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1. INTRODUCTION 

Consider the Dirichlet problem 

Mx) +f(u(x)) = 0, XED”, 

u(x) = 0, XEaD;. 
(1.1) 

Here S is a smooth function and 0: c IF!“, n > 2, is the open ball of radius 
R centered at the origin. If one considers radial solutions, then (1.1) 
becomes an ordinary differential equation. Recently, Smoller and 
Wasserman [SW l-SW 31 considered the bifurcation problem for such 
radial solutions. Specifically, they investigated the ways in which these 
symmetric solutions can bifurcate into an asymmetric solution. When this 
happens, we say that the symmetry breaks. 

In this paper, we consider the symmetry-breaking problem for the system 
of elliptic equations 

du+f(u, u)=O, 

do+ g(u, u)=O, XED;, (1.2) 

u(x) = 0 = u(x), XE aon,. 
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If we are interested in (positive) radial solutions, then u = u(r) and u = v(r) 
(r = 1x1) satisfy 

24” + 
n-l 
-u’+f(u, u)=O 

r 

n-l 
?I”+- r u’+ g(u, u)=O (1.3) 

u(r) > 0, u(r) > 0, O<r= 1x1 CR, 

u’(0) = 0 = u’(O), u(R)=u(R)=O. 

For general functions f and g, it is quite dillicult to even find solutions of 
(1.3), let alone to prove that the symmetry breaks. We thus consider the 
following (perturbed) problem 

A# + n2j-(u) + &F(U, u) = 0 

Au+ g(v)+eG(u, u)=O, XED;, (1.4) 

u(x) = 0 = u(x), xec?D”R, 

where E > 0 is a small parameter, A> 0 is a free parameter to be specified 
later, F and G are smooth bounded functions, and f and g belong to a class 
9 to be defined below. Roughly speaking the class 9 is defined by the 
condition that when E =O, the de-coupled problems are such that the 
results of [SW 1, SW 21 apply. Thus the system (1.4) is a perturbation of 
two problems each of which admits a symmetry-breaking bifurcation. 

We remark that the parameter A is inserted in (1.4) for the following 
reason; namely if u solves Au + g(u) = 0 on D;, with u = 0 on aDi, then the 
problem Au +f(u) = 0 on D:, with u = 0 on LID:, need not be solvable. On 
the other hand, by adjusting A, one can often solve the Dirichlet problem 
for Au + A,(U) = 0 on the domain D;. Thus, since our technique in this 
paper is to “perturb off of the de-coupled system,” one sees the advantage 
of inserting A into the equations. 

This paper is organized as follows. In Section 2, we define precisely the 
set 9 and we study the existence of radial solutions of (1.4). In Section 3 
we consider the degeneracy problem for these radial solutions. That is, we 
prove that under the additional assumption F, > 0, G, > 0 there are radial 
solutions the spectrum of whose linearized operator contains zero. Such 
solutions are the only ones on which bifurcation can occur, and in 
Section 4 we prove that the symmetry actually breaks on these degenerate 
solutions. Finally, Section 5 is concerned with some concluding remarks. In 
particular, we show that if F, ~0 and G, ~0, then there exist positive 
asymmetric solutions of (1.4). This is to be compared with a result of Troy 
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[T], who shows that iff, >/ 0 and g, 2 0, then any positive solution of (1.2) 
must be radial. 

We note that systems of the form (1.2) arise in several diverse areas of 
applied mathematics; in particular such systems govern the stationary 
solutions of the corresponding nonlinear diffusion systems. 

2. EXISTENCE OF POSITIVE RADIAL SOLUTIONS 

Before stating our theorems, we must define the class 2. Let h be a 
smooth function, and consider the boundary-value problem 

w” + 
n-l 
-w’+h(w)=O, O<r<R, 

r 
(2-l) 

w’(0) = 0 = w(R), 

and the initial-value problem 

n-l 
w”+- r w’+h(w)=O, r > 0, 

(2.2) 
w’(0) = 0, w(O)=p>O. 

We denote the unique solution of (2.2) by W(T, p), r 2 0. 
It was shown by Smoller and Wasserman [SW 1, SW 21 that if h 

satisfies the conditions 

h(O)<O, - ( h(w) ‘>(j > ’ 
h”(W) < 0, 

W 
(2.3) 

then there exists a p > 0, and a smooth function T: [p, 00) + lF$ with 
T’ < 0, such that if p > p, w satisfies 

w(r, P) > 0, O<r< T(p), w( T(P), P) = 0, 

w’(r, p) < 0, O<r< i’(p). 
(2.4) 

Moreover w(r, ~5) satisfies 

w(r, P) > 0, O<r< T(p), w(T(P), P) = 0, 

w’( T( jj), /Y) = 0. 
(2.5) 

If we assume that 

w, (T(i%P) -c 0, (2.6) 
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then the equation 

w, P) = 0 (2.7) 

defines a function p = p(R) in a neighborhood of the point (T(p), p). We 
remark that it was shown in [SW 23 that (2.6) holds for “generic”z h. 

Let R = T(p). Then the function p(R) is defined on an interval [R, , R,] 
containing 8. 

Remark. If h satisfies (2.3) then R, = T( +co) (cf. [SW I]). 

From (2.7), we have, for R, Q R < R,, 

~‘(4 P(R)) + w,(R P(R)) P’(R) = 0, (2.8) 

and 

w”(R, P(R)) + 2w;UC P(R)) P’(R) + w,(R P(R)) P”(R) 

+ w,(R, p(R)) P’(R)* = 0. (2.9) 

For R < R, T’(p) < 0 implies p’(R) < 0. Thus using w’( R, p(R)) < 0 in (2.8) 
gives wP (R, p(R)) < 0. 

Now at R= R, since w’(R, p(R))=O, (2.6) and (2.8) show that 

p’( 8) = 0. (2.10) 

Thus (2.9) gives 

But as 

w”(R, p(R)) + w,(R, p(R)) p”(R) = 0. 

w”(R, p(R)) = - y w’(R, p(R))- h(u(R, p(R))) 

= -h(O)>6, 

it follows that 
p”(R) = h(O)/w, ,(R P(R) 

Next, it was also shown in [SW 
satisfies 

1) that 

) >o. (2.11) 

for R,GR<R,w(r,p(R)) 

w(r, P(R)) > 0 for Odr<R, 

w’(r, P(R)) < 0 for O<r<R. 

w(R P(R)) = 0, 
(2.12) 

t In the sense that any C*-function h can be composed with an arbitrarily small translation 
so that (2.6) holds. 
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Furthermore, W(T, p(K)) satisfies 

w(r, p(R)) > 0 for O<r<R, w(R p(R)) = 0, 

w’(r, p(R) < 0 for O-cr-ci?, w’(R, p(K)) = 0. 
(2.13) 

Finally, for R < R < R2, w(r, p(R)) satisfies 

w(r, P(R)) > 0, O<r<i?(R), 4&R), p(R)) = 0, 

w(r, P(R)) < 0, &R)crcR, w(R, p(R)) = 0, 

w’(r, P(R)) < 0, O<r<$R), w’@(R), p(R)) = 0, 
(2.14) 

w’(r, p(R)) > 0, $R)<r<R, 

where R(R) and W(R) > i?(R) and are two smooth functions of R. 
We can now define the class 9 to which f and g will belong (c.f. (1.4)). 

DEFINITION 2.1. The function h: Iw + --, R belongs to 2 provided that 
the unique solution w(r, p) of (2.2) satisfies 

- - 
w( R, P) = 0, w’( R, P) = 0, 

- - 
w,(R, P) < 0 (2.15) 

for some R and p. If p = p(R) is the function defined by (2.15) on an 
interval [R,, R2] containing R, then we require (2.10)-(2.14) to hold. 

We note that 2 contains a “generic” set of functions which satisfy (2.3) 
(see [SW 21). 

We can now consider the system (1.4). Since f and g are assumed to 
belong to the class 2, (2.10)-(2.14) are valid for both f and g. Let the 
corresponding numbers R, , R,, 8, and functions p( .) be denoted by 

R{, R{, af, pf(. ) and Rf, R,g, @, ~“(-1, 

respectively. 
We consider positive radial solutions of (1.4). These are functions 

u = u(r) and u = v(r) which satisfy 

U” + ~,~+rlif(U)+EF(U,u)=o, 

n-l 
v”+- 

r 
u’+g(u)+EG(u,u)=O, O<r<R, 

u’(O) = 0 = u(R), u’(O) = 0 = u(R) 

u(r) > 0, u(r) > 0, Odr-cR. 

(2.16) 
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In order to study this system, we consider the following initial-value 
problem 

UN + 
n-l 
--u’+12f(U)+&F(U, u)=O, 

r 

n-l 
u”+- u’+g(u)+~G(u,u)=O 

r 
(2.16)i 

u(0) = p > 0, u(0) = q > 0, u’(0) = 0 = o’(0). 

We denote the unique solution of (2.16)i by u(r; p, q; 1, E) and u(r; p, q; A, E). 
We can now state the main theorem in this section. 

THEOREM 2.1. Let f and g belong to the class 9. Then there exist 
constants Q, > 0, 6 > 0, and a function A: [0, Q] + Iw such that the following 
statements hold: 

A. (Existence) For each E in [0, ~~1 and each I E [A(E) - 6, A(E) + S], 
there exist two constants R, (A, E) and &A, E), and there exist two functions 
p = p(R; A, E) and q = q(R; A, E), d f e ine on the interval [R,(A, E), R(A, E)], d 
such that for every R E [R, (A, E), @A, E)], the solutions u(r; p(R, 1, E), 
q(R, II, E); I, E) and v(r, p(R, A, E), q(R, 1, E); A, E) of (2.16)i solve the 
boundary-value problem (2.16). 

B. (Properties of solution) 

(i) For each 1 E [A(E) - 6, A(E)) the functions 

u(r; R) = u(r; p(R; A, E), q(R; 1, E); A, E) 

4r; R) = UP; p(R; 1, ~1, q(R 4 t); A ~1, 
(2.17) 

for R E [R, (A, E), R(il, E)] satisfy 

u’(R; R) < 0 and u’( R, R) < 0, for R < &A, E), 

u’(R(A, E); R(A, E)) < 0 and u’(R(A, E); R(A, E)) = 0. 
(2.18) 

(ii) For I = A(E), the functions 

u(r; R) = uk p(R 41, ~1, q(R 4~1, ~1; 4~1, ~1, 

u(r; R) = u(r; p(R; A(E), EL q(R; A(E), ~1; 4~), E), 
(2.19) 

for RE [R,(A(&), E), R(A(&), E)] satisfy 

u’(R; R) < 0 and v’(R, R) < 0 for R < R(A(z), E), 

U’(K(A(E), E); R(A(&), E)) = 0 = U’(R(A(&), E); K(A(&), E)). 



NONLINEAR ELLIPTIC EQUATIONS 321 

(iii) For I E (A(E), A(E) + S], the functions 

(2.20) 

for R E [R, (A, E), &I, E)] satisfy 

u’(R; R) < 0 and v’(R, R)<O for R<@,E) 

u’( R(I, E); &I, E)) = 0, u’(R(/l, E); R(l, E)) < 0. 
(2.21) 

Some comments on these statements should prove helpful to the reader. 
Thus statement A means that for small E > 0, there is a corresponding I for 
which one can solve (2.15). Part B implies that for 1 on either side of a 
number /i(s), these solutions are nondegenerate, while for il= n(s), the 
corresponding solution is degenerate; see Theorems 3.1 and 3.2 for the 
precise statements. 

In order to prove the theorem, we must first study how solutions of (2.2) 
behave under perturbation. Thus let h E 5? and consider the problems 

W” + 
n-l 
-w’+h(w)+&H(W,r)=O, O<r<R, 

r (2.22) 
w’(0) = 0 = w(R), 

and 

n-l 
w”+- r w’+h(w)+EH(w,r)=O, r>O 

(2.23) 
w’(0) = 0, w(O)=p>O, 

where H is smooth and bounded; say IH(w, r)l < M. We denote by 
w,(r, p), the unique solution of (2.23). 

THEOREM 2.2. There exists an E,, > 0 depending on M, and constants 
R, > R, > 0, depending only on .q, and M with the following properties. For 
every E, 0 GE < E,,, and every smooth bounded function H(w, r), IH(w, r)l 
< M, there exists an R E (R,, R,) and a function p = p(R), depending on E 

and H such that for every R E CR,, R,], the function 

w(r) = we@; P(R)) 

which is a solution of (2.23), is also a solution of (2.22). Furthermore the 
function p satisfies 

p’(R) = 0, p”(R) > 0, (2.24) 

and the function w satisfies conditions as in (2.12)-(2.14). 
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Proof Since h E 9’ (cf. Definition 2.1), there exist constants Rf, R:, R” 
and a function ph, satisfying conditions (2.12)-(2.14). We denote by w(r, p) 
and w~(Y, p) the unique solutions of (2.2) and (2.23), respectively. If 
p= ph(Rt), we have, from (2.12), w’(Rf, ph(R:)) ~0 and w(Rf, ph(R:)) 
= 0. It follows that there is an q > 0 such that w(Rf + q, ph(R’;)) < 0 and 
w’(Rf + q, ph(Rf)) < 0. Since for small E > 0 solutions of (2.23) are close to 
solutions of (2.2) on 0 < Y d Rf + 21, we have w, (Rf + q, ph(R:)) < 0 and 
w:(Rf + 4, ph(R(;)) c: 0 if E is small. Thus there exists a continuous function 
RI(&) such that R,(O)= R:, 

WARI (E)> ph(R:)) = 0, w:(R, t&h ph(R:)) < 0, 

WE@, ph(R:)) ’ 0 if O<r<R,(&). 
(2.25) 

Similarly, if p = ph(Rz), if E is sufficiently small, we can find a contingous 
function R2 (E) such that Rz (0) = R’;, and continuous functions i?(R), R(R) 
satisfying 

we (Rz (~1, ph(R’;)) = 0, w:(Rz(~), P”(R:))‘O, 

wE(r, ph(R;))>O if Osrv<((Ri)), 

we (A(& (&)I, P’TR’;)) = 0, 

wE(r, ph(R:)) < 0 if I?(R,(E))-w<R~(E), 
(2.26) 

w;(r, ph(R:)) < 0 if O-cr-c$R,(~)), 

4 (r, ph(R:)) > 0 if &RZ(c)) < r < R,(E). 

Now since he 9, h has a smallest positive root, say uh. For E small and 
0 < r < R!j, h(u) + EH(u, r) has a root U: near uh. For p near u;, the solu- 
tion U, (r, p) does not meet u = 0, while for p near ph(R, ), it meets this line 
transversely. Thus there exists a continuous function R(E), B(O) = Rh, and 
a point ji” near ph E ph(Rh), such that 

if O<r<R(s), WAR(E), P,) = 0, 

if 0 < r < R(c), w: (R(E), p,) = 0. 
(2.27) 

If E is small, then from the assumption w,,(Rh, ph) < 0, we have 
(a/iTp) w,(R(.s), FE) < 0. Thus from the equation w,(R, p) = 0, we can solve 
for p as a function of R on an interval R,(E) < R < R,(E); call this function 
p = p(R). Then as in (2.10) and (2.11), we have p’(R(&)) = 0, and 
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$‘(I(&)) > 0. It is also easy to see that w,(r, p(R)) satisfies conditions as in 
(2.12)-(2.14). Finally, for s0 > 0 sufficiently small, we set 

R, = sup RI (6) and R2= sup K(E) 
OC&<eQ O~E<EO 

IH(w,r)l GM IWw,r)l G ‘44 

to complete the proof of the theorem. 1 

Proof of Theorem 2.1. Since f and g belong to 2, Definition 2.1 implies 
that there exist constants w{< & and kf < i?;, such that the problems 

n-l 
u”+- u’+f(u)=O, O-cr<R 

r (2.28) 
u’(O) = 0 = u(R), i?{< R $ i?;, 

and 

n-l 
vJf + - v’+ g(v)=O, O<r-=cR 

r (2.29) 
v’(0) = 0 = v(R), iif-< Rdl,g, 

admit solutions u = u(r, #(R)) and v = v(r, pg(R)), respectively. Now set 

&= R{/Wf and 12 = iq/Rf-, 

II ~1,. Next set 

(0, _v) = ( sup a@, pg(R)), inf v(r, pg(R))), 
O<r<R OCrcR 

Rf,R,R,p Kf<RaR,p 

and then choose M> 0 such that for all A E [Ai, A,], u E [_u - 1, ti + 11, 
VE [p- 1, V+ 11, we have 

and IG(u, u)l GM. 

Now choose ao>O so small that Theorem 2.2 holds for h replaced by both 
f and g, and the corresponding solutions u and v lie in the range 
u E [g - 1, U + 11, v E [_v - 1, V + 11, respectively. The corresponding R, and 
Rz in Theorem 2.2 will be denoted by R{, R{ and Rf, R2g, respectively. It 
is easy to see that 
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Now we fix E and A, I&J 6 sO, R{/Rf < A < R{/Rf. We shall prove that for 
every R E In, we can find p and 4, depending continuously on 1, E, and R 
such that the functions 

which are solutions of (2.16), satisfy the boundary-value problem 

n-l 
UN +- r u’+ky(U)+&F(U, v)=O, 

n-1 
v”+- v’ + g(u) + EG(u, v) = 0, O<r<R, (2.31) 

r 

u’(O) = 0 = u(R), v’(0) = 0 = v(R). 

To prove this assertion, we define two transformations T, and T2 as 
follows. Let u = V(T) be such that for 0 <r d R, R EZ~, u(r) lies in 
[_o - 1, i?+ 11. Then from Theorem 2.2, there is a unique function u 
satisfying 

n-l 
d’+- r 24’+~*f(u)+&F(U,V)=0, Ocr-cR, 

(2.32) 
u'(O) = 0 = u(R). 

We set T, (v) = U. Similarly, let u = u(r) be such that for 0 < r < R, R E I,, 
u(r) lies in [_u - 1, ii + 11. Then from Theorem 2.2, we can find a unique 
function v satisfying 

n-l 
VI’+- v’ + g(v) + eG( u, u) = 0, O<r-cR, 

r (2.33) 
u’(0) = 0 = v(R). 

We set T2 (u) = v. Now choose u0 = 0 and define 

VI= Tz(uoX . . . . u,,+, = 7’2(u,), . . . 

UI = T2(v1), . . . . u,+l = T,(u,+l), . . . . 
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Using straightforward arguments concerning a priori bounds on solutions 
of (2.32) and (2.33), we can show that the sequence of functions 
{t”iP ui)li21 is well defined and equicontinuous on 0 d r i R. Hence there 
exists a subsequence, also denoted by { (ui, vi) Ii, i , and a function (u, u), 
such that { (ui, o~)}~, , converges uniformly to (u, u) on 0 d r d R. It is easy 
to see that (u, u) is a weak solution of (2.15), and using the standard elliptic 
regularity results, we see that (u, u) is actually a (strong) solution of (2.15). 

Now for a given E, 1~1 < sO, if A is near R{/R,g and R E IA, then (cf. (2.12) 
u'(R) < 0 and (cf. (2.14)) u'(R) > 0. On the other hand, if A is near Ri/R," 
and R E IA, then u'(R) > 0 and u’(R) < 0. See Fig. 1. 

For R{/R," < A< R$/Rf, we define the following sets: 

Ii"= (REZ~:U'(R)<O,U'(R)>O}, 

Ii"= (RE I,: u'(R)> 0, u'(R)> 0}, 

Zi3'= (RE Z,: u'(R)< 0, u'(R)< 0}, 

I;"'= {RE Zl: u'(R)> 0, u'(R)< 0). 

The II;“, i= 1, 2, 3,4, a re continuous set-valued functions of A (in any 
reasonable topology). For A near R{/R$, ZA = I$'), Zy' = 4, i = 2, 3,4. We 
now increase i from near R-f/R;; there then exists A, > R{/R," such that 
Z,=Zj’) for all I, A,> A> R{/Rz, and Z,#Zj’) for A> A,. For I near 
I,, A > A,, either Zy’ = 4 and Zy) = 4, or Zy) = 4 and Ii’) # 4. We continue 
to increase il. Then there exists A,> A, such that for A,> A>A,, either 
Z13’ = 4 or Zi2’ = 4, and for ;I > A,, A near A,, Z\‘) # 4, Zi2’ # 4, and Zi3) # 4. 
If we continue to increase A, we find ,4(s) > Ab such that I!“# 4 for 
1 <A(e) and I:“= 4 for Iz > A(E). Thus A(a) is the unique value of 1 such 
that 

Zjl’#~, p=$$ for ~<A(E) 

- X near Rf /R! 

)1,$(R) > O,v’(R)<O 

R;/A ------------ + X near R:/Ry 
- Plq 

FIGURE 1. 

SOS/8Of2-9 
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and 

I$‘)=(l$ z:,4’ # $ for 1> /i(s). 

It is easy to see that there exists R(E) E ZnCEj, such that ZnCEj = Z$$, u ZylEj u 
{R(E)} and Zll:)E)= {REZ~(~):R>R(E)}, Zyle,= {REZ,,,,:R<R(E)}. Since 
IT’ is a continuous set-valued function of A, we see that we can choose a 
sufficiently small 6 > 0, such that ZnCEJ (3) #f$ for all 2~ [n(s)-6, n(.s)+s]. 
NowwesetR(~,&)=supZ~3)andR,(1,&)=infZ~3)for~E[n(&)-s,n(&)+s] 
to complete the proof of Theorem 2.1. 1 

For later use, we need the fact that for the solutions constructed in 
Theorem 2.1, the following assertions are valid; namely 

0 = O(E) and 
au 
ap = O(&). 

(2.34) 

To prove these, we shall show that they are valid for each of the above 
constructed approximants u, + , = T, (u,), u, + 1 = T,(u, + , ), n = 0, 1,2, . . . . 
Thus, since oi satisfies (2.33), where u = u,(T, p), u,(O, p, q) = q, 
u1,,(03 P9 4) = 09 u;,,(O, p, q) =O, we have u;,JO, p, q) = O(E) so that 
U l,P = O(E). Similarly, ~i,~ = O(E), and by repeating this argument, we see 
that (2.34) is indeed valid. 

3. EXISTENCE OF DEGENERATE RADIAL SOLUTIONS 

A solution (u, u) of (1.4) is called nondegenerate provided that the only 
solution of the corresponding linearized problem 

AU+12j-‘(U)U+&[Fu(z4, u)U+F,(u, u)V] =o, 

AV+~‘(~)V+E[G,(U,U)U+G,(U,U)V-J=O, XED;, (3.1) 

(U(x), V(x)) = (0, 01, xEaD”R, 

is U(x) E 0 E V(x). Thus, (u, u) is nondegenerate if and only if zero is not 
in the spectrum of the associated linearized operator. If this is not the case, 
then (u, u) is called a degenerate solution. 

For general functions F and G, the degeneracy problem is quite difficult. 
Thus we consider in detail only the case 

g>o au and CO au ' (u, u) E ?, (3.2) 

where q is a small neighborhood of [u - 1, U + 11 x [_v - 1, V + 11. We shall 
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then make some remarks regarding the other cases. We shall refer to (3.2) 
as the “positive interaction” assumption. Here is our first result (cf. 
Theorem 2.1). 

THFDREM 3.1. Assume that f and g belong to the class 9, and that (3.2) 
holds. Zf O<s<s,,, IZE [A(E)-& A(E)+~], and I#A(.s), then the solution 

of (1.4) is nondegenerate if E is sufficiently small. 

Proof: We shall only give the details for A > A(E); the case A < A(e) is 
entirely analogous. Thus from Theorem 2.1B, part (iii), we have 

u’(R) < 0 and u’(R) < 0, (3.3) 

for each RE [R,(1, E), R(A, E)]. Our goal is to prove that the only solution 
of (3.1) is the trivial solution (U, V) = (0,O). To this end, we write U and 
V in their spherical harmonic decompositions 

u= C a,(r)@,(@ 
N20 (3.4) 

v= 1 an(r) @N(e)? 0ES”-‘,O<r<R, 
N,O 

where for each N, Qr, lies in the Nth eigenspace of the Laplacian on the 
(n - l)-sphere S”- ‘, corresponding to the eigenvalue AN = -N(N + n - 2). 
It follows easily that for each N 2 0, the functions aN and b, satisfy the 
equations 

n-l 
a>+- 

r 
al,+ $+i2f’(u)+cF,, 

[ 1 a,+&F,b,=O, 

n-l 
b;+- 

r 1 b,+EG,U,=O, (3.5) 

and the boundary conditions 

a&(O) = b;(O) = 0, ao(R)=bo(R)=O, 

a,(O)=b,(O)=O, aN(R)=bN(R)=O, for N> 1. 
(3.5)a 
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We shall show that for each N, (a,(r), b,,,(r))= (0,O). We begin with 
(a,, b,). They satisfy the equations 

n-l 
a;+- a; + [ A2f’( u) + EF,,] a, + EF, b, = 0 

r 

b;+- n-1 b;+ [g’(u)+eG,] b,+~G,a,=O, O<r<R, (3.6) 
r 

a;(O) = b’(0) = 0 q,(R)=b,(R)=O. 

For any fixed constants c1 and /?, and 0 d r < R, set 

w(r)=a@+g@ 
ap aq 

z(r)=crav+flu 
ap ai 

An easy calculation shows that w and z satisfy 

n-l 
w”+- w’ + [A’j-‘(u) + EFJ w + EF,Z = 0 

r 

z”+- n-1 z’+ [g’(u)+&G,]z+~G,w=O, O<r<R, (3.7) 
r 

w’(0) = z’(0) = 0, w(0) = tl, z(0) = fl. 

Comparing (3.6) with (3.7), we conclude that 

Using the boundary conditions u,(R) = b,(R) = 0, we get 

a,(O)~(R)+b,(O)~(R)=O 

u,,(O)$(R)+b,(O)$(R)=O, 

(3.8) 

(3.9) 



NONLINEAR ELLIPTIC EQUATIONS 329 

Now using the assumption that f, g E 3, we know that (see (2.32)), for 
small E > 0, 

> 0. (3.10) 

Thus the only solution of (3.9) is ~~(0) = b(0) =O, and so (3.8) gives 
L&J(r) GO 5 b,(r). 

Next we shall show that (aI (r), b,(r)) = (0,O). For this, note that 
(a,, 6,) satisfies 

n-l 
a;+- a; + l?j-‘(a)+~F~+~ a, +cIi,b, =0 

r 1 
bb: + ?b;+ g’(u)+eG”+$ b,+cG,u,=O, 1 Ocr-cR, 

a, (0) = b, (0) = 0, q(R)=b,(R)=O. (3.11) 

Let w(r) = u’(r) and z(r) = v’(r). Then w and z satisfy (cf. Theorem 2.1B, 
part (iii)) 

n-l 
WI’+- w’+ r n2fr(u)+EFu+~ w+&F”z=o 

r L r2 1 
n-l 

z” +- z’+ g’(v)+cG,+L z+cGuw=O, 
r2 1 O-cr-cR, 

r 

w(0) = z(0) = 0, w(r) < 0, z(r) < 0, Ocr-cR, 

w(R) < 0, u(R) < 0. (3.12) 

Consider now the following equations 

n-1 
A”+- A’+ 

r [ 
n2f’(u)+EFu+& A+&F”B=O 

r2 1 
n-l 

II”+- B’+ 
r 

g’(v)+eG,+$ B+EG,A=O, 1 r>O, (3.13) 

A(O) = B(O) = 0. 

Let (A,, B,) and (A2, B,) denote the solutions of (3.13) which satisfy the 
initial conditions (A’(O), B’(0)) = (w’(O), 0) and (A’(O), B’(0)) = (0, z’(O)), 
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respectively. Now as (A r, B, ) and (AZ, B2) form a basis for the set of 
smooth solutions of (3.11), we can write 

and differentiating this equation and evaluating at r = 0 gives CI = /I = 1. 
Thus 

and 

We assert that 

A,(r)-w(r)= -A,(r) 

(3.14) 

B,(r)=z(r)-B,(r). 

A,(r)=w(r)+O(c) 

B, (r) = O(E), 

and 

4 (r) = O(E) 
B,(r) = z(r) + O(E). 

(3.15) 

(3.16) 

To see these, note first that (3.16) follows from (3.14) and (3.15), so it 
suffices to prove (3.15). Now as A, - w satisfies 

(A,-w)“+fp (A,-w)‘+ Pf~+EFu++l&v) [ 
+EF,(z-B,)=O, OcrcR, 

(A I- w)(O) = 0 = (A 1 - w)’ (O), 

it follows easily that (A, - w)” (0) = O(E), and thus A, - w = O(E). 
Similarly, as (z - B2) satisfies 

(z-B,)” +v (z-B*)‘+ ,‘+EG,+$ (z-B*) 
I 

+&G,(w-AAZ)=O, Ocr-cR, 

(z - B2)(0) = 0 = (z - B2)’ (0), 

we have B, = z - B, = O(E). Thus our assertions hold. 
Next, we shall require more detailed information on B, (r) and A, (I-). 
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Let K(r) = B, (r)/c. Then K satisfies 

n-l 
KU+ r -K’+ g’(u)+~G,+$ K+G,A,=O, 1 O-cr<R, 

Now as A; (0) = w’(O) = u”(O) =f(O)/n < 0 (by (2.3)), then for small E it 
follows from the positive interaction assumption (3.2), that for r near 
0, r >O, (G,A,)(r)<O. Thus as before, we see from (3.17) that for small 
r > 0, K(r) > 0. We claim that for 0 < r < R, 

(3.18) 

To see this let R,, be the first positive zero of K. Using (3.17) together with 
the second equation in (3.13), we have 

-$ [rnpl(Kz’-K’z)]=r”-l[G,Alz-EG,wK] 

= G,A,zrflp’ + O(E). 

If we integrate this from r = 0 to R,,, we get 

-R~~lK’(R,)z(R,)=~RoGuA,zrn~ldr+O(~). 
0 

(3.19) 

Now as K’( R,) d 0, z(R,) d 0, and the integral in (3.19) is positive, we 
obtain a-contradiction if E is sufficiently small. Thus K(r) > 0 on 0 < r < R. 
Hence (3.18) is valid. In a like manner, we can show that on 0 < r < R 

J(r)=- A,(r),O 
E . 

(3.20) 

We can now complete the proof that (a,(r), b,(r))= (0,O). Thus 
comparing (3.11) and (3.13) gives 

4 (0) a,(r)=- 
w’(O) 

Al(r)+$$A,(r) 

4 (0) b,(r)=- b; (0) 
w’(O) 

B,(r) + - 
z’(O) 

b(r), 

(3.21) 
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and comparing (3.12) and (3.13) gives 

w(r)=A,(r)+A2(r) 

z(r) = B,(r) + B,(r). 

It follows that 

A,(R)=w(R)-A,(R)=w(R)-&J(R) 

B2(R)=z(R)-B1(R)=z(R)-&K(R), 

A,(R)B,(R)-A,(R)B,(R) 

= (w(R) - &J(R))(Z(R) - &K(R)) -E2J(R) K(R) 

= w(R) z(R) - &&T(R) z(R) + K(R) w(R)). 

Now from (3.12), w(R) <O and z(R) < 0; hence 

A,(R)B,(R)-A,(R)B,(R)>O. 

(3.22) 

(3.23) 

Thus from (3.21) and (3.23) we conclude that a’, (0) = 6; (0) = 0, so (3.21) 
shows that a; (r) - 0 = 6, (r). 

Finally, we show (a,(r), bN(r)) E (0,O) for N> 2. We have 

n-l 
a;;+- 

r 
i’f’+EF,+$ a,f.sF~bN=O 1 

n-l 
b;+- 

r 
g’+EC,+$ 6, 1 

+ EGuaN = 0, OcrcR, 

a,(O) = 0 = b,,,(O), a,(R)=O=b,(R). 

Consider the equations 

T+EG,S=O (3.25) 

(3.24) 

S(0) = 0 = T(0). 
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We denote by (S,, T,) and (A’,, T2) the solutions of (3.24) satisfying 
(S’(O), T’(0)) = (w’(O), 0) and (S’(O), T’(0)) = (0, Z’(O)), respectively. Then 
from (3.24) and (3.25), we have 

4v(O) aN(r) = - h,(O) 
w’(O) 

Sl (r) + - 
z’(O) 

S*(r) 

a’,(O) &v(O) 
(3.26) 

b,,,(r) =- 
w’(O) 

TI tr) + - 
z’(O) 

T,(r). 

Using (3.25), it is easy to see (as before) that 

T,(r) = WE) and S,(r) = O(E). (3.27) 

Now let H = A i - S, . Then using (3.13) and (3.25), we obtain 

n-l 
H”+- 

r 
iY'+&+; H 1 GA, +- r2 S,+&F,tB,-T,)=O, (3.28) 

H(0) = H’(0) = 0. 

Now from the first equation in (3.12) and (3.28), we have 

1 [r”-‘(Hw’ - H’w)] = rne3(l, -A,) S1 w + O(E). (3.29) 

Now S, (0) = 0, and since as before S’, (0) = w’(0) = u”(O) x f(O)/n < 0, we 
have Si (r) c 0 for small r > 0. Thus from (3.28), H(r) > 0 for small r > 0. 
We assert that H(R) > 0. If not, let R, be the first positive zero of H. Then 
integrating (3.29) from r = 0 to R, gives 

-R”,-‘H’(R,)w(R,)=jbR”r”~3(~l-~N)S,wdr+O(~). (3.30) 

But as H’(R,) d 0, w(R,) < 0, and the integral in (3.30) is positive, we 
arrive at a contradiction. Thus H(R) > 0, as asserted. Moreover, it is easy 
to see that H(R) is bounded away from zero, uniformly in E, for small E > 0. 
(This follows from (3.28) if we set E = 0.) 

In a similar manner, we can prove that A(R) = B,(R) - T,(R) > 0, and 
that l?(R) is bounded away from zero, uniformly in E, for small E > 0. Now 
we compute (cf. (3.22)) 
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S, WI T,(R) - S, (RI T, (RI 

= (A, (R) - ff(R)W, (RI - mv) + WE2) 
= (w(R) - &J(R) - H(R))(z(R) - &K(R) -B(R) + O(2) 

= (w(R) - WR)Kz(R) - m)) 

- ECJ(R)MR) - mw + W)(w(R) - fw)I 
+ E2J(R) K(R) + O(E2), 

so that S, (R) T2 (R) - S,(R) T, (R) > 0 for small E > 0. Now if we set r = R 
in (3.26) and recall that a,(R)=O=b,(R), we see that a~(O)=O=&(O), 
so from (3.26) it follows that (a,(r), bN(r))= (0, 0), Na2. This completes 
the proof of Theorem 3.1. 1 

We also have 

THEOREM 3.2. Assume that f and g belong to the class 9, and that (3.2) 
holds. Zf Iz = A(E), R <&A(E), E), and E > 0 is sufficiently small, then the 
solution 

u(r; AR); A(E), E), q(R; A(E), E); A(&), 6) 
u(r, p(R); A(E), ~1, q(R; A(E), ~1; A(E), E) 

of (1.4) is nondegenerate. 

We omit the proof since it is essentially the same as the last proof. 
Finally, we have the following degeneracy result. 

THEOREM 3.3. Assume that f and g belong to the class Y, and that (3.2) 
holds. Zf L = A(E), R = R(A(&), E) EE i?, and E > 0 is sufficiently small, then the 
solution 

u(r) 
(I( 

u(r; ~0); 4~1, El, q(R A(e), E); NE), El 
= u(r) u(r, AR; A(E), 61, q(R A(E), El; A(E), El > 

of (1.4) is degenerate. The kernel consists of elements of the form 
(Wx), Vx)) = (u’(r), u’(r)) @, (0). 

Proof: If we expand U and V in terms of spherical harmonics, as in 
(3.4), then the same proof as in Theorem 3.1 applies to prove that 
(a,(r), bN(r))z(O,O) for N=O, and N>2. For N=l, (u,(r), b,(r))- 
(u’(r), u’(r)) solves (3.5) and (3S)a (cf. Theorem 2.1B, part ii). Moreover, 
we claim that the solution (u’, u’)@, is unique in the sense that it spans the 
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solution space of (3.1). To see this, we consider (3.21) at r = K. Using 
(3.18), (3.20), (3.22), we obtain 

,=4(O) 

n”oW(R))++.m 

o _ 4 (0) 
--&-a@)+%(-&K(K)). 

But as above we can show that (3.18) and (3.20) hold, at r = 8, so it 
follows that a; (0)/w’(O) = 6; (0)/z’(O). Thus (3.21) takes the form 

a1 (I) = ~CA,(r)+A2(r)l 

&(+a;0 z’(o) 14 b-1 + &(r)l. 

Thus every solution of (3.11) satisfies these equations. It is clear from this 
that the solution (a,, b,) = (u’, u’) = (A, + A,, B, + B,) spans the solution 
space of (3.5), N= 1. It follows at once that (u’, u’)@, is the unique 
solution of (3.1). This completes the proof. 1 

4. SYMMETRY BREAKING 

In view of Theorems 3.1, 3.2, and 3.3, the positive radial solution 

of the system (1.4) is degenerate only at A= A(E) and R= R(A(c), E). Since 
we are alwlays assuming that f and g are in the class 9, it follows that 
(cf. (2.32)) for small E > 0, 

au au 
det ;5;; a4 [ 1 au au mm, EL Pm ‘fw), El, 4m NE), 8); &I, 6) > 0. (4.1) 

ap& 

Thus the equations 

u(R; P, q; 4~1, &I= 0 

u(R; P, q; A(E), &I= 0 
(4.2) 
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uniquely define two functions p = p,(R) and q = q,(R) on an interval 
[R,(E), RZ(c)] containing the point @/I(E), E). Thus for every R E [R, (E), 
RZ(e)], system (1.4) has a unique radial solution. 

In order to avoid cumbersome notation, we shall suppress the 
dependence of our functions on E; this should cause no confusion. Thus 
we write R,=R,(c), R2=Ra(&), ~?=&A(E),E), A=,~(E), p(R)=p,(R), 
q(R) = q,(Rh and 

u(r; p(R), q(R)) = u(r; p(R; 4~1, EL q(R J(E), E); 4~1, ~1 

ok p(R), q(R)) = W; P(R A(E), ~1, q(R J(E), ~1; NE), 6). 

Let I= CR,, R,] and define the operator 

M: { (24, u) E C’(D~)‘: (2.4 u) = (0,O) on f?D;} x Z-r C”(D7)‘, 

M(z,, ~2, R) = M, (z,, 172, RI 
Mz(z,, ~23 R) > 

A(z, + u) + R2[A2f(z, + u) + EF(z, + u, z2 + u)] 
A(zZ+u)+R2[g(z2+u)+cG(z1+u,z2+o)] > ’ 

(4.3) 

where ~~=z~(x),u=~(Ix\R;p(R),q(R)), and u=u(jxlR;p(R),q(R)). It 
follows that 

0 
MO, 0, R) = o 

0 

> 
for all R E Z, 

and that the equation 

u 
M,(O, P, R) V 0 

AU+A2f’(u)U+~(F,,U+F,V) = 0 
AV+g’(u)V+c[G,U+G,V] > 0 0 (4.4) 

has an n-dimensional solution set spanned by the functions (cf. 
Theorem 3.3) 

-2 u’ 
;I VI ’ 0 i=l,2 n. , . . . . 
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THEOREM 4.1. Assume that f and g belong to the class 9, and that (3.2) 
holds. If ,I= A(E), R= R(A(&), E), then the symmetry breaks on the 
degenerate solution 

(4.5) 

sf (1.4). 

Proof As was shown in [SW2, SW3], in order to prove that the sym- 
metry actually breaks at R = R, we can verify the following transversality 
condition 

(4.6) 

for all solutions (U, V)’ of (4.4). 
In order to verify (4.6), we compute: 

raw, to, 0, RI a2bf,(o,o,R) 
az2aR 1 a%f2(o,0,R) ' 
az,aR 

(4.7) 

a2MI(o,o,R) 
az,aR =zR[n2f'(u)+EF.]+~2$[n2/'(U)+&F.], 

a2A4,(o, 0,R) - d 
aZ2aR = 2R[&F,] + I?* z [ET+“], 

a%f,(o,o,K) - d 
a.2,aR = ~R[EG,] + R2 z [EC,], 

(4.8) 

- 
a2Mat;; R)=2R[g’(u)+EG,;]+R’& [g’(u)+cG,]. 

2 

But as p’(R) = q’(R) = 0, we have 
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(4.9) 

+ EGU” C 1 , 
f [g’(u) + &GUI = Cd’(u) + EG,,I 

[ 
if WR p(R), q(R))] 

+ EG,, 1 . 

Now if u(r) s u’(rR; p(R), q(R)) and b(r) s u’(ri?; p(R), q(R)), then (4.6) 
holds if (cf. [SW3 J) 

A= 
I 

‘(a,b)M,,(O,O,R) z r”-‘dr#O. 
0 0 

Now 

A = J’ [ a’:;‘ARo, RI a2 + “‘M;J2;; R) ab 

0 I 

+ a2M2 (0, 0, RI ab + a’& (0, 0, a, b2 
a2, t3R az2aR I 

rn _ , dr 

= 2R[A2f’(u)+~Fu] +B2[A2f”(u)+cF,,,] i: a2rn-’ dr 

+ j’ ( -c ‘( 1 2R g u + EG,] + R2[A2g”(u) + EG,,] &a” 
R ar 

b2r”-’ dr + O(E) 

(4.10) 
= f [l?r2(A2f’(u) + ef;,)] a2(r) 

d - 
+ li; [Rr2(g’(u) + EG,)] b’(r) r n-1 dr+O(e) 

(A2f’(u)+cFu)-$(a2(r)rn-2) 

+ (g’(u) + EC,) $ (b2(r) rne2) dr + O(E). 
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But a and b satisfy 

n-l n-l 
a”+- r a’+iT2[A2f’(u)+~F,3a--y+~*~F~6=0 

n-l 
b”+- b’+R*[g’(u)+EGJb 

r 

n-l 
-7b+R2cGuu=0, O<r<l, 

(4.11) 

u(O)=O=b(O),u(l)=O=b(l),u’(l)>O,b’(l)>0, 

so that 

+[:i[b”+ff-!bf-yb] [2b’r”+(n-2)r”-‘b]dr+O(E) 

=~J~-$[r”(u’)2+(n-2)r~~1uu’-(n-l)rn~2u2]dr 

+ f 1’ f [r”(b’)* + (n-2) r”-‘bb’- (n- 1) r”-*b*] dr + O(E) 

=~[(u’(1))*+(b’(1))*]+0(~) 

= ~CW~W2 + kw)*1+ O(E) 

> 0, 

for small E >O. This proves the transversality condition, and we thus 
conclude that the symmetry breaks on the solution 

(4r; AR), q(a)), u(r; p(R), q(R)); 

thus the proof of the theorem is complete. 1 

5. REMARKS 

1. For systems of the form (1.2), Troy [T] has shown that if fv > 0 
and g, 20, then all positive solutions of (1.2) must be radial functions. 
Thus if F” 2 0 and G, 2 0, positive solutions of (1.4) must be radial func- 
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tions. Our Theorem 4.1 asserts that there are asymmetric solutions bifur- 
cating out of the degenerate solution (u(v; p(R), q(R)), u(r; p(R), q(R)). 
But since u’(B; p(R), q(R)) = 0 = u’(R; p(R), q(R), the bifurcating asym- 
metric solutions cannot be positive for R near 8. Thus Theorem 4.1 is 
consistent with Troy’s result. 

2. From our dislcussion of (3.17), we can show in a completely 
analogous manner that 

and 
K(R) < 0 if G,<O 

(5.1) 
J(R)<0 if F” < 0. 

We shall use these to show that the result of Troy [T], which we have 
discussed above, is, in a certain sense, the best possible. In fact, we have the 
following theorem. 

THEOREM 5.1. Consider the system ( 1.4), where f, g E 2’. If t;: < 0 and 
G, < 0, then this system admits positive asymmetric solutions. 

Proof: Define d(R) (cf. (3.22)) by 

d(R)=A,(R)B,(R)-A,(R)B,(R), (5.2) 

R,(A(&), E)< R <&A(E), E). Then as we have shown in the proof of 
Theorem 3.1 (see (3.22), ff.), 

d(R)= w(R)z(R)-&[J(R)z(R)+K(R) w(R)], (5.3) 

where w = U’ and z = u’. We shall first prove that for some E, 0 <E < cO, 
there is an R such that 

d(R) = 0. (5.4) 

To do this, note that for any R in the above range, Theorem 2.1, part (ii) 
implies that u’(R) < 0 and u’(R) < 0. Thus at E = 0, d(i?) > 0 for some R, -- 
R,(A(O), 0) <R< R(A(O), 0). It follows that for small E, there is an -- 
R, < R(A(&), E) with 

d(R,)>O. (5.5) 

Fix such an 8 for which (5.4) holds. Now consider (5.3). Since F” < 0 and 
G,<O, we have that (5.1) holds for all R satisfying R,(A(&), E)< R < -- 
R(A(.z), E). Thus &[J(R) z(R) + K(R) w(R)] > 0. Since (w(R), z(R)) + (0,O) 
as R + R, and J(R) K(R) # 0, we see from (5.3) that d(R) < 0 for R near 
R, R < &A(E), E). This, together with (5.5) shows that (5.4) holds. 
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Now consider Eq. (3.21) where (w(r), z(r)) = (u’(r), u’(r)), and 

4r; AR; J(E), ~1, q(R 4&l, ~1; J(E), ~1 
u(r; p(R 4&J, E), 4UC ;I(&), 6); J(E), E) ’ 

(5.6) 

Then from (3.21), we have, at r = R, 

4 (0) 4 (0) 
-Al(R)+- 
w’(O) z’(O) 

AZ(R)=0 

b; (0) 
z&(R)+- 

z’(O) 
&CR) = 0, 

and since (5.3) holds, this system has a nonzero solution, i.e., 
(a; (0), b’, (0)) # (0,O). In fact, a; (0) #O and b’, (0) #O, as follows easily 
from (5.1). Hence a,(r) #O and 6, (r) ~0. Thus for some R < &A(E), E), 
the kernel of the linearized operator about (5.6) is of the form 
(a,(r), b,(r)) Q,(0), as follows easily from the same sort of arguments as 
in the proof of Theorem 3.3. Now as in the proof of Theorem 4.1, since 
a;(R)#O and b’,(R)#O (otherwise a,(r)cO=b,(r) since a,(R)=O= 
b,(R)), we see that the symmetry breaks on the solution (5.6). Since 
u’(R) < 0 and o’(R) < 0, it follows that the bifurcating asymmetric solution 
is positive on 1x1 CR. This completes the proof. 1 

3. We note that our results hold for systems of n equations of the 
form 

with Dirichlet boundary conditions 

u(x) = (24, (x), . ..) u,(x)) = 0, I4 = R 

where each fie 8, 1~ i < n. The proofs for this general case are 
straightforward extensions of those which we have given for the case n = 2. 
For these equations, the analogue of condition (3.2) takes the form 
aFifauj > 0 for each i # j. 

sos/so/2-IO 
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