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A Monte Carlo procedure for calculating the density of states is described. The method is based on an expansion of the eigen- 

state energies as term values, and coupling among vibrations and rotations is explicitly included. The accuracy of the technique 
for state densities is demonstrated by comparisons with “exact” results obtained form the differentiated sum of states. The appli- 
cability of the method is general, when reliable high order spectroscopic data are available. Calculations are presented for NO,, 

H20, HOCi and CHsO for energies ~20000 cm-l. 

1. Intloduction 

The calculation of the densities of vibrational and 
rotational energy levels and of the corresponding sum 
of states is important for numerous theoretical ap- 
plications, including theories of unimolecular reac- 
tions, energy transfer, radiationless transitions, mul- 
tiphoton absorption processes, and spectroscopic 
measures of molecular chaos. The current tech- 
niques available for the calculation of densities of 
states, N(E), include direct count [ 11, semiempir- 
ical [ 21 and inverse Laplace transform [ 31 meth- 
ods. The Beyer-Swinehart algorithm [ 41, which has 
very high efftciency, and its extension by Stein and 
Rabinovitch [ 5 ] enable the exact calculation of N( E) 
for separable degrees of freedom. Indeed, inherent in 
most of these methods is the assumption that the sys- 
tem can be treated as a collection of independent 
(separable) oscillators. This is not because the cou- 
plings among the different degrees of freedom (DOF) 
are thought to be unimportant, but because they are 
difftcult to evaluate. Methods for evaluating state 
densities that can incorporate the effects of non-se- 
parability include those based on classical mechanics 
and a recently described Monte Carlo method for 
sums of quantum states [ 6 1; “exact” densities of 
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states can be obtained by differentiating the sum of 
states with respect to energy. 

In classical statistical mechanics the density of 
states at energy E for a system with II degrees of free- 
dom is given by 

N(E)&‘j j dpdq6[E-H(p, 4) 1 , (1) 

where the coordinates q and conjugate momenta p 
are the variables of the classical Hamiltonian H(p, 
q), the Dirac delta function ensures the integration 
in eq. ( 1) is carried out for H(p, q) =E. Except for 
very simple models, such as the harmonic oscillator 
and rigid rotor, the integral ( 1) has no closed form 
solution, and for real systems serious approxima- 
tions may be necessary for its evaluation. The nu- 
merical evaluation of eq. ( 1) has been attacked us- 
ing Monte Carlo methods which are particularly 
suitable for multidimensidnal integration [ 7 1. Sev- 
eral papers have shown the usefulness of the Monte 
Carlo techniques [ 8,9], which do not depend on the 
particular degrees of freedom or their coupling. 

In a recent paper [ 61, a high efficiency Monte 
Carlo integration technique was described that gives 
unbiased estimates and can be used to calculate the 
sum of quantum states for nonseparable degrees of 
freedom. This technique does not evaluate eq. ( 1 ), 
but it is based on spectroscopic term expressions for 
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the eigenstate energies in terms of quantum num- 
bers. The approach followed in the present paper is 
largely based on the method of ref. [ 61 and the reader 
should consult the original paper for a complete ex- 
planation of that method and an outline of the sam- 
pling algorithm. The density of states can be deter- 
mined by taking the derivative of the sum of states 
with respect to energy. This necessitates the deter- 
mination of the sum of states at several energies, fit- 
ting the results to an analytical function, and then 
taking the derivative. In the present work, a much 
more efficient approximate method is described, 
which retains all of the benefits of the Monte Carlo 
integration, but without the added labor, and which 
makes only a small sacrifice in accuracy. 

2. Formalism 

The energy of an eigenstate (relative to the zero- 
point energy) for a polyatomic system, in the ground 
electronic state (for a symmetric top) can be written 

T=G”(J, K, v,...u,) +E,,(J, K) , (2) 

where the spectroscopic terms for anharmonic ro- 
vibrational eigenstates are represented empirically 
by an expression in powers of rotational (J, K) and 
vibrational quantum numbers, u, ( in the absence of 
resonances and other perturbations). The terms in 
eq. (2) are given by 

Go= ,$[ v,wpCff+ t i X~“v,v, 
!=I j=r 

+ f i i YijkVivjVk 9 
i= 1 j=i k=j 

(3) 

where myff and the x,eff are the effective vibrational 
frequency and effective quadratic anharmonicities 
and yjjk are the cubic anharmonicities. Due to the 
coupling with rotations, the effective frequencies and 
quadratic anharmonicities are functions of the ro- 
tational quantum numbers 

wP”“(J,K)=w~-CU,B[J(J+l)-K2] 

-CrAK2+BiK4, (4) 

Xy”( J, K) = X; + y;K' . (5) 

The rotational energy E,,, (J, K) (according to the 
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Watson Hamiltonian [ lo] ) is given by 

Emt(J,K)=BoJ(J+l)+(Ao-E,,)K’ 

-d,J’(J+ 1)2-A_r,J(J+ l)K’-&K4 

+HKIJ(J+1)K4+HKK6-LLKK8. (6) 

The procedure we follow in calculating the density 
of rovibrational states is derived from that in ref. [ 6 ] . 
The basic idea is that, in a Monte Carlo trial, integer 
quantum numbers for all but one of the DOF are se- 
lected in such a way that a specified total energy E 
is not exceeded. In the present work the quantum 
number for the remaining DOF is treated as a con- 
tinuous variable and is assigned so that the total en- 
ergy equals E. The use of the continuous variable 
makes possible the easy evaluation of the density of 
states for each trial assignment of all of the other 
quantum numbers, as shown below. The total den- 
sity of states is the sum of the densities of states ob- 
tained from every possible combination of quantum 
number assignments, which is obtained by a weighted 
Monte Carlo integration. 

For convenience, we label each DOF and corre- 
sponding quantum number v, with a subscript i, so 
that each DOF can be identified, regardless of order. 

The procedure can be summarized as follows: 
( 1) For a total energy, E, and a system formed by 

n DOF, we arbitrarily select one DOF (i=x) to be 
treated classically (i.e. its quantum number is treated 
as a continuous variable). The quantum numbers Vi 

corresponding to the other n - 1 DOF are treated as 
discrete variables, but v, is treated as a continuous 
variable. 

(2) For a given J, randomly select K, subject to 
the condition that 1 Kl <J and &,(J, K) 4 E (here, 
we assume J is a good quantum number, but K is 
not). With the assigned J and K values, calculate 
wFff and Gff using eqs. (4) and (5). 

(3) Randomly assign integer quantum numbers to 
the n - 1 vibrational modes, subject to conservation 
of energy. The maximum value of vi for each DOF 
will depend on quantum numbers already selected 
for the other modes, due to the inter-mode cou- 
plings. In one dimension, v,,,,, is the largest integer 
value of v for which 

aE/au,>o. (7) 
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For multiple DOF, we must be sure that any com- 
bination of quantum numbers will produce states that 
are bound with respect to all DOF. Therefore, the 
condition (7 ) is generalized and the test is applied 
to all DOF, using the assigned quantum numbers: 

(aEiav,),,,>O, for i=l ton. (8) 

(4) When integer quantum numbers have been 
assigned to all n - 1 DOF, except v,, the energy avail- 
able for x can be written 

n-1 n n--l 
U(U,)=E- C ViOy”- C C J$ffV,Vi 

i=l 1=I ,=, 

(9) 

Eq. (9) has the form U( vX) =wu,+Xu$ +yv:, from 
which v, (treated as a continuous variable) can be 
calculated (the tests given by eqs. (7 ) and ( 8) must 
also be performed for the last mode, where an in- 
teger v, can be estimated by rounding, or by trun- 
cation of the continuous value). For this trial, the 
density of bound states for xth DOF in the field of 
all the other DOF is given by 

pX( v)= 1 wm4~,,,i -1 - (10) 

Inspection of eqs. (9) and (10) shows that the ef- 
fective one-dimensional term expression for the last 
DOF depends on all the other quantum numbers 
(due to the coupling). 

( 5 ) This procedure is repeated for many trials, ac- 
cording to the accuracy desired. 

(6 ) The total density of bound states N,(E) ob- 
tained using the quantum number of tih DOF as the 
continuous variable,‘is the weighted sum [ 61 of the 
contribution from each trial for a total of S trials 

N,(E)= k$l Wk[h(~)lk (11) 

and the weighting factor for the kth trial is calculated 
as 

(12) 

where Rkm is the range of the mth variable in the kth 
trial (see ref. [ 61 for discussion ). 

The density of states can be calculated in this man- 
ner with any DOF selected for classical treatment. 
Ideally, N,(E) should be independent of x (which 
DOF is treated classically), but results shown below 
indicate. that the approximation is most accurate 
when the lowest frequency DOF is treated in this 
manner. 

3. Results and discussion 

In order to test this approximate method, we have 
carried out calculations for several molecules in- 
cluding three triatomic systems: N02, Hz0 and HOC1 
and one tetra-atomic: H2C0. In each case, the “ex- 
act” density of bound states used in comparisons with 
the approximate results was found by differentiating 
the sum of states obtained using the method of ref. 
[ 6 1. At very low energies and for molecules with high 
frequencies, the sums of states are very low and the 
corresponding densities are very sparse. Under these 
conditions,the density of states is not a well-defined 
continuous function and the whole concept breaks 
down. These are also the conditions that provide the 
most severe test for the approximate method. 

Results for NO2 are presented in fig. 1. This mol- 
ecule is particularly attractive because of the com- 
pleteness of the spectroscopic data [ 1 l-l 3 1. Results 
for J=O and J= 10 are presented in figs. la and lb, 
respectively. We have not attempted calculations for 
higher values of J because eq. (6 ) diverges for large 
values of the rotational quantum numbers. This is a 
common problem with spectroscopic data, because 
they were obtained at relatively low energies and ex- 
trapolations of the power-law expansions above the 
values for which they were fitted can produce non- 
sense energy values. In both panels the density of 
states obtained with the approximation is compared 
with the exact density of states, N(E)CXaC,, deter- 
mined by fitting the exact sum of states from Monte 
Carlo method of ref. [ 61 to a polynomial and then 
taking the derivative. The agreement between the two 
methods is very good, the error of the approximate 
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Fig. 1. Density of mvibrational states for N02. ( 1) “Exact” den- 
sity of states; (2) approximate method. Panel (a) J=O; panel 
(b) J= 10. 

method is less than 10% for energies up to the dis- 
sociation energy. The three vibrational frequencies 
in NO2 are similar and results obtained using each 
as V, are virtually identical. 

Water provides an interesting test, because it has 
two high frequency modes (z 3750 cm-‘) and a 

bending mode of moderate frequency ( 16 12 cm-’ ) , 
and so we can investigate the effect of v,. For this 
molecule, the spectroscopic data were taken from a 
theoretical calculation [ 141 that reports the com- 
plete set of quadratic and cubic anharmonicities. 
Moreover, the density of states is very low, provid- 
ing a severe test of the approximate method. In fig. 
2, N,(E) for x = 1,2 is compared with N(E),,, and 
it is clear from the figure that x=2 gives the better 
results. (The results obtained for X= 3 are virtually 
identical to those for x= 1 and are not shown.) The 

Fig. 2. Density of mvibrational states for H20. ( 1) “Exact” den- 
sity of states; (2 ) approximate method, based on v,; (3) approx- 
imate method, based on Y,. 

steps apparent in the fisure arise because the states 
are so sparsely distributed. 

Note that x=2 is the lowest frequency mode in 
Hz0 and it gives the best estimate for the density of 
states. To determine whether this is a general ten- 
dency we carried out calculations for HOC1 [ 151. 
This molecule has mode frequencies that span a fac- 
tor of five: 3811.93, 1269.18 and 741.7 cm-‘. The 
results for each mode are shown in fig. 3, and it is 
again clear that the best choice is the lowest fre- 
quency mode. For N(E) 3 O.O2/cm- ‘, the approxi- 
mate method gives results within about 10% of the 
exact values. 

In fig. 4a, similar calculations are presented for 
CHzO [ 161, which has a density of states much 
higher than for the triatomic systems. In the inset, 
the ratio N(E) /N(E),,,, is plotted for the lowest 
and the highest frequency modes as a function of the 
density of states. These results show that the lowest 
frequency mode is the best choice for application of 
the approximate method. 

The fact that the lowest frequency mode provides 
the best estimate can be rationalized by noting that 
the technique is based on the reduction of a multi- 
dimensional problem to one dimension, and the cor- 
responding quantum number is then treated as a 
continuous variable, rather than as an integer. The 
lower the frequency, the better the continuous ap- 
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Fig. 3. Density of rovibrational states for HOCl. ( 1 ) “Exact” 
density of states; (2) approximate method, based on v~; (3) ap 
proximate method, based on vI; (4 ) approximate method, based 
on vI. 
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proximation. The fact that the lowest frequency mode 
provides the best estimate results in a significant 
saving of computational effort, specially for large 
molecules, because only one Monte Carlo calcula- 
tion need be performed at each energy. Note that all 
the calculations reported here were performed with 
a Macintosh-XI microcomputer and around 1 O4 trials 
produced results with statistical errors G 10%. 

Extension of the methods described here and in 
ref. [ 61 to high values of Vi, J, and K are straight- 
forward in principle, since these Monte Carlo meth- 
ods can accommodate all types of coupling. How- 
ever, expressions such as eq. (6) are not always well- 
behaved for some molecules and may become oscil- 
latory and divergent for high values of the quantum 
numbers, as discussed by several authors (for ex- 
ample, see ref. [ 171). It is beyond the scope of the 
present Letter to consider such problems, but prac- 
tical solutions to this problem are needed for ener- 
gies near and above reaction threshold energies, 
where the sums and densities of states are used to 
calculate unimolecular rate constants [ 181. 

4. Conclusions 

An efficient method for accurately calculating the 
density of states for coupled systems is presented. The 
method can be applied to any type of coupling for 
which an expression of the form of eq. (2) is avail- 
able. The method should be useful in theoretical ap- 
plications where the densities of states for coupled 
systems are needed. The results show the approxi- 
mate method is accurate to within * 10% for den- 
sities of states greater than xO.O2/cm-‘. 
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Fig. 4. Density of rovibrational states for HFO. ( 1) “Exact” 
density of states; (2) approximate method, based on lowest fre- 
quency mode; (3) appmximate method, baaed on highest fre- 
quency mode. 
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