THE BENZENE-SO $\mathbf{2}_{2}$ AND PYRIDINE-SO $\mathbf{2}_{2}$ COMPLEXES

Marabeth S. LABARGE, Jung-Jin OH, Kurt W. HILLIG II and Robert L. KUCZKOWSKI
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA

Received 21 March 1989; in final form 12 May 1989

Abstract

The benzene- SO_{2} and pyridine- SO_{2} complexes have been observed for the first time using Fourier transform microwave spectroscopy. The complexes have different geometries. In benzene- SO_{2}, the two planar species are stacked one above the other. In pyridine- SO_{2}, the pyridine plane rotates by 70°, so that it is more nearly perpendicular to the SO_{2} planc.

High resolution spectroscopic studies of the dimeric complexes of SO_{2} with acids [1-4], trimethylamine (TMA) [5], argon [6] and another SO_{2} [7]
have been reported. Their structures are diverse and might be described as arising from interaction of the oxygen with the acidic hydrogen in $\mathrm{SO}_{2} \cdot \mathrm{HX}$, the sul-

Table 1
Transition frequencies (MHz) for $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{SO}_{2}$

J^{\prime}	$K_{\mathbf{P}}^{\prime}$	K_{O}^{\prime}	$J^{\prime \prime}$	$K_{\mathrm{P}}^{\prime \prime}$	$K_{0}^{\prime \prime}$	$\nu($ obs $)$	$\mu($ obs $)-\nu($ calc $)$
1	1	0	0	0	0	9995.844	-0.0028
1	1	1	1	0	1	8067.952	-0.0062
2	1	1	1	0	1	11923.633	0.0002
2	1	2	2	0	2	7996.963	-0.0081
3	1	2	2	0	2	13887.213	0.0111
3	1	3	3	0	3	7891.368	-0.0104
4	1	4	4	0	4	7752.239	-0.0082
5	1	5	5	0	5	7581.003	0.0007
6	1	6	6	0	6	7379.449	0.0238
4	0	4	3	0	3	7421.159	-0.0008
4	1	4	3	1	3	7282.031	0.0024
4	1	3	3	1	2	7567.507	0.0098
4	2	3	3	2	2	7424.820	-0.0144
5	0	5	4	0	4	9272.781	-0.0052
5	1	5	4	1	4	9101.545	0.0036
5	1	4	4	1	3	9458.347	0.0142
5	2	4	4	2	3	9980.306	-0.0130
6	0	6	5	0	5	11121.964	-0.0152
6	1	6	5	1	5	10920.408	0.0060
6	1	5	5	1	4	11348.482	0.0169
6	2	5	5	2	4	1135.314	-0.0071
6	2	4	5	2	3	11151.807	-0.0104
7	0	7	6	0	6	12968.239	-0.0277
7	1	7	6	1	6	12738.503	0.0122
7	1	6	6	1	5	13237.764	0.0213
7	2	6	6	2	5	12989.747	0.0026
7	2	5	6	2	4	13016.103	-0.0024

Table 2
Rotational constants (MHz) and centrifugal distortion constants (kHz) for benzene- SO_{2} and pyridine- SO_{2} (Watson S reduction, representation I^{r})

	$\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{SO}_{2}$	$\mathrm{C}_{6} \mathrm{D}_{6} \cdot \mathrm{SO}_{2}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} \cdot \mathrm{SO}_{2}{ }^{\mathrm{a})}$	$\mathrm{C}_{5} \mathrm{H}_{5}{ }^{15} \mathrm{~N} \cdot \mathrm{SO}_{2}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} \cdot \mathrm{~S}^{18} \mathrm{O}_{2}$
A	$9031.946(55)$	$8949.728(70)$	$3534.94(11)$	$3533.18(6)$	$3377.70(5)$
B	$963.946(12)$	$907.907(11)$	$759.923(1)$	$759.831(1)$	$736.754(5)$
C	$892.569(16)$	$845.023(17)$	$647.635(1)$	$647.612(1)$	$627.099(4)$
D_{J}	$0.737(12)$	$0.617(12)$	$0.281(19)$	$0.320(10)$	$0.317(28)$
$D_{J K}$	$20.92(17)$	$18.77(13)$	$41.2(11)$	$41.4(1)$	$38.3(3)$
D_{K}	-	-	$-37.0(130)$	$-153.0(70)$	$-29.0(100)$
d_{1}	$-0.050(10)$	$-0.039(8)$	$-0.105(4)$	$-0.106(2)$	$-0.119(23)$
d_{2}	$0.012(6)$	$0.0005(60)$	$-0.012(3)$	$-0.009(1)$	$0.007(10)$
$n^{\mathrm{b})}$	27	20	29	22	12
$\Delta \nu^{\mathrm{c})}$	0.012	0.009	0.003	0.001	0.007

${ }^{\text {a) }}{ }^{14} \mathrm{~N}$ coupling constants (MHz): $\chi_{a a}=-4.086(2) ; \chi_{b b}=1.347(2) ; \chi_{c c}=2.740(2)$.
${ }^{\text {b) }}$ Number of transitions in fit. ${ }^{\text {c) }} \mathrm{rms}$ deviation of the fit in MHz .
fur with the basic nitrogen in $\mathrm{SO}_{2} \cdot$ TMA or the π orbitals with the rare gas in $\mathrm{SO}_{2} \cdot \mathrm{Ar}$.
We have investigated the complexes of SO_{2} with two aromatic compounds, benzene and pyridine, by Fourier transform microwave (FTMW) spectroscopy; the two adducts have contrasting spectra and structures. In benzene- SO_{2}, the two planar moieties are stacked one above the other suggestive of a $\pi-\pi$ interaction. The spectral features indicate an internal rotation or tunneling motion between the benzene and SO_{2}. In pyridine- SO_{2}, the pyridine plane rotates by approximately 70° and is more nearly perpendicular to the SO_{2} plane. The nitrogen end is directed towards the SO_{2} suggestive of a $\sigma-\pi$ interaction. No evidence for facile internal rotation has been found.

The spectra were observed in a pulsed molecular beam FTMW spectrometer [8]. Mixtures of approximately $98 \% \mathrm{Ne}, 1 \% \mathrm{SO}_{2}$ and $1 \% \mathrm{C}_{6} \mathrm{H}_{6}$ or $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ were employed. In the case of benzene- $\mathrm{SO}_{2}, 27 a$ and c dipole transitions were assigned and are shown in table 1. The second-order Stark cffects and frequency fit (12 kHz rms) confirmed the assignment. The rotational constants for this species and for $\mathrm{C}_{6} \mathrm{D}_{6}-\mathrm{SO}_{2}$ which was fit similarly are given in table 2. There are additional transitions with first-order Stark effects which form series at roughly $(B+C)(J+1)$, somewhat similar but not identical to compounds with a low barrier to internal rotation such as $\mathrm{CH}_{3} \mathrm{NO}_{2}$ [9]; they have not yet been assigned. These transitions and the large A constant of
the complex indicate that we have assigned the transitions in the $m=0$ state (no quantum of internal rotational angular momentum) while the unassigned lines either have $m \neq 0$ (one or more internal quanta) in a low barrier limit or originate from states tunneling through a more appreciable barrier. Because

Fig. 1. Projection of benzene- SO_{2} onto its symmetry plane showing the definitions of $R_{\text {c.m. }} \theta$, and ϕ. The bottom curves indicate the correlated values of θ and ϕ consistent with the rotational constants for $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{SO}_{2}$ and $\mathrm{C}_{6} \mathrm{D}_{6}-\mathrm{SO}_{2}$. Note: $R_{\text {c.m. }}$ is not drawn to scale for fig. 1 or 2 . In both figures, the a inertial axis is nearly parallel to $R_{\text {c.m. }}$, and the c axis lies in the symmetry plane perpendicular to a.

Table 3
Transition frequencies (MHz , unsplit centers) for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}-\mathrm{SO}_{2}$

J	K_{P}^{\prime}	$K_{\text {o }}$	$J^{\prime \prime}$	$K_{P}^{\prime \prime}$	$K_{\text {O }}^{\prime \prime}$	ν (obs)	ν (obs) $-\nu$ (calc)
2	2	0	1	1	0	11255.436	0.0004
2	2	1	1	1	1	11364.386	0.0024
2	2	0	2	1	2	8665.066	-0.0002
2	2	1	2	1	1	8324.868	-0.0056
3	2	2	3	1	2	8157.780	0.0016
3	2	1	2	1	1	12563.145	0.0007
3	2	2	2	1	2	12883.324	-0.0010
3	1	2	2	0	2	7391.416	0.0022
3	2	1	3	1	3	8848.084	0.0008
4	2	3	3	1	3	14457.573	0.0009
4	1	3	3	0	3	9029.609	0.0005
5	1	4	4	0	4	10735.278	-0.0027
5	0	5	4	0	4	6971.721	-0.0013
5	1	5	4	1	4	6742.579	-0.0024
5	1	4	4	1	3	7302.607	-0.0047
5	2	4	4	2	3	7028.468	-0.0018
5	2	3	4	2	2	7094.370	-0.0013
5	3	3	4	3	2	7044.274	-0.0001
5	3	2	4	3	1	7045.576	0.0006
6	0	6	5	0	5	8331.317	0.0049
6	1	6	5	1	5	8082.780	0.0007
6	1	5	5	1	4	8752.864	0.0057
6	2	5	5	2	4	8427.958	0.0010
6	2	4	5	2	3	8541.680	0.0007
6	3	4	5	3	3	8456.685	-0.0020
6	3	3	5	3	2	8460.152	0.0014
7	0	7	6	0	6	9674.379	-0.0044
7	1	7	6	1	6	9418.957	0.0016
7	1	6	6	1	5	10196.910	-0.0005

benzene- SO_{2} has both a and c selection rules the axis of internal rotation is not necessarily a principal inertial axis, although it appears to be approximately aligned with the a axis since the A rotational constant is close to the constant for free SO_{2} perpendicular to its C_{2} axis (8799.65 MHz) [10]. If the B and C constants are assumed to be unperturbed by the internal rotation (and if C_{s} symmetry is preserved and the benzene and SO_{2} structures do not change upon complexation), some structural information can be determined. A model which describes the complex involves three parameters: $R_{\text {c.m. }}$ which joins the centers-of-mass of both partners and two angles, $\theta+90^{\circ}$ and $\phi+90^{\circ}$, which describe the angle that the SO_{2} or benzene planes respectively make with $R_{\text {c.m. }}$ (fig. 1). While $R_{\text {c.m. }}$ can be determined from the B constant (parallel axis theorem), only pairs of
θ and ϕ can be obtained by fitting C. The values consistent with the data are given in fig. 1. The different curves for θ and ϕ for the $\mathrm{C}_{6} \mathrm{H}_{6}$ and $\mathrm{C}_{6} \mathrm{D}_{6}$ complexes are indicative of large amplitude vibrational motions for the van der Waals modes in these weak complexes. While the signs and magnitudes of the angles are ambiguous, the gross configuration of the complex is undoubtedly correct.

The spectrum of pyridine- SO_{2} is also characterized by a and c selection rules. Twenty-nine transitions have been assigned for the normal isotopic species (6 kHz rms) which are given in table 3. Transitions are split by the nuclear quadrupole interaction of ${ }^{14} \mathrm{~N}$ which confirms the assignment. The rotational and quadrupole coupling constants are given in table 2 for the normal species and two other isotopes which were fit similarly. The A constant is

Fig. 2. Projection of pyridine- SO_{2} onto its symmetry plane showing the values of $R_{\text {c.m., }} \theta$, and ϕ consistent with the rotational constants. Either orientation of the SO_{2} fits the data. See also the note in fig. 1 .
normal and no series indicative of a low internal rotation barrier or tunneling have been observed. Values of $R_{\text {c.m. }}, \theta$ and ϕ are given in fig. 2 . The values are the result from fitting the three isotopic species. While two orientations of the SO_{2} are consistent with the data, the L-shaped conformer with $d(\mathrm{~N}-\mathrm{S})=$ 2.61 (3) \AA is similar to $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}-\mathrm{SO}_{2}$ where $d(\mathrm{~N}-$ S) is $2.28(3) \AA$ [5]. However, the second conformation cannot be excluded at the present time. Additional study of these systems will be necessary to provide more detail on the precise structures, vibrational averaging effects, etc.

In the introduction, these dimers were described as $\pi-\pi$ and $\sigma-\pi$ complexes. While these descriptions using HOMO-LUMO language have some pictoral and perhaps predictive effectiveness, a growing body of evidence indicates that electrostatic interactions play a major role in determining the structures of weak complexes [11-15]. For example, studies of

TMA- SO_{2} and $\mathrm{H}_{3} \mathrm{~N}-\mathrm{SO}_{2}$ [5,11], where the amine nitrogen is oriented towards the SO_{2} plane in a fashion similar to pyridine- SO_{2}, indicate that electrostatic interactions can account for its geometry. Thus, it seems likely that an electrostatic model involving the interaction of the electric fields and polarizabilities of benzene, pyridine and SO_{2} can rationalize the different structures. We are exploring this question for the complexes as well as obtaining more precise structures, vibrational averaging effects, barrier information, etc. from the spectroscopic data.

This research was supported by grant CHE8614340 from the National Science Foundation.

References

[1] A.J. Fillery-Travis and A.C. Legon, J. Chem. Phys. 85 (1986) 3180.
[2] A.J. Fillery-Travis and A.C. Legon, Chem. Phys. Letters 123 (1986) 4.
[3] E.J. Goodwin and A.C. Legon, J. Chem. Phys. 85 (1986) 6828.
[4] R.E. Bumgarner, D.J. Pauley and S.G. Kukolich, J. Chem. Phys. 87 (1987) 3749.
[5] M.S. LaBarge, J. Matos, K. W. Hillig II and R.L. Kuczkowski, J. Am. Chem. Soc. 109 (1987) 7222.
[6] R.L. Deleon, A. Yokozeki and J.S. Muenter, J. Chem. Phys. 73 (1980) 2044.
[7] D.D. Nelson, G.T. Fraser and W. Klemperer, J. Chem. Phys. 83 (1985) 945.
[8] K.W. Hillig II, J. Matos, A. Scioly and R.L. Kuczkowski, Chem. Phys. Letters 133 (1987) 359.
[9] W. Gordy and R.L. Cook, Microwave molecular spectra (Wiley, New York, 1984) pp. 607-618;
E. Tannenbaum, R.J. Myers and W.D. Gwinn, J. Chem. Phys. 25 (1956) 42.
[10] F.J. Lovas, I. Phys. Chem. Ref. Data 7 (1978) 1639.
[11] P.A. Kollman, Accounts Chem. Res. 10 (1977) 365; J. Am. Chem. Soc. 99 (1977) 4875.
[12] K. Morokuma, Accounts Chem. Res. 10 (1977) 294.
[13]G.J.B. Hurst, P.W. Fowler, A.J. Stone and A.D. Buckingham, Intern. J. Quantum Chem. 29 (1986) 1223; A.D. Buckingham and P.W. Fowler, Can. J. Chem. 63 (1985) 2018.
[14] C. Dykstra, Accounts Chem. Res. 21 (1988) 355.
[15] U.C. Singh and P.A. Kollman, J. Chem. Phys. 80 (1984) 353.

