
Searching Nonlinear Functions for

John H. Holland

Division of Computer Science and Engiwving
The University of Michigan
Ann Arbor, Michigan 48103

ABSTRACT

Many complex systems of great interest- ecologies, economies, immune systems,
etc. - can be described as cz&z@ir,e nonlinear networks (ANNs), wherein the network
specifies the allowed nonlinear interactions of a large number of components. With an
appropriate representation, the adaptation of an ANN can be looked upon as a search
in the space { l,Ojk, using a progressively biased probability distribution, p(t).
Samples of this space return a value that measures the current performance of the
ANN. The corresponding function u : { l,O}* --) Reals is usually badly nonlinear with
multitudes of local optima. The possibilities for biasing p(t), as information accumu-
lates, are more readily seen if {l,Olk is treated as a kdimensional space re-repre-
sented via a h~perpkzne transfm. Sampling then supplies estimates of the expected
value of u, under p(t), over hyperplanes of various dimensions. Though it is possible
in principle, it is not feasible to calculate the estimated expectations for even a small
proportion of the hyperplanes for which information is available. However, it can be
proved that there is a class of procedures, called gmtic algorithm, that rapidly bias
p(t) to take advantage of large numbers of aboveaverage hyperplanes. Several
properties of genetic algorithms are discussed using this point of view.

INTRODUCTION

Some of the most difficult problems facing humankind involve adaptive
nonlinear networks-the systems of evolutionary genetics, immune systems,
cognitive systems, ecologies, and economies, to name a few. The behavior of
such systems emerges from the aggregate influence of a multitude of parts,
each of which acts locally in response to the context provided by the activity
of a limited number of other parts. Because the interactions are nonlinear, the
state trajectory induced by the interactions cannot be determined by a
simple superposition of the individual acts. The state space itself is so
complex that individual states never recur over feasible observation times.

APPLIED MATHEMATICS AND COMPUTATION 32:255-274 (1989) 255

@ Elsevier Science Publishing Co., Inc., 1989
655 Avenue of the Americas, New York, NY 10010 009&3003/89/$03.50

256 JOHN H. HOLLAND

The complexity is further exacerbated because the networks are adaptive-
they autonomously modify the interactions of their parts, and indeed the
parts themselves, to improve overall performance.

It is common to model the behavior of complex systems as an approach to
some attractor, say the search for an extremum. However, as Simon [7]
pointed out some years ago, it is better to think of a system such as an
adaptive raonlinear network as sati@dng. The system confronts the problems
presented by its environment by “developing solutions” that are adequate,
not optimal. These systems have many levels of organization, and within each
level there are subsystems that act and react to exploit limited resources
(roughly, energy and material). A subsystem that does a bit better in this
competition will soon exert a substantial influence on the overall behavior,
even though its “solution” is far from optimal.

Ihe usual evolution of an adaptive nonlinear network (ANN hereafter)
exhibits perpetual novelty. The subsystems of the ANN are contindy
revising their “boundaries,” and the procedures within these boundaries (a
process Hebb [4 typifies as fractionation and recruitment). Even -when we
ignore details within subsystems, the trajectory typically exhibits no repeti-
tions (cf. the evolution of a species in biology). It is a consequence of this
perpetual novelty, a consequence to be made plausible later, that these
systems operate far from any global attractor. Improvements are always
possible and, indeed, occur regularly.

HOW does one sbddy 3Jch systems? Many of the tools of mathematics (e.g.
lbarity, %xed points, convergence) offer only limited help. The very size and
complexity of the underlying state space is daunting. An exhaustive search of
possibilities is not even conceivable; only samples are possible. There is at
least a bit of comfort associated with sampling. Estimates produced by a
legitimate sampling technique have a reliability that does not depend upon
the size of the underlying sample space (as long as the size of the sample
remains n%mscule relative to the size of the space). The present paper, to
exploit this advantage, views ANNs as searching for better performance by
executing a progressively biased sample of the space of possibilities. We will
assume that the states have some worth (payoff in game theory, utility in
economics, error in control theory, @TUBS in genetics, and so on), and that
the sampling is directed toward attaining states of high worth. In keeping
with 0u.r earlier comments, emphasis will be placed upon efficiency in
attaining improvements, rather than upon efficiency in approaching some
optimum.

In outline, the paper proceeds as follows:

(1) The paper takes as its starting point the assumption that the ANN’s
component structures (rules, strategies, chromosomes, policies, or the like)

Searching Nonlinear Functions for High Values 257

can be represented as a collection of k-bit strings, and that each of these
strings can be assigned some value. There is little loss in generality in using

k-bit strings -any computer model ultimately rests upon a representation in
terms of binary words. However, the assumption that we can assign some
value to individual components of the AWN is more problematical. The
problem is one of assigning credit. One must assign values to individuals on
the basis of their contributions to overall performance, as when one assigns
jitness to individuals in an evolving biological population, or worth to
individual corporations in a economy, and so on. While this is a problem of
interest in its own right, we will not consider it here (the interested reader
will find discussions in [6]). On the basis of this assumption we can model the
ANN’s search as a sampling of the space of strings { 1, O}k using a probability
distribution p(t) that changes progressively as time t increases. Each x E
(1, O}k represents a structure to tried, and the function u : (1, 0) k + Reals
determines the value u(x) returned when x is tried. For an ANN, u(x) will
be a complex nonlinear function. The evaluation cf a single x will be a
time-consuming task as, for example, when x is a stratee for playing a game.
Here we are only concerned with conditions under which the infonnation
returned-the value u(x) of the structure x-will be helpful in biasing the
distribution p(t) that directs the search of (1,0)!

(2) The information accumqulated by sampling u’s argument space (1, 0)”

can be more transparently related to possibilities for further biasing p(t) if u
is re-represented using a hyperplane transform. The hyperplane transform
uses the fact that, under the distribution p(t), the function u is a random
variable and subsets of the argument space { 1, Ojk are euents having well-
defined expectations. T%e hyperplane transform uses &e expectations of
selected sets of hyperplanes in (l,O)k to re-represent u. It can be shown that
this transform provides a unique, invertible representation for any finite,
nonlinear function u.

(3) Biasing a search toward (or away from) some subset of (l,O)k, if it is
to be information-based, requires an estimate that elements of that subset are,
on average, better (worse) than elements elsewhere. Concentrating on hyper-
planes, we note that hyperplanes of higher dimension, being larger subsets of
(1, O)k, typically receive a larger fraction of any set of samples drawn from
(1, 0) k. As a consequence, estimates of the expectation u(s) associated with a
higherdimensional hyperplane s will be confirmed faster than similar esti-
mates for lower_dCimensional refinements of s. Accordingly, as the number of
samples increases, biases should proceed from biases based on estimates for
highdimensional hyperplanes to biases involving lower-dimensional refine-
ments of those hyperplanes.

(4) The problem, &en, is to design a feasible algorithm that, as infonna-
tion accumulates, provides thy biases suggested by the hyperplaw trabwfm-

258 JOHl’d H. HOLLAND

It is easy to see that, for large k, it is not feasible to carry out an explicit
calculation of the hyperplane transform each time Pt is changed. However, it
can be proved that gmdc algorithm rapidly provide the biasing implied by
the hyperplane transform without explicitly carrying out the calculations
involved.

[Throughout the remainder of this paper, when the term random is used
without further qualification, as in “randomly generated,” it implies a sample
space with a uni$ii distribution.]

THE HYPEFU’LANE TFUJSISFORMATION

The hype&me transformation represents u in terms of its averages over
certain easily defined hyperplanes in the space (l,O)! These hyperplanes,
called whenas in [S], are specified by strings from the set (l,O, *}k. In
s E {l,O,*}k the “*” is interpreted as a “wildcard” or “don’t care” symbol.
The positions occupied by 1 or 0 (i.e., those positions not occupied by *‘s)
are called the deJirring loci of s. s specifies a subset (hyperplane) of (1, O}k
under the rule that x E s if and only if x matches s at every defining locus of
s. Thus, 1** . . . * designates the subset of all strings that start with a 1, and
11.. .l* designates the two-element subset (11.. .ll, ll... lo}.

DESINITION. 2or convenience, a hyperplane defined with c defining loci
will be called a hyperplane of level c (it is a hyperplane of dimension k - c).

Each choice of a set of defining loci partitions the space (1,O)” into
disjoint subsets containing equal numbers of elements. For example, schemas
having positions 1 and 2 from the right as defining loci partition (1,O)” into
the disjoint subsets (**. . . “11, **. . . *PO, ** l l l “01, **. . . *OO}. We will use
strings from (d, *)k to designate the partitions specified by defining loci.

DEFINITION. Each partition n E (d, *)k can be assigned a unique index
j(r) by the simple expedient of substituting l’s for d’s and O’s for *‘s
throughout the string designating the partition, treating the result as a binary
integer.

DEFINITION. For an arbitrary schema s, define j(s) = j(v), where ?T E
(d, *}k is the (unique) partition containing the schema s.

Searching Nonlinear Functim fm High Values 259

Thus, the partition {**...*11,**...*10,*~...*Ol,4~...*OO} is named by
** . . . *dd, and it has the index 00.. .Oll = 3,,. It follows that j(**. . . *ll) =
j(**. . . *lo) = j(**. . . “01) = j(**. . . *OO) = 3,,.

DEFINITION. It will be convenient to speak of the set of partitions
specified by c defining bits as being the partitions at level c.

To define averages over the hyperplanes, we must convert {l,O}k to a
sample space by imposing a probability distribution, p : (l,O}k + [0, 11. Then
u becomes a random oariable, and each ewnt (subset) X c (l,O}k has a
well-defined marginal expectation,

c XEX PWW
4x)= c

()
.

XEXP *

The average of a set of samples drawn from X constitutes an estimate of
u(X). In particular, each schema s can be assigned the expectation u(s).

Under an algorithm that biases p as information accumulates, p becomes
a function of time, p(t); u(s, t) then designates the expected value of u on s
under the current probability distribution p(t). In the development that
follows, p(s) = C, Es p(x) will designate the probability of the event s
under p.

Because ** . . . ** designates the whole space, u(** . . . * *) is just the ex-
pected value of u under p. Consider now a partition specified by a single
defining locus, say the partition ** . . . *d. The two schemas that are the
elements of this partition, ** . . . * 1 and ** . . . “0, have well-defined marginal
expectations under p, u(** . . . * 1) and u(** . . . *0) respectively. Using the
index 1 associated with the partition **. . . *d, define

S,=6(**...*d)

=,(**...*1)[u(**...*1)-u(**...**)].

Roughly, 6, measures the departure of the marginal expectation of the
elements of the partition from the overall average u(**. . . **). It follows at
once from the definition that

JOHNH.HOLLAND

It also follows that

u(**... *o) = u(**...**) - p(**81 *o),

. . .

because u(**... **) = p(**. . . *l)u(**. . . *l)+ p(**. . . *O)u(**. . . *O). Clearly
a 8 can be assigned in the same way to each 2-clement partition specified by
a single defining locus, yiekhg a set (6,,~~,6,,...,8,~-1).

diven any schema s defined on m loci, one can partition s into two
subsets by selecting one addithcl defining locus. Two schemas partitioning
s, call them sr and sO, result; they are defined on the selected m + P loci. s1
and s0 play much the same role with respect to s that **. . . *1 and ** . . . “0
played with respect to ** . . . **. With a little care, we can set up an induction
based on this analogy. It assigns a unique 6 to every indexed partition, such
that for an arbitrary schema s,

1
u(s) = 6, + - c

P(s) s’3s

2-[mcs,-~llcs'~l,(,~)~
j(s’)’

S’#**...**

where

s,= u(**... **), the expectation of u under p,
m(s’) =z the number of defining bits in s’, and

(

+ 1 if s’ has no O’s or an even number of O’s
u(s’) = in its defining bits,

- 1 otherwise.

Because (l,O}k contains 2k points and because there are 2k selected parti-
tions with associated ~j’s, it is easy to show that the hyperplane representa-
tion is unique for each distinct function u and distribution p. The inverse
transform is given by

6 j(s) =
c (- 2) --[m(s~-m(s’)lp(s~)[u(s’) -is(J)

s’3 s
s’ # +*. . . l *

using a schema s for which the defining bits are all 1’s.
The following two lemmas are quickly established by inspection of the

transform.

LEMMA’ ‘j(s) contrihtes a positive (negative) increment to u(x) for
enzctly half of the points x E (1, o)k.

Searching Nonlinear Functions for High Values 261

DEFINITION. A partition r’ E (d, *}k will be called a superpartition of
v E (d, *}k when the defining bits of r’ constitute a subset of the defining
bits of ?T. (That is, each element of the superpartition ?T’ is the union of a
distinct set of elements of ‘12,)

LEMMA. Zf s' is an element of any superpartition of j(s), then 6j(SI
makes no net contribution to u(s’), the expected i;alue of u mer s’.

Because the u(s) are marginal expectations, the average of any
drawn from s under the distribution p(t) constitutes an estimate of
The 6(s, t), as functions of the u(s, t) and the biasing probabilities
can also be estimated.

sample

u(s, t)*
Pb th

USING ESTIMATES OF u(s) TO BIAS THE SEARCH OF (l,Ojk

The hyperplane averages take a particularly simple form when the func-
tion u is linear over individual loci and the probabilities assigned to individ-
ual alleles are independent of one another. We will consider this case first,
and then proceed to the general case. In this discussion two useful pieces of
terminology from genetics will be adopted: The positions along a string will
be called loci, and the values that can be inserted at any position will be
called alleles.

u is a linear function of values assigned to individual loci when

44 = CUhfXhh
h

where x = xrxs... xkE (O,ljk, and uh:(O,I} + Reals+ assigns values to the
two alleles at locus h. The probabilities of the individual alleles are indepen-
dent of each other when the probability of an arbitrary string x is given by
p(x) =&p&h), where p&h) is the probability that allele xh occurs at
locus h.

Consider now the 6’s at level 1, that is, the Sj(s) for which j(s) = 2h. Each
hyperplane at level I is specified by the single allele at its defining locus. For
example, the partition of index 2 has as elements the two hyperplanes
** *.. *I* and **... “0”. When u is linear and the probabilities of the alleles
in a string are independently assigned, it is a simple exercise to show that

s sh = Ph(l)Ph(O)[uh(l) - uh(")l l

262 JOHN H. HOLLAND

Note that the formula for t&h involves oniy values and probabilities assigned
to the a&&s, 1 and 0, at locus h. It is also easy to show that the 6’~ for
partitions of level higher than 1 are all zero. To detetine the global
optimum of U, we select the allele at each locus that corresponds to the
above-average hyperplane at that locus. The string made up of the alleles so
selected optimizes u. Stated another way, the optimizing string lies in the
intersection of all the above-average level-l hyperplanes. Thus, if the esti-
mates of u(s) for these level-l hyperplanes reflect the true values, an optimal
string is easily determined. It follows that linear functions can be solved via

es involving only the level-l hyperplanes, as intuition might suggest.
In the general case, a hyperplane s supplies nontrivial information when

the sjts) associated with patition j(s) is nonzero. Drawing on the terminol-
ogy of mathematical genetics, the QsI for which j(s) is not a power of 2
amount to epistatic effects-departures from the expectations that would
hold if u were linear. If the epistatic effects are such that best hyperplanes
are different from those determined by the linear estimate based on the
level-l hyperplanes, then, typically, the search for better values of the
evaluation function will be hampered until the corresponding u(s) can be
estimated.

To arrive at some idea of the difficulty posed by epistatic effects, note that
a hyperplane at level c can be expected ti> receive a fraction 2-” of a
uniformly distributed set of samples. Thus, about half of all samples can be
used to estimate u(s) for any level-l hyperplane, while the proportion drops
by half each time the level is increased by 1. Since the reliability of an
estimate of u(s) depends upon the number of samples s receives, the rate at
which relevant information accumulates drops by half each time the level is
increased by 1.

Consider, now, a function u with nonzero 6’s at several different levels.
By the earlier lemma, a deeper-level, nonzero si has no effect on the averages
u(s’) of elements s’ of the shaJlower superpartitions of j. On the other hand,
the effects of 8j on U(S), for any schema s in partition j can be hidden in the
contributions to u(s) made by nonzero 8’s at shallower levels. To exploit a
deeper 8j one must find a schema s that (I) belongs to the partition j, (2) is
above average under the distribution p, and (3) receives a positive contribu-
tion from 8.. The effect of 6j(yI

aIil
on u(s), when confounded by the contribu-

tions of sh ower 6’s, can only be determined when s has received enough
samples to permit a reasonable estimate of u(s). The deeper the level of ~j,
the longer it will take typically to accumulate information about schemas
belonging to partition j. Accordingly, nonzero 8’s at deeper levels typically
increase the difficulty of a search.

Matters also become more complicated lvhen the probabilities assigned to
loci are no longer independent of one another. Then even linear functions

Searching Nonlinear Functions for High Values 263

may yield nonzero 6’s at deep levels. :ntuitively, the information supplied by
a samp’hng procedure depends upon the underlying distribution. A biased
distribution emphasizes certain regions, and the information supplied by the
Si 'S is modified accordingly.

The rate at which information accumulates about the u(s) adictates the
order in which the search of the argument space (l,O)k should be biased.
Under uniform random sampling, estimates of a given level of reliability
accumulate first for level-l hyperplaues, then, at half that rate, for level-2
hyperplanes, and so on. Thus we should expect a realistic search to produce
biases that, at first, are largely dependent upon estimates for a(s) associated
with low-level hyperplanes. Biases based on higher-level hyperplanes enter as
the number of samples increases. A search so directed has the concomitant
advantage that a simpler problem is solved more quickly.

THE GENETIC ALGORITHM AS A
HYPERPLANE-DIRECTED SEARCH BROCEDURE

(r) Description of the Genetic Algorithm
[The algorithm acts on a set B(t) of M strings (xi, x2,. . . , x1:) over the
alphabet (l,O)k ~9th observed values u(xi). For convenience M will be
taken to be an even number.]

Briefly, a genetic algorithm has the following form [6] for more details, and
[3] for a wide range of variants and applications):

(I) Compute the average strength u A (t) of the strings in B(t), and assign
the normalized v&e u(ri)/un (t) to each string xj E B(t).

(2) Assign each “j E B(t) a probability p(X j, t) proportional to its normal-
ized value. Using this probability distribution, select M strings from I?(t),
forming a new population B’.

(3) Pair all of the strings in B’ at random, forming M/2 pairs. Apply
crossover with probability PC_ to each pair (and, possibly, apply other
genetic operators such as mutation with probabilities Pmut , etc.), forming a
new population B” of M strings. Crossooer is applied to a pair of strings as
follows: Select at random a position i, 1~ i < k, and then exchange the
segments to the left of position i in the two strings (see Figure 1).

(4) Increase t by 1, set B(t) = B”, and return to step (I).

[Step (4) in the algorithm may be modified to prevent one kind of string from
“overcrowding” B(t) (see [I] and [2] for details). Contiguity of constituents,
and the building blocks constructed from them, is significant under the

264 JOHN H. ZIOLLAND

lliOlOOOlOlllOllllO

FIG. 1. An example of the crossover operator.

crossover operator. Close constituents tend to be exchanged I together. Opera-
tors for rearranging the loci, such as the genetic operator inversion, can bias
the rule-generation process so that loci that interact usefully tend to be
contiguous. Other genetic operators, such as mutation, have lesser roles in
this use of the algorithm, mainly providing “insurance” (see [S, Chapter 6,
Sections 2, 3, 41 for details).]

An example of the action of the algorithm is shown in Figure 2.
The fundamental theorem for genetic algorithms (see [S]) can be rewritten

as a theorem about progressively biasing a probability distribution over the
space (l,O}k:

THEOREM. P(& t + 1) 2 [l - X(s, t>l[l - P,,,ld(“)[~(S, t)/f.#)lp(s, t),

whew p(s, t + 1) is the expected fiaction of the populution that will be
occupied by the instances of s at time t + 1 under the genetic ulgorithm,
given thut p(s, t) is the fraction occupied by s at t.

The factors on the right-hand side are:

(1) [u(s, t)/u(t)], the ratio of the observed average value of the schema s
to the overall popul+oz average. ‘II& term determines the rate of change
of p(s, t), subject to the “error” terms [I - A@, t)][l - Pmut] d(S). If u(s, t) is

Searching ~Mmlinear Functions fm High Value

X.
J U(xj>/u(t) Pt. Of Interche~e X.’

[Pareds 1 [No. Offspring] [Crossover] (Off&ing]

111010001 . ..-

101011100 __...: i, .:j. .:::.
0001i1111...

-.~~~~:~,

010010000 ..:--+J
.:i;‘::i::‘.“‘:j..

1661hIll
. g __z Ipi ;;; ; ::_

010110101-

110100100. - .. .i ::.: :i:. ““: .i.,

lObO’i0 111 -

] ffhl;; :::

.
defining bits in instances

2+2+1
m(*OO.l....*) = - = 1.67

of sc!u?ma •00~100~0o
3

1

encloaee segments in offspring from first parent

r___ _______ ___ point of interchange
(10~~ of Cr0550VQr j

The populatio;l consists of strings (“chromosomes”) of length k from the set

(1, Ojk based on the 2-letter alphabet { 1 , 0) (2 possible “alleles” at each locus).

FIG. 2. An example of the genetic algorithm acting on schemas.

!266 JOHN H. HOLLAND

aboveaverage the proportion of schema s increases (if the error terms are
small), and vice versa.

(2) Ms,t) and p&t> tke %rd tems rmiltiqg jhn the breakup of
instances of s because of crossmer and mutation, respectively. Specifically,
X(s, t)p(s, t) = P,_[l(s)/(k L I&~<s, t) is an upper ttiund oz the crossmet
loss, the loss of instances of s resulting k0m crosses that fall within the
interval of length Z(s) determined by the outermost defining loci of the
schema. [l - PmUJys) gives the proportion of instances of s that escape a
mutation at one of the cl(s) defining loci of s.

(The underlying algorithm is stochastic, so this equation only provides a
bound on expectations at each time step. Using the terminology of mathemat-
ical genetics, this equation supplies a &&&Gstic model of the algorithm
under the assumption that the expectations are actually achieved on each.
time step.)

Proof outline (see [5] for details).

(1) Consider a schema with M(s, t) instances in the population B(t). The
average value of these instances is given by IL@, t) = C,,,u(x)/M(s, t). If

each of these instances is copied with probability u(X)/W (t), there will be
c ,,,u(x)/u^(t)= u(s, t)M(s, t)/u^(t) instances of s expected in B’ after
the copying. (‘The actual number of course will be subject to sampling error).

- (2) When the point of crossover falls within the outer limits of the
defining positions for a schema, the defining bits of the schema will be
separated in the offspring (otherwise they are passed on intact). Under such
circumstances, it is possible (but not necessary) that neither offspring is an
instance of the schema, so that there is a “10s~” of one instance in the
process. &cause the point of crossover is chosen at random in each case, the
probability that the cross falls within the outer defining positions is given by
Z(s)/(k - 1), where I(s) is the number of crossover points between the outer
defining positions of s. Thus P_[l(s)/(k - l)] gives an upper bound on the
probability that a given instance of s will be lost because of crossover during
the formation of B.” A similar calculation provides the loss rate because of
mutation.

(3) It follows that the number M(s, t + 1) of instances of s to be expected
after copying and crossover is bounded below by

Searching Nonlinear Functions for High Values 267

(4) But p(sg e), the tracticn of instances of s in the population B(t), is b>
definition _M(s, t)/M, so that

p(s,t -i-l)>, [I-“(S,t)][l--P,,t]d(S) u(u)
-P(S, t)-

u(t)
m!

In any population that is not too small, distinct schemas will almost always
have distinct subsets of instances if the number of instances is relatively
small. For example, in a randomly generated population of size 2SOO,
any schema defined on 8 loci can be expected to have about 10 instances.
There are

2X)0
t 1 10

=3x102’

ways of choosing this subset, so that it is extremely unlikely that the subsets
of instances for tws such schema will be identical. (Looked at another way,
the chance that two schemas have even one instance in common is less than
1Ox2-8 = & if they are defined on disjoint subsets of loci.) Because the sets
of instances are overwhelmingly likely to be distinct, the observed averages
uA (s, t) will be determined mostly by independent samples. As a conse-
quence, the rate of increase (or decrease) of a schema s under a genetic
algorithm is largely uncontaminated by the rates associated with other such
schemas, Loosely, the rate is uninfhrenced by “crosstalk” from the other
schemas.

From the point of view of sampling theory (applied to populations large
enough that sampling without replacement is insignifieantly different from
sampling with replacement), 20 or 30 instances of a schema s constitutes a
sample large enough to give some confidence to the corresponding estimate
of u(s). Thus, for such schemas, the biases p(s, t) produced by a genetic
algorithm over a succession of generations are neither much distorted by
sampling error nor smothered by “crosstalk.”

To gain some idea of how many schemas are so processed, consider the
following:

THEOREM. Se&t some bound e on the crossover error, and pick k’ such
that k’/k < e/Z (The theorem is ody of interest when ek/2 >> I.) Consider
a population of size M = ~~2~: where cr is Q: small integer (say ci < k1j3). If
M is obtained as a uniform random vmpk from (l,Ojk, th.e number of
schemes propagate& with an error bw than e grdiy PI-CC FL& M3.

268 JOHN H. HOLLAND

Proof outline.

(1) Consider a “window” of 2k’ contiguous loci in a string of length k
such that 2k’/k < e. Ch-iy any schema having all its defining loci within
this window will be subject to a crossover error less than e.

(2) There are

22k'

(Izk’) -1’2

ways tif selecting k’ defining positions in the window, and there are 2k’
different schemas that can be defined using any given set of k’ defining loci.
Therefore, there are approximately 23k’/(wk’)- l/2 distinct schemas with k’
defining positions that can be defined in the window.

(3) A population of size M = ~~2~’ obtained by a uniform random sam-
pling of (l,O}k can be expected to have ci instances of every schema defined
on k’ defining positions. Therefore, for the given window, there will be
approximately M3/cf(wk’)- ‘I2 schemLas having instances in the population
and defined on some set of k’ loci in the window.

(4) The same argument can be given for schemas of length k’- 1,
k’- 2,..., and for k’+l, k’+2,..., with values of

decreasing in accord with the binomial distribution. There are also k - k’- 1
distict positionings of the window on strings of length k. It follows that
many more than M3 schemas, with instances in the population of size M,
increase or decrease at a rate given by their observed marginal averages with
a crossover error less than e. m

A genetic algorithm’s ability to meaningfully bias the sampling rate of a
large number of schemas while processing a relatively small set of instances is
called implicit parallelism (ne intrinsic parallelism [5]).

(2) Effects of the Q’s on the Search Generated by a Genetic Algorithm
The fundamental theorem makes it clear that the biases p(s, t + 1) pro-

duced by a genetic algorithm at time t + 1 depend directly upon the
observations uA (s, t) and biases p(s, t) at time t. The hyperplane transform
IS, applied to the sample space defined by the new dktribution p(t + l),
determines a new set of ai(t + 1).

Searching Nonlinear Functions fi High Values 269

Consider a function that is complex enough that a random sample of M
arguments is very unlikely to contain an argument that yields the optimum
value of the function. (Typically a function with m or more nonzero 8’s will
be such a function if logs M (< 7~) Let partition i be a deeper partition w&
a large associated 8i(t + 1). By the earlier lemmas, ~i(t + 1) will contribute
positively to u(s) for half the elements s of this partition, but it will not
contribute to u(s’) for any elements s’ of superpartitions of partition i. Pt
follows that 6i(t + 1) cm be exploited only if the population B(t + I)
contains one or more instances of a schema s in partition i for which
(1) Qi(t + 1) makes a positive contribution (i.e., it has the appropriate sign),
and (2) the contributions of the 6’s from shallower levels are such that u(s)
is above average. If there is no instance of such an s in the population at
B(t), then s can only be formed by recombination (crossover) or mutation.
That is, if there are no instances of such an s in the population, dint + 1) can
be exploited in the near future only if the schema s can be reached from
currently exploited hyperplanes via a few recombinations and mutations.

By looking at the levels in which the nonzero 6’s are distributed, one can
attain a qualitative understanding of the trajectory induced by a given
nonlinear function u. Consider again an initial population B(O) that has been
generated using a uniform random distribution over (l,O)! If the size M of
that population is 2m, then we can expect multiple copies of all schemas with
fewer than TT defining loci. If, as earlier, we set a bound e on the error
produced by the genetic operators, requiring [l - A(s, t)][l - Pmutld@) < e,
then in excess of M3 of these schemas will be processed with an error less
than e (for an apprc+,_ Ga+ely chosen M and a sufficiently small mutation rate).
Because the abovey:v-rage schemas increase their instances exponentially
(with exponent [l - e][u(s, t)/u(t)]), they soon come to occupy a substan-
tial fraction of the population. Sampling then is concentrated on these
hyperplanes and their intersections (though not exclusively).

While the above-average schemas with instances in the initial population
are being exploited, new schemas exploiting deeper 6’s are discovered in IWO
ways: (1) mutation of loci that are near the loci defining one of the initially
exploited schema, (2) recombination, under crossover, of fragments of the
initially exploited schemas. These new schemas will join the set of schemes
that occupy a substantial fraction of the population, and hence are sampled
intensively, only if [l - e][u(s, t)/u(t)] > 1.

Each of these discovery processes is worth looking at in more detail:
Mutations of loci contiguous to the defining loci of an above-average

schema s can provide instances of schemas not previously present in the
population. Ea,... A such schema, s’, is a refinement of s (i.e., s contains SI)
and hence is an element of a deeper level partition. Consider, then, a
partition of s composed of 2h hyperplanes obtained by specifying the values

270 JOHN H. HOLLAND

for some set of tr loci contiguous to s. &cause the mutations are allocated
randomly, the number of samples n(s’) of s’ will be approximately 2- ‘n(s),
where n(s) is the number of samples allocated to s. The central limit
tJaeorm assures that the averages of different sets of samples of any s’ will be
distributed approximately as a Gaussian distribution, whatever the probabili-
ties assigned to the elements x in s’. The sampling process (mutation
operator) thus srod-uces an estimate of ~(8’) with a variance that decreases as

1. very roug&, then, one would expect to reliably discover s’ for

which u(s’) > u(s) at a rate on the order of /m. In other words,
mutation will discover improvements in ‘he vicinity of s at a rate that falls off
as the square root of the number of samples allocated to s. In biological
terms, this would correspond to or; adaptioe radiation wherein variants of the
prototype s provide incremental improvements.

This process of “exploring the neighborhood’ via mutations contrasts
sharply with the jumps produced by crossover. To develop the contrast,
consider a randomly generated population with instances of two above-aver-
age schemas si and sa, where d(s,) >, c&s,). Let the defining bits of si and
sa be such that there are no instances of the schema s designating the
intersection at si and ss, and let u(s) > max(u(si), u(ss)}.

Under these conditions, on the order of d&)/2 mutations must accumu-
late in some instance of si before an instance of s appears in the population.
The mutation rate can of \.purse be increased to make the accumulation more
rapid, but only at the cost of making it increasingly unlike2y that s will be
“copied” into successive generations (see the example just below). Mutations
tend to explore in a linear way -the depth of the exploration is a linear
function of the number of generations elapsed.

On the other hand, a single crossover between parents that are instances
of s1 and s2, respectively, can yield an instance of s. That is, an above-aver-
age schema s at depth 2b that falls in the intersection of established schemas
s1 and s2 at depth b can be discovered in a sir:& generation. This doubling
of depth in successive generations comes about whenever established schemas
can be combined as “building blocks” to yield improved schemas. Under
these conditions, crossover explores with directed exponential increases in
depth.

(3) An Exumpik
The following example gives a quantitative measure of the difference

between mutation and crossover:
Let schema s be defined on contiguous loci, i.e. Z(s) = d(s) - 1. Divide

the defining loci of s into disjoint subsets of contiguous loci, forming schemas
s’ and s” that have s as their intersection. Let e(s) be an upper bound on

Searching Nonlinear Functim fm High Values 271

the allowable rate of transcription errors for s. [That is, if the transcription
error rate exceeds e(s), then even an above-average schema s with an
instance in1 the population B(t) is unlikely to have instances that persist
through successive generations.] ’

Let s* be any schema properly contained in s’ and properly containing s.
Assume that for all such s*, u(s’) > tl(s*), while u(s) > I. That is, the
schema s’ is “surrounded” by a “desert” of lesser-valued schemas (s*}, at
the edge of which is a “higher peak” s. For ease of calculation, assume that
s’ has a single persistent instance in the population.

Consider, first, the time expected to elapse, under mutation alone, before
the “peak” s is attained from s’. Note that the bound on transcription error
sets an upper bound on the mutation rate because (1 - Pmu#@) > 1 - e(s),
and this yields the inequality

For an instance of s’ to be an instance of s, the alleles at all the defining loci
D(s”) of s” must match the corresponding alleles of s. Schemas s* that are
refinements of s’ (but not equal to s) cannot persist, because U(s*) < u(s’).
As a consequence, there is no way for instances of s’ to gradually accumulate
the mutations that “lie on the way” to s. To attain s all the required
mutations must occur simultaneously in some single instance of s’. In a
randomly generated population, we can expect that half of the alleles at the
loci D(s”) match the corresponding alleles of s. Thus d(s”)/2 mutations
must occur simultaneously in some instance of s’. This will occur with
probability

d(s”)/2

with a corresponding search time

\ 4s”P

J .

272 JOHN H. HOLLAND

If we loo!; to the corresponding calculations for crossover we first find that
the bound 3n transcription error sets a bound

l(S)
l-P_- k >l-e(s),

or

w
COSS-

k
<e(s),

which implies that

using the fact that Z(s) = d(s) - 1 for schema s. Under crossover, an instance
of s’ wilI have an offspring that is an instance of s if two things happen:
(1) the other parent in the cross is an instance of s”, and (2) the cross occurs
exactly at the juncture of s’ and s”. In a randomly generated population, a
randomly selected parent will be an instance of s” with a probability 2-d(s”),
and the crossover will occur at the required juncture with probability l/k.
Thus the overall event will occur with probability

2-d(s”) 2-d(s”)

-=

k Gxs(Cd(s) - 11 /e(s) 1

with a corresponding search time

d(s”)

using the fact that PCross < 1.
Even for relatively small “deserts” these waiting times are enormously

different. For example, with d(s’) = 16, d(s”) = 8, and e(s) = 0.1,

Tmut > 3.4 x 10’

Searching Nonlinear Functions fm High Values 273

T cross < 6.2 x 104.

COMMENTS

Most searches of complex spaces conducted by genetic algorithms should
exhibit the same broad characteristics;

14t the outset, there should be a rapid biasing of sampling probabilities
toward hyperplanes s that

(I) have instances in the initial population, and _

(2) have an average value w (s,c)) sufficiently above the population
average W(O) to overbalance errors in copying s induced by the genetic
operators.

In particular, if the mutation rate is low, this is a requirement that the
“length” Z(s) of the schema be short enough that I(s)/k < [ZP (s, 0)/w (0)]
- 1. If the observed w (s,O) is a good estimate of the actual marginal
expectation U(S), then the number of instances of s will increase exponen-
tially in subsequent generations.

As the exponential increase continues, the increasing number of instances
of above-average schemas can be expected to drive the population average
w (t) upward. For any given s this forces Z.P (s, Q/W (t) ever closer to 1.
The exponential increase of s then tapers off. Eventually, unless s represents
the best that can be achieved, continued increases in the population average
cause a decrease in the number of instances of s, unless some refinement of s
offers further improvement.

During the time that a schema has a large number of instances in the
population, the genetic algorithm acts to provide many new instances of it.
The mutation operator treats the schema as a focal point, generating a variety
of new instances in its “neighborhood.” Crossover, and other forms of
recombination, generate new instances by treating the schema as a “. building
block” that can be used in combination with other building blocks.

The fate of a newly discovered instance of a deep, aboveaverage schema s
depends upon the manner of its discovery. Consider a schema s with a length
a(s) large enough to indicate a large crossover error. Under normal circum-
stances, this crossover error would be enough to quickly destroy instances of
s. IIowever, if s has been discovered by recombination of wellestablished
building blocks, things happen differently. The well-established building
blocks occupy large fractions of the population, so the parents are likely to

274 JQHN H. HOLLAND

hold several building blocks in common. As a result, crosses that normally
would break up instances of s now just recreate s, because they exchange
pieces of identical building blocks. Thus, s increases its representation
despite the large crossover error.

Generally, crossover is the operator that can be expected to yield substan-
tial improvements baslzd on deeper 6’s. Crossover implements the heuristic
that “good” structures are constructed of “good” building blocks (cf. Simon’s
[q discussion of the architecture of complexity). This amounts to a conjecture
that new nonzero 6’s are associated with the intersections of hyperplanes
aheady known to be associated with nonxero 6 ‘s. 0f course, the conjecture
may prove untrue for many intersections, but it need only be true upon
occasion for improvements to be made.

It should be recalled that improvement is the object of the search; the
global optimum may involve 8’s so deep that they will never be uncovered in
feasible times. Implicit paralle!ism, by assuring that the genetic algorithm
usefully searches large numbers of schema combinations in each successive
generation, makes it likely that some useful intersections will be uncovered.
It is possible to design a function u that often “guides” the genetic algorithm
away from good regions, but it is hard to design a function that keeps the
algorithm away from improvements over long intervals.

Overall, and in qualitative terms, the search of a complex nonlinear
function with nonzero 6’s at many levels typically exhibits continual small
improvements, punctuated by saltations to schemas involving deeper 6’s.
This behavior is a direct consequence of the manner in which genetic
operators exploit sparse deeper 6’s. From a biological perspective, it is
interesting that this succession of “punctuated equilibria” occurs without the
intervention of higher-order selection principles.

REFERENCES

A. D. Bethke, Genetic Algorithms as Function Optimizers, Ph.D. Dissertation,
Univ. of Michigan, Ann Arbor, 1980.
IL A. DeJong, Adaptive system design-a genetic approach, IEEE Truns. Systems
Man Cybemet. 10:9 (1980).
J. J. Crefenstette, Genetic Algorithms and 2%&r Applications, Erlbaum, H&dale,
NJ., 1987.
D. 0. Hebb, % ()JeCll~+ _...,tion of Behavior, Wiley, New York, 1949.
J. H. Holland, Adizptation in Natural and Artificial Systems, Univ. of Michigan
Press, Ann Arbor, 1975.
J. H. Holland, K. J. Holyoak, R. I?. Nisbett, and P. R. Thagard, Induction:
Processes of Inference, Learning, and lliscovey, MIT Press, Cambridge, Mass.,
1986.
H. A. Simon, The Sciences of the ArtifkiaZ, MIT Press, 1981.

