] 
- 1. If the observed w (s,O) is a good estimate of the actual marginal 
expectation U(S), then the number of instances of s will increase exponen- 
tially in subsequent generations. 

As the exponential increase continues, the increasing number of instances 
of above-average schemas can be expected to drive the population average 
w (t) upward. For any given s this forces Z.P (s, Q/W (t) ever closer to 1. 
The exponential increase of s then tapers off. Eventually, unless s represents 
the best that can be achieved, continued increases in the population average 
cause a decrease in the number of instances of s, unless some refinement of s 
offers further improvement. 

During the time that a schema has a large number of instances in the 
population, the genetic algorithm acts to provide many new instances of it. 
The mutation operator treats the schema as a focal point, generating a variety 
of new instances in its “neighborhood.” Crossover, and other forms of 
recombination, generate new instances by treating the schema as a “. building 
block” that can be used in combination with other building blocks. 

The fate of a newly discovered instance of a deep, aboveaverage schema s 
depends upon the manner of its discovery. Consider a schema s with a length 
a(s) large enough to indicate a large crossover error. Under normal circum- 
stances, this crossover error would be enough to quickly destroy instances of 
s. IIowever, if s has been discovered by recombination of wellestablished 
building blocks, things happen differently. The well-established building 
blocks occupy large fractions of the population, so the parents are likely to 
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hold several building blocks in common. As a result, crosses that normally 
would break up instances of s now just recreate s, because they exchange 
pieces of identical building blocks. Thus, s increases its representation 
despite the large crossover error. 

Generally, crossover is the operator that can be expected to yield substan- 
tial improvements baslzd on deeper 6’s. Crossover implements the heuristic 
that “good” structures are constructed of “good” building blocks (cf. Simon’s 
[q discussion of the architecture of complexity). This amounts to a conjecture 
that new nonzero 6’s are associated with the intersections of hyperplanes 
aheady known to be associated with nonxero 6 ‘s. 0f course, the conjecture 
may prove untrue for many intersections, but it need only be true upon 
occasion for improvements to be made. 

It should be recalled that improvement is the object of the search; the 
global optimum may involve 8’s so deep that they will never be uncovered in 
feasible times. Implicit paralle!ism, by assuring that the genetic algorithm 
usefully searches large numbers of schema combinations in each successive 
generation, makes it likely that some useful intersections will be uncovered. 
It is possible to design a function u that often “guides” the genetic algorithm 
away from good regions, but it is hard to design a function that keeps the 
algorithm away from improvements over long intervals. 

Overall, and in qualitative terms, the search of a complex nonlinear 
function with nonzero 6’s at many levels typically exhibits continual small 
improvements, punctuated by saltations to schemas involving deeper 6’s. 
This behavior is a direct consequence of the manner in which genetic 
operators exploit sparse deeper 6’s. From a biological perspective, it is 
interesting that this succession of “punctuated equilibria” occurs without the 
intervention of higher-order selection principles. 
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