
A Synthetic Approach to the Design of
Information-Systems Software

Roberto R. Kampfner
School of Management and Computer and Information Science, University of Michigan-Dearborn

This paper presents an approach to the design of informa-
tion-systems software in which alternative designs can be
created, as necessary, until specified requirements are met
and specific objectives achieved. Thii approach takes
advantage of, and in fact complements. the abstraction
process that characterizes the abstraction-synthesis meth-
odology of information-systems development. A broad
concept of function support, as provided by the information
system, and a design-independent specification of informa-
tion-systems requirements, are basic features of this meth-
odology. The view of design presented here takes advan-
tage of these features by providing the necessary flexibility.
Design itself is viewed as a search on the space of possible
software-system structures until one which satisfies the
requirements of the information system and achieves the
project’s objectives is found. The design space is defined
on four dimensions that correspond to important layers of
information-system software implementation.

1. INTRODUCTION

The abstraction-synthesis methodology of information-
systems development [l-3] aims at the development of
information systems for effective function support. The
first two steps in this four-step methodology: (1)
information needs analysis, and (2) analysis of informa-
tion-system requirements, correspond to the abstraction
part. The synthesis part includes steps (3) software
design, and (4) system testing and implementation.
Underlying this methodology is the view of information
systems as collections of activities and resources aimed
at the support of control and coordination of function in
organizational systems. According to this view, the
information-systems design problem becomes one of
interfacing automated information-processing functions
with organizational activities in a manner as consistent

Address correspondence to Roberto R. Kampfner, School of
Management and Computer and Information Science, University
of Michigan-lkarborn, Lkarborn. MI 48128.

The klumal of systems lwd softwue 10, 3-14 (1989)
0 1989 E&her Scii &bb&dbg Co., Ix.

as possible with the achievement of organizational goals
and objectives. In this paper, we discuss a synthetic
approach to the design of information-systems software.
According to this approach, a number of design altema-
tives are synthesized on the basis of a design-indepen-
dent specification of information-system requirements.
A design satisfying these requirements is then selected
for implementation on the basis of its contribution to the
attainment of specific objectives.

Emphasis on function support is a distinctive feature
of the abstraction-synthesis methodology. Current ap-
proaches to information-systems analysis and design
base the software-design process on requirements deter-
mined with no explicit reference to the support of
specific organizational functions. SADT [4], for exam-
ple, provides tools and techniques for a top-down
analysis of data flows, activities, and their interrelation-
ship in complex systems. However, it does not, explic-
itly, refer to the organizational functions the information
system is intended to support. Structured-analysis tech-
niques [5,6] base the specification of requirements (i.e.,
the structured specification) on a data-flow model of
information processing that identifies the basic compo-
nents of the information-processing system. Again,
these techniques make no explicit reference to specific
functions supported by the information system.

The concern with adequate support of organizational
function is not apparent in current approaches to
software design, either. Structured design [7], for
example, is based on the data-flow model developed in
the structured-analysis phase, and provides evaluation
criteria such as the strength, or cohesion, of modules,
and the looseness of their coupling. However, the lack
of a link between the processes and data flows defined in
the structured specification, and the organizational
functions affected, makes it extremely difficult to
incorporate effectively function-support considerations
at the design stage. Clearly, function-support aspects of

3

0164-1212/89/$3.50

4 R. R. Kampfner

software system must be captured, first, in the require-
ments specification. Since requirements specifications
do not normally allow for an explicit reference to
function support, this aspect is lost in traditional
approaches to the software cycle, such as the phased-
cycle or “waterfall” model [8].

Another irn~~t feature of the abstmction-syn~esis
methodology is the design-inde~ndent character of the
requirements specification it produces. Current ap-
proaches to information-systems development do not
give enough emphasis to design independence. Struc-
tured analysis, for example, includes in the structured
specification a number of design assumptions concem-
ing the user interface, file structures, and features of the
physical implcmen~tion of info~ation-pr~essing
~n~ions .

Our design approach capitalizes on the mentioned
features of the abstraction-synthesis methodology by
providing software designers with the necessary flexibil-
ity. Conceptually, we view the design process as a
search on a space of possible software-system structures.
The goal of this search process is to find a software-
system structure that satisfies the requirements of the
info~tion system and, a~ition~ly, contributes ade-
quately to the aliment of specific design objectives.
Clearly, the design-independent character of the require-
ments specification is essential to our design approach. It
provides the designer with the necessary flexibility.
This, in turn, makes it possible to incorporate high
standards of software quality so that at the same time
function-oriented information-system requirements are
met.

This paper is organized as follows. In Section 2, we
give a brief review of the abstraction part of the
methodology. Section 3 describes the three basic types
of requirements considered. This is followed, in Section
4, by a description of the proposed four-dimensional
software-design space. The view of design as a synthetic
process is characterized, in Section 5, as a search on this
space whose aim is to find points (i.e., software-design
alternatives) associated with hi~-~~o~~ce values.
These values must, of course, reflect the degree to which
it is assessed that the proposed designs fulfill specific
design objectives. A sales and inventory system is
considered in the following sections in order to illus-
trates various aspects of the abstraction-synthesis meth-
odology. The synthetic approach to design is illustrated
in Sections 7 and 8.

2. INFORMATION-NEEDS ANALYSIS

The abstraction-synthesis methodology is discussed in
detail elsewhere [2, 31. Here, I shall only review its
essential concepts. The first step, information-needs

analysis, deals essentially with the identification of
objects in the organizational system, which are relevant
to the information-function relationship. The view of the
information system as a collection of activities and
resources aimed at providing information for function
support in adaptive, dynamic systems, is central to the
abstraction-syn~esis metrology. The use of models
that facilitate the analysis and specification of organiza-
tional features relevant to the information-function
relationship is therefore correspondingly important. The
organizational control-systems model (OCSM), for ex-
ample, is a model of hierarchical control that can be used
to represent adaptive-control structures in an important
class of goal-oriented, organizational systems [3]. This
model can be used in information-n~s analysis,
especially in co~~tion with the support of plying and
control functions in the organization. Other conceptual
models are also possible, depending on the type of
function to be supported by the information system. In
fact, hierarchies of conceptual models of specialized
subsystems of the organization are often required in
order to describe appropriately the network of control
and co~unication processes underlying function sup-
port in complex org~~ation~ systems. According to
the OCSM, the objects identified include goals to be
achieved by some part of the organization, functions
required for the achievement of such goals, organiza-
tional units that realize these functions, and information
flows that intercommunicate these units. In the sales and
inventory system, for example, the information system
supports operational, planning, and control functions in
a typical manufacturing organization. These include
org~ization~ functions such as those related to finance,
production, personnel, and marketing. The main out-
come of the information-needs analysis step is the
information-needs specification. Representative results
obtained as part of this specification are shown in Figure
1, which depicts informational interactions between the
order processing and inventory units. These units
perform specific organizational functions within the
sales and inventory system. The control units that
monitor the ~~o~~ce of these operational units are
also shown in Figure 1. The information flows described
in the information-needs specification are required in
order for the organizational units concerned to perform
their functions adequately. It is in this sense that they
represent information needs for the support of organiza-
tional function. The information-function relationship is
further determined by the place occupied by each
organizational unit in the functional and control hierar-
chies defined by the OCSM.

Semantic models have been increasingly recognized
as an effective means of expressing complex objects and
their relationships for the purposes of conceptual schema

A Synthetic Approach to Design 5

Higher-level
Control

/

Sales c-2 Control
Unit

Higher-level
Control

4

I I

Production
Control 0 Unit

Deliveries
Cust. Info.

I I

Orders/ ,Rei.

design [9]. An extension of semantic models, aimed at
capturing broader aspects of human-oriented models of a
world, is referred to as conceptual modeling. The
TAXIS project [lo], for example, proposes a methodol-
ogy for building conceptual models based on generaliza-
tion/specialization techniques.

The abstraction-synthesis methodology also involves
the use of conceptual models of organizational activity
and function, such as the OCSM, as the basis for the
determination of information needs. In the abstraction-
synthesis approach, however, the information provided
by the conceptual model is not immediately translated
into a conceptual schema representation of some kind.
Rather, it is used to develop a design-independent
specification of information-system requirements. The
idea is that it is at the design stage, and based on this
kind of specification, where the data base structure of
the whole system should be determined, and the required
conceptual schemata or file structures defined.

3. THREE TYPES OF INFORMATION-
SYSTEM REQUIREMENTS

As mentioned above, the information-needs analysis
step deals with the determination of the information
flows necessary to control and coordinate the organiza-
tional units realizing the various organizational fimc-
tions. In the second step, analysis of information-
system requirements, the information-processing
structure required to sustain appropriately these flows is
determined, together with its performance and interface
requirements. Recall that these requirements address
broad aspects of organizational function support. Thus,

Figure 1. Informational-interactions diagram for the sales and
inventory system. Horizontal arrows represent information
flows due to operational interactions. Vertical arrows repre-
sent control information between operational and control units.

not only the algorithmic description of the information-
processing functions to be incorporated in the software
system is important, but also the role they play in the
support of the organization’s functional and control
structures, their throughput and performance require-
ments, and the modes of interaction required for the user
interface.

In order to capture these vital aspects of function
support, the abstraction-synthesis methodology incorpo-
rates the specification of iogica,, quantitative, and
user-interface requirements. Each of these types of
requirements conveys an important aspect of informa-
tion needs, as explained below.

Logical requirements defined the algorithmic struc-
ture of the computational models to be incorporated in
the software system. They represent invariant, design-
independent properties of these models and lend them-
selves to formal specification. The LIPS/LIPN model
[2], for example, is a formalism that describes structural
and dynamical features of the information-processing
structure required to satisfy an organization’s informa-
tion needs. The LIPS model allows for the representa-
tion of logical requirements as a structure.

P=(X, z, u, 7) (1)

of sets and relations. Here, X = {Xi} is the set of
information items representing objects of the organiza-
tional system that are relevant to the information system.

6

Z = {pj} is the set of information-processing functions
(or IPFs) that transform these information items. 7 =
{ fm } is a set of triggers, or necessary conditions for the
activation of specific information-processing functions
pj E Z. (J = (q, 00, up, uH, 0~) is a set of relations that
define the logical structure of the information system.
The input relation aI E X x Z associates information
items Xi E X with information-processing functions pj
E Z to which they serve as inputs. The output relation
a0 E X x Z is defined similarly for information items
output from an IPF pj. The precedence relation up C Z
x Z defines an IPF as preceding another if at least one
of the outputs of the former is an input to the latter. The
hierarchy relation +., C Z X Z relates an IPF to a larger
one including it as a subprocedure. Finally, UT G 7 X
Z, the trigger relation associates IPFs with triggers,
which represent necessary conditions for their activa-
tion. The LIPS specification provides also a formal basis
for the verification of the validity of proposed designs.

Quantitative requirements represent performance
targets imposed on the information-processing structure
defined by the logical requirements, such as throughput
and response times required at various points of the user
interface. Requirements such as volume/time patterns of

Figure 2. Some logical requirements of an information
system. The information-processing functions shown support
sales and inventory control operations. Both graphical and
formal representations are shown.

t1
Cust. Orders ,u

R. R. Kampfner

information usage and spatial distribution of informa-
tion-system users fall into this class.

User-interface requirements describe yet another
essential aspect of information needs. The required or
acceptable modes of interaction between automated
information-processing functions and the information
system’s users. Clearly, these three types of require-
ments must be specified in a closely interrelated manner.
This is important for the adequate verification and
evaluation of each of the design alternatives synthesized.

Let us consider some information-system require-
ments for the sales and inventory system. Typical
logical requirements of a portion of this system are
shown schematically in Figure 2. Corresponding quan-
titative and user-interface requirements can be stated at
a very broad, general level, as follows:

1. Concerning customer orders: It is important to
minimize the time required to process customer
orders. This process includes the editing, verifica-
tion, and actual fulfillment of customer orders.

2. Inventory transactions are of two kinds: (a) Queries
concerning the availability of products ordered must
be responded to promptly, so that a good estimate of
the data of delivery can be given to the customer, at
the time an order is placed. (b) Updates to inventory
records concerning receipts and deliveries of specific
items must be performed at the end of the day they
occur, the latest.

Old

I Orders

I
I

Rejected
.Orders I

\
\

Invoikes

Deliveries

Some corresponding entries in the LIPS specification are:

<Cust. Orders,VOQ> c uI, <O.K.Orders,VOQ> l o.

<VOQ, CCI> c up, <t2 I UIR> e oT

WOQ, PO> c oH

A Synthetic Approach to Design

Table 1. Some Quantitative Requirements in tbe Saks and
Inventory System

Branch

Transactions during
peak period

Total Total
Customer Inventory orders number of
ordm transactions Total per day customers

Cleveland, OH 472 712 1184 1416 11,900
Pittsburgh, PA 448 701 1155 1344 11,560
Akron, OH 171 295 466 523 4700
Buffalo, NY 300 702 1002 900 10,010
Cincinnati, OH 329 6.50 979 987 9820
St. Louis, MO 329 652 981 987 9820
Louisville, KY 356 401 157 1068 7580

Total 2405 4119 6524 7215 65,390
__.-_____-

Some additional quantitative requirements are de-
scribed in Table 1. Considerably more detail is, of
course, normally included in a complete specification of
information-system requirements. For brevity, how-
ever, we are only including in our discussion what we
think of as most relevant to the design operations
considered

4. THE DESIGN SPACE OF INFORMATION-
SYSTEMS SOFI-WARE

By the structure of a software system we mean a specific
pattern of arrangement of its parts, such as higher-level
functional components, programs, and modules. As
mentioned above, we consider four dimensions for the
representation of software-system structures: (1) appli-
cations, (2) applications support, (3) systems soft-
ware, and (4) hardware/~rmware.

The applications dimension is that part of the software
system that directly incorporates the information-proc-
essing structure defined by the logical requirements.
Options on the ~pli~ons dimension can be conven-
iently described at three levels as follows:

1.

2.

3.

System architecture. This level describes highly
aggregated fnnctional corn~~n~ of the software
system and their interrelationships.
Program structure. Computer programs are the
basic units considered at this level, which describes
the modular structure of each program, the unction
performed by each module, and the communication
interfaces between modules.
Module structure. This level describes the structure
of each individ~ module considered in a given
design alternative.

Each of these levels describes the same system,
although with a different emphasis. Consequently,
consistency between levels becomes an important aspect
of this description.

7

At the system-architecture level, a plausible option for
the sales and inventory system would consist of an
order-processing component incorporating IPFs VOQ
and CCI, and an inventory-control component incorpo-
rating VIR and PPO (see Figure 2). At this level, each
component is described in terms of the computer
programs it contains and their interfaces. The function
of each program must also be indicated at this level, in
terms of the IPFs it contains. At the program-structure
level, each program is described in terms of the modules
it contains, and the interfaces between modules. Each of
these modules is then described at the module-structure
level, in terms of the procedure it incorporates, and any
other information concerning the implementation of the
info~ation-pr~essing functions inco~ra~ in the
module. Thus, an option on the applications dimension
corresponds essentially to an assignment of information-
processing functions, at various levels of aggregation, to
corresponding levels of software-system description.

To each option on the applications dimension corres-
ponds a number of possible options on the applications-
support dimension compatible with it. Points on the
applications-support dimension represent resources pro-
vided by the system that are not application specific,
such as programming language processors, data base
m~agement systems, application packages, utility pro-
grams, etc. More specifically, a point on this dimension
consists of a combination of application-support re-
sources that are compatible with some specific point on
the applications dimension. In the sales and inventory
system, for example, each one of the order-processing
and inventory-control components may be assigned a set
of conventional file structures, or a specific kind of data
base system. The latter may be centralized, or decentral-
ized, to varying degrees. Specific choices must also be
made for programming and query languages and other
application-super resources.

For each combination of compatible options on the
applications and applications-support dimensions, a
number of choices on the systems-software dimension
compatible with them is nosily available. These
choices consist of combination of operating-system
services and resources. These include specific types of
operating-system functions, including those necessary to
support interprocess compilation, computer net-
works control, distributed processing, and data base
management functions.

Hardware resources compatible with corresponding
options on the other dimensions must also be defined for
each softwaredesign alternative. Points on the hardware
dimension correspond to possible hardware configura-
tions. Choices on this dimension include computer
systems, data communications and network equipment,
and data base processors, if any.

8 R. R. Kampfner

Applications
Dimension

Applications Support
Dimension

System
Architecture

Program
Structure

Module
Structure

Hardware/Firmware
Dimension

Figure 3. Schematic representation of the design space of
information-systems software. A proposed design, Dr say, can
be represented as a point in this space by specifying its
attributes on each of the four dimensions indicated in the
figure. On the applications dimension, design attributes are
suggested at the levels of system architecture, program
structure, and module structure.

A specific so~w~-system alternative is thus defined
by four sets of attributes, each corresponding to a
specific design dimension. Figure 3 shows schematically
the four-dimensional design space we are proposing for
the representation of software-system structures. Each
choice on each dimension is unique in the sense that no
two points in a given dimension may have the same sets
of attributes. For simplicity, it is convenient to consider,
as points in the four-dimensional space, only those
combinations of options that correspond to plausible
design alternatives. An incompatible combination of
hardware and systems software, for example, would not
contribute to any plausible design.

5. DESIGN AS A SYNTHETIC PROCESS

The four-dimensional design space defined in the pre-
vious section alfows for the represen~tion of software-
system structures in terms of four sets of relevant

attributes, one for each dimension. This kind of repre-
sentation facilitates the analysis of the effect of the
interde~ndencies and inte~elationships existing be-
tween these dimensions on the topology of the design
space. This topology is, in fact, determined by computer
and software technology, as well as technical and
economic factors. Conceptually, the evaluation of each
design alternative assigns to the corresponding point in
the design space a performance value that reflects its
contribution to the attainment of system requirements
and design objectives.

The process of synthesizing and evaluating software
design and implementation alternatives (shown schemat-
ically in Figure 4) consists of the following steps:

Synthesis. Software-design alternatives are first de-
fined on the applications dimension. This consists of
the allocation of information-processing functions
defined in the LIPS to modules, programs, and high-
level timctional components of the software system.
The consistency of each alternative with the logical
requirements of the information system must be
verified at this step. Valid design alternatives, i.e.,
those passing this test, are then the subject of more
detailed considerations concerning their possible
design and ~plemen~tion features.
~vafua~io~. This is done with respect to quantitative

A Synthetic Approach to Design 9

Figure 4. Schematic view of design as a syn-
thetic process. In the synthesis step, proposed
designs are synthesized by assigning information-
processing functions defined in the logical re-
quirements specification to high-level functional
components, programs, and modules. Valid de-
signs are those preserving the logical require-
ments of the information system, that is, the
relations specified in the LIPS specification.
Acceptuble designs are valid ones that also meet
quantitative and user-interface requirements. A
design may be further selected for implementa-
tion if it gives adequate trade-offs between
specified objectives.

Logical Quantitative User Interface
, “errem; “erarents m iirments

Synthesis

Y

3

and user-interface requirements. Valid design alter-
natives can be implemented in different ways. To
each option considered on the applications dimension
may correspond a number of alternatives, each
corresponding to a combination of compatible
choices on the other three dimensions. Each of these
alternatives must be evaluated with respect to the
quantitative and user-interface requirements of the
information system. Those satisfying these require-
ments are referred to as acceptable alternatives.
Selection. The design selected for construction and
implementation must, clearly, be a valid and accept-
able one. There are, however, many other factors
that may influence this selection process. Several
objectives are normally pursued in any design pro-
ject, such as cost and time constraints to be met,
reliability and efftciency targets, increased main-
tainability, etc. The design selected for construction
and implementation must yield adequate trade-offs
between the objectives pursued in a particular pro-
ject.

The verification of the validity of a proposed design,
that is, its consistency with the information system’s
logical requirements, aims at ensuring that the software
system incorporates the information-processing struc-
ture required to support the organization’s information
needs. More precisely, this would require that the
information-processing functions needed for the support
of organizational functions be incorporated in the
appropriate parts of the software system, and that the
appropriate information flows be made available through

the user interface. The validity of a software-design
alternative implies that there is a mapping from the set of
IPFs into the set of software-system components realiz-
ing them, which preserves the relations defined in the
LIPS.

Valid design alternatives, that is, those which pre-
serve the relations specified in the LIPS, must also be
evaluated with respect to quantitative and user-interface
requirements. This evaluation necessarily involves the
consideration of design and implementation options
concerning the other dimensions of the design space.
The LIPN model is a helpful conceptual tool for this
evaluation, since it models the dynamics of the informa-
tion-processing structure defined by the LIPS. Formally,
a LIPN, M is a structure

M=(QM, P, ?,A/) (2)

in which QM is the set of global states, 7 is the set of
triggers, P is a LIPS, as defined above, and 6, is the local
transition function.

The global transition function, which is in fact a
parallel map, is defined in a cell-space-like fashion. The
globalstate@ E QM C {qi}“, i = 1, 2, ***, n, where
qi is the state Of pi E Z, is determined by the collection
of local states qi E { S, W, A, C, I } , which represent
distinguishable states of the process associated with IPF
pi. An informal description of these states is as follows.

S, the initial state. All of the processes associated
with IPFs included in a LIPN, M, are initially in state S.

I, the inactive state. A process pi is in state I when no
computation associated with it is being performed, and it

10 R. R. Kampfner

is not affecting the state of other processes in the
network. pi enters state I, after it leaves its completed
state C.

W, the waiting state. A process pi is in state W if at
least one pi that immediately precedes it, and is in its
active state A, has not entered the completed state C.

A, the active state. A process pi is in state A if a
computation associated with it is being performed. It
define the information-processing structure to be auto-
mated. Therefore, they constitute the basis of the
synthesis process, that is, as mentioned above, all
alternatives considered for evaluation must be consistent
with these requirements. On the applications dimension,
software-design alternatives differ in the way the infor-
mation-processing functions specified in the logical
requirements are assigned to high-level components of
the software system, computer programs, and modules.
We consider three main levels of description. The
system-architecture level describes the software system
in terms of the programs each high-level functional
component includes, and the interfaces between pro-
grams. The program-structure level describes each
program as a hierarchy of modules, each performing a
well-defined function, and their communication inter-
faces. The detailed structure of each module is then
described at the module-structure level.

Many techniques have been proposed, and used, to
help define the structure of software-system components
and evaluate their quality. Structured design [7], for
example, uses transform analysis and transaction analy-
sis as the main techniques for the derivation of a
program structure consistent with a given program
specification. The concept of abstractions has also been
used in the process of specifying a user model that would
satisfy a set of requirements [l 11. Such a user model
includes the concepts the user has to know to use the
system, commands available to the user, and the
interactions with external subsystems. An implemen-
tor’s model, that can bc ultimately translated into code
that specifies the program behavior, is then constructed.
Yet another approach concerns modular and object-
oriented methodologies of software engineering, in
which specific programming-language constructs and
definitions are derived from the requirements specifica-
tion [121. Modular and object-oriented design [12, 131
allows the designer to create abstract data types and
functional abstractions into which to map relevant
aspects of the real-world domain. The Ada package with
its private types, and the Modula-2 module with its
opaque types, are programming-language features that
help the designer by allowing for the complete separa-
tion between the specification and implementation of
modules, thus facilitating modular and object-oriented
design.

As mentioned above, all attributes pertaining to the
applications dimension must be consistent with the
logical requirements. Modules, programs, and higher-
level components of the software system incorporate
IPFs at corresponding levels of aggregation. Consist-
ency of a given design alternative with the correspond-
ing logical requirements implies that the relations
included in the LIPS are preserved through the assign-
ment of IPFs to software-system components at the
various levels.

Let us assume, for example, that the sales and
inventory system a sales office has been established at
enters this state from state W if all of its triggers are on,
and all of the processes associated with IPFs that
immediately precede it have entered state C.

C, the completed state. Process pi is in state C if the
computation it performs has been completed. It remains
in this state until all of the processes associated with the
IPFs it immediately precedes enter state A. The transi-
tion from state A to state C is the only state transition
locally determined.

The local transition function 6, specifies the global
transition function & as follows:

.
Q! =S/(qi, N, C) (3)

Briefly, JZq. (3) asserts that 6,(G) is the configuration
obtained from 6 by applying the local transition function
6, to each pi E Z, with neighborhood relation Ni, and
trigger-set T (for details, see Ref. 2).

The LIPN model describes the time evolution of the
state of an information-processing structure. As such, it
constitutes a basis on which the performance of pro-
posed designs of the software system can be assessed for
various possible sequences of activation of IPFs.
Throughput and response-time characteristics of specific
designs can then be assessed as to their ability to meet
the information system’s quantitative and user-interface
requirements.

A valid and acceptable design can be considered for
construction and implementation. In fact, several pro-
posed designs can be found acceptable in the sense
defined above. The selection step allows the designer to
choose one that favors specified objectives. In the case
of conflictive objectives, adequate trade-offs must be
obtained by the design selected for construction and
implementation.

An important concern in our approach is flexibility of
design. The idea is that the software designer must be
able to synthesize and evaluate a sufficient number of
alternatives, so that adequate trade-offs between design
options can be obtained, in order to achieve specific
design objectives. A design-independent specification of

A Synthetic Approach to Design

Buffalo, NY

Akron, OH /

Saint Louis, MO

Lesend:

0 Customer Order Processing --.---- Communication
-_____ Lines

ci3 Inventory Control Processing

Other Inf. Processing Functions

r~~rernen~ is clearly an important pre~quisite for this
flexibility and, therefore, essential to our view of
software design.

6. SYNTHESIS AND EVALUATION OF
DESIGN ALTERNATIVES

In this section, I shall illustrate the synthetic view of
design by looking at typical options the designer faces at
each step of the process. I shall also characterize some of
the interdependencies that exist between options on the
various dimensions.

6.1 Synthesis of Design ~ernatives

The logical requirements of the info~tion system
each branch (see Table I), corporate offices are located
in Cincinnati, and inventory-control centers operate in
suburb and Cincinnati. Some aspects of a possible
&sign option at the system-architecture level are shown
in Figure 5. Assume, further, that IPFs are assigned to
~~-level com~nen~, and programs as indicated in
Figure 6. This assignment clearly preserves the hierar-
chy r&ion q+ The definition Of the interfaces Of the
various modules must, of course, satisfy relations q, uo,
as implied by Figure 2. Precedence and trigger relations
must also be preserved.

Figure 5. Some aspects of a design alternative. The diagram
shows the allocation of information-processing functions to
unctions components (order processing and inventory con-
trol) of the software system, and the resulting geographical
distribution. More detailed options an the four dimensions of
the design space further specify the proposed design.

Features defined on the applications dimension, how-
ever, are ultimately implemented through related options
on the other dimensions. For this reason, the acceptabil-
ity of a given design will depend to a great extent on the
choices made at these other dimensions.

It is important to notice, here, that decisions on a
given dimension are always likely to affect those
concerning any other dimension. Decisions concerning
network topology and degree of distribution, for exam-
ple, have usually a strong impact on the type of
hardware required for the implementation of such
features. Similarly, the resources provided by the
appli~tions-super dimension, which include program-
ming languages, data base management systems
(DBMS), program libraries, utility programs, applica-
tion packages, etc., are constr~n~ to a great extent by
choices made at the hardware/firmware and the systems-
software dimensions. Instances of the relationship be-
hveen the applications and the application-super
dimensions include constraints imposed on the type of
representation of objects and programming-language

12

SYSTEM
ARCHITECTURE

PROGRAM
STRUCTURE

u I I-

constructs used in the specification of the underlying
processes. We can also mention the DBMS, file struc-
tures and access methods, and I/O capabilities supported
by the installation as aspects of the hardware, systems
software, and applications-support dimensions that di-
rectly influence the program-structure level of the
applications dimension. Some features of program struc-
tures, for instance, depend on capabilities of the sys-
tems-software dimension, such as support of concur-
rency and distributed processing, and the inter-
process-communication capabilities allowed by the oper-
ating system. Clearly, the interdependence between
design options on the various dimensions is made more
explicit with this kind of representation. This, of course,
makes the analysis of trade-offs between design options
easier.

6.2 Evaluation and Selection of Design Alternatives

Valid alternatives must also satisfy quantitative and user-
interface requirements in order to be considered candi-
dates for implementation. For the sales and inventory
system this means, for example, that customer orders
must be verified and that the corresponding deliveries
must be scheduled at the time they are placed. In
addition to this, each sales branch must be able to handle

the required volumes, and the specified user-interface
requirements must be satisfied.

Throughput and response times can, in this case, be
estimated for various combinations of line speed and
processor capacities (for details of the calculations, see,
for example, Ref. 14). These results can then be
evaluated on the basis of the estimated frequency of
generation of transactions at each location, and the
corresponding response-time requirements.

Once a set of acceptable design alternatives has been
defined and represented in the design space, a particular
one can be selected for construction and implementation
on the basis of specified objectives. This selection
process must consider relevant trade-offs associated with
each acceptable design. For example, a given alternative
may show a greater degree of reliability in the communi-

1 PPO

R. R. Kampfner

Figure 6. Aspects of an option on the applica-
tions dimension. The hierarchy chart shows a
particular assignment of lFFs to computer
programs and high-level components of the
software system. Order processing and inven-
tory control are high-level components shown
at the system-architecture level. At the pro-
gram-structure level, the figure shows lFFs
VOQ, CCI, UIR, and PPO, each assigned to
individual programs.

cations component of the system at the expense of
greater communications overhead. Another possible
trade-off might involve a reduction of the communica-
tion load and a more efficient processing of customer
orders by partitioning the customer-orders and cus-
tomer-information parts of the data base by the sales
branch. This partition could be done, for example, on
the assumption that many customers normally operate on
a single branch. Queries involving customers operating
on various branches, and changes of the pattern of
allocation of customers to branch represent, in this case,
situations in which such a design decision might not be
the best choice. The evaluation of performance aspects
of software-system alternatives, and the evaluation of
trade-offs between options, may become a highly
specialized and, in some cases, very complex process.
Nevertheless, the approach to design discussed here,
based on a design-independent, formal specification of
requirements, and enjoying the flexibility given by
design independence in conjunction with this kind of
representation is, in our opinion, an important step in the
development of information systems tuned for the
effective support of specific organizations.

7. REPRESENTATION OF SOFTWARE-
SYSTEM STRUCTURES

Each of the alternative versions of the software system
considered in the design step must be properly evaluated
and their associated trade-offs analyzed. To facilitate
this evaluation, relevant features of each alternative
must be recorded and described conveniently. The basic
idea is to record the design options characterizing each
proposed version of the software system. The simplest
form involves the use of a table in which rows
correspond to specific design decisions, while columns
correspond to dimensions of the design space. Thus,
each row describes some aspects of a design alternative
in terms of the options characterizing it on each
dimension. Table 2 indicates possible design options for
the sales and inventory system. The options so recorded
must also be described in detail in a manner that

A Synthetic Approach to Design

Table 2. Sample Design Decisions for the Sales and
Inventory System

Design Alternatives
(options on each design dimension)

Design Applications Systems
option Applications support software Hardware

1 (See VOQ and CC1 SNA (VTAM) 3270~type
Figure 6) performed CICS/VS CRT

centrally;
data entered

at each
branch.
COBOL

PL/I

Customer DB OWVMS IBM 370
in Cincinnati. SNA (VTAM)

IMS/DB CICS/VS

UIR and PPO OS/VMS IBM 370
performed at SNA (VTAM)

inventory centers. CICSlVS
IMWDB

2 (See VOQ and CC1 DOS IBM PC
Figure 6) performed at SNA (VTAM)

each branch; CICS/VS
local

customer
data base.
COBOL

PL/I.

Mainframe OSIVMS IBM 370
in SNA (VTAM)

Cincinnati CICS/VS

UIR and PPO OWVMS IBM 370
performed at SNA(VTAM)

inventory centers; CICS/VS
inventory

DB at centers.

facilitates their analysis and the evaluation of the trade-
offs each offers with respect to specific objectives.
There are, of course, many forms in which specific
design aspects can be described. In a particular context,
however, a particular form of representation may be
more useful than others. Although structured charts, for
example, convey conveniently the modular structure of a
program, some forms of Petri nets are sometimes used
for the description of interactive aspects of the user
interface (see, for example, Ref. 15). In some cases,
prototypes are built in order to facilitate the description
and evaluation of design features which, otherwise, are
difficult to represent and convey [16, 171.

8. SUMMARY AND CONCLUSIONS

A synthetic approach to the design of information-
systems software is presented in which the design
process is viewed as a search on the space of possible

13

structures. The abstraction-synthesis methodology of
information-systems development facilitates this syntbe-
sis through the identification of basic components of
information needs and information-system requirements
in the abstraction phase. Design is viewed as a process in
which alternative versions of the software system are
synthesized from components drawn from combinations
of compatible options in a four-dimensional space of
software-system structures. These are the applications,
applications-support, systems-software, and hardware/
firmware dimensions, which constitute a design space in
which design alternatives can be represented and ana-
lyzed. This view of design takes advantage of a design-
independent specification of logical, quantitative, and
user-interface requirements of information systems
obtained in connection with the abstraction-synthesis
methodology. First, logical requirements, defined in
terms of the LIPS/LIPN formalism [2], are used for the
verification of the validity of software-system compo-
nents generated on the applications dimension. Valid
designs are then evaluated as to their acceptability, that
is, their ability to satisfy quantitative and user-interface
requirements. An acceptable design that adequately
satisfies specified design objectives is then selected for
construction and implementation. It is suggested that the
consideration of this space facilitates the analysis of
interdependencies between design options and, conse-
quently, the evaluation of complex trade-offs between
design alternatives. The synthetic approach to the design
of information-systems software discussed here de-
pends, for its success, on an enhanced flexibility of
software design. To achieve this flexibility, the design-
independent specification of information-system re-
quirements is of critical importance.

REFERENCES

1.

2.

3.

4.

5.

R. Kampfner, A systems-oriented framework for the
analysis and design of information systems, in The
Relation Between Major World Problems and Systems
Thinking, Vol. II, (G. E. Lasker, ed.), Intersystems,
Seaside, California, 1983, pp. 707-713.
R. Kampfner, Formal Specification of Inforrnation-Sys-
terns Requirements, Information Processing and Man-
agement 21(S), 401-414 (1985).
R. Kampfner, A Hierarchical Model of Organizational
Control for the Analysis of Information-Systems Require-
ments, TR CSC-86401, Department of Computer Sci-
ence, Wayne State Univ., 1986.
D. T. Ross, Structured Analysis (SA): A Language for
Communicating Ideas, IEEE Trans. Software Eng. SE-
3(l), 16-34 (1977).
T. De Marco, Structured Analysis and System Specifi-
cation, Prentice-Hall, Englewood Cliffs, New Jersey,
1979, pp.

6. C. Gane and T. Sarson, Structured Systems Analysis:

14 R. R. Katnpfner

Tools and Techniques, Prentice-Hall, Englewood Cliffs,
New Jersey, 1979, pp.

7. W. Stevens, G. Myers, and L. Constantine, Structured
Design, IBM Syst. J. 13(2), 115-139 (1974).

8. R. E. Fairley, Software Engineering Concepts, Mc-
Graw-Hill, New York, 1985, pp.

9. M. Brodie, On the development of data models, in On
Conceptual Modelling, No. 2 (M. Brodie, J. Mylo-
poulos, and J. Schmidt, eds.), Springer-Verlag, New
York, 1984.

10. J. Mylopoulos, P. A. Bernstein, and H. T. K. Wong, A
Language Facility for Designing Interactive Data Base
Intensive Applications, ACM Trans. Data Base Syst.
5(2), 185-207 (1980).

11. V. Berzins, M. Gray, and D. Naumann, Abstraction-
Based Software Development, Commun. ACM 29(5),
402415 (1986).

12. R. Wiener and R. Sincovec, Software Engineering with

Modula-2 and ADA, John Wiley and Sons, New York,
1984, pp.

13. G. Booth, Software Engineering with ADA, Benjamin/
Cummins, New York, 1983, pp.

14. U. Black, Data Communications, Networks, and Dis-
tributed Processing, Reston Publishing Company, Inc.,
Reston, Virginia, 1983, pp.

15. A. Borgida, J. Mylopoulos, and H. K. T. Wong,
Generalization/specialization as a basis for software speci-
fication, In On Conceptual Modelling, (M. Brodie, J.
Mylopoulos, and J. Schmidt eds.), Springer-Verlag, New
York, 1984.

16. ACM SIGSOFT, Rapid Prototyping Workshop, April
1982, published as ACM Software Eng. News, 17(5),
Dec. 1982.

17. R. E. A. Mason and T. T. Carey, Prototyping interactive
information systems, Commun. ACM 26(5), 347-354
(1983).

