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We examine two measures of monthly manufacturing production. The first is the index of 
industrial production; the second is constructed from the accounting identity that output equals 
sales plus the change in inventories. We show that the means, variances, and serial correlation 
coefficients of the log growth rates differ substantially between the two series, and the cross-corre- 
lations are in most cases less than 0.4. A model of classical measurement error indicates that in 15 
of 20 two-digit industries measurement error accounts for over 35% of the variation in the 
monthly growth rates of seasonally adjusted industrial production. 

1. Introduction 

In this paper we examine two measures of monthly production that have 
been used by economists. The first measure, which we refer to as IP, is the 
index of industrial production constructed by the Board of Governors of 
the Federal Reserve. This measure is used extensively in empirical work on the 
business cycle, as well as by policymakers and others to assess the current state 
of the economy. The second measure, which we refer to as Y4, is constructed 
from the accounting identity that output equals sales plus the change in 
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inventories. Sales and inventory data are reported by the Department of 
Commerce. This measure of output is frequently used to estimate models of 
inventory accumulation. Theoretically, these two series measure the same 
underlying economic variable ~ the production of goods by manufacturing 
firms during the month. 

We show here that the time series properties of these two series are radically 
different. We examine means. variances. and serial correlation coeficients of 
the log growth rates and show that these statistics differ substantially between 

the two series. Generally, IP is a less volatile and more persistent series than 
Y4. In addition. the cross-correlations between the two seasonally adjusted 
series range from 0.6 to 0.0 and are in most cases less than 0.4.’ We then 
demonstrate the significance of these differences in two ways. First, we show 
that the variance bounds results of Blinder’s (1986) study of inventory behav- 
ior are partially reversed when the IP rather than the Y4 output measure is 
used. Second, we examine two specific models of the measurement error in the 
series. The estimates under one of them (classical measurement error) indicate 
that in 15 out of 20 two-digit industries measurement error accounts for over 
35% of the variation in the monthly growth rates of seasonally adjusted 
industrial production data. 

These results are important for all those who use the IP or Y4 data. This 
includes researchers on inventories. since some studies use the IP measure 
while others use the Y4 measure.’ More generally. many studies of the 
business cycle employ ZP as a measure of economic activity. Our results 
supplement the work of Lichtenberg and Griliches (1989) who show that 
substantial measurement error exists in industry level price indexes. 

The remainder of the paper is organized as follows. Section 2 describes how 
the two data series are constructed. Section 3 presents summary statistics that 
demonstrate the differences between the two series, and section 4 gives an 
example of the economic significance of the discrepancies. In section 5 we 
model the measurement error and estimate its importance under alternative 
sets of assumptions. Section 6 concludes the paper. 

2. Data construction 

In this section we describe how the data released by the relevant govern- 
ment agencies are constructed and how we use these data to construct Y4. 

‘The correlations between the growth rates of the raw seasonally unadjusted series are aluays 
higher. ranging from 0.4 to 0.9. 

‘Blinder (1986) and West (1986) use the Y4 measure, while Maccini and Rossana (19X4) and 
Reagan and Sheehan (1985) use the IP measure. Miron and Zeldes (1988b) report two sets of 
results: one using IP and the other using Y4. West points out in his footnote 13 that he estimated 
his equations for a few of the industries using the IP measure as well. He found that the 
parameters were uniformly nonsensical and therefore did not report them. 
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2.1. Construction of IP 

The Federal Reserve Board’s (FRB) index of industrial production is 
available monthly, both seasonally adjusted (SA) and seasonally unadjusted 
(NSA), at the two-digit level, from 1959 to the present. The two-digit series 
and the more aggregated series are constructed from disaggregated data using 
value-added weights. 

The disaggregated IP indexes are constructed from three types of data: 
physical product measures, kilowatt-hours of electrical power input, and 
man-hours of labor input. Each of these is collected at either the establishment 
(plant) level or at the more specific product level. The input measures are used 
in cases where the physical product numbers are not available or would not 
make sense because of heterogeneity in the product. For the physical product 
measures, the FRB uses series from the Department of Energy, the Bureau of 
the Census, and other public and private sources. Most of these are counts of 
output goods, although occasionally (e.g., steel) they are constructed as the 
sum of sales and inventory changes.3 For the kilowatt-hour data, the FRB asks 
utility companies their sales of kilowatt-hours of electric power to firms in 
manufacturing. 4. 5*6 For the man-hours series, the Bureau of Labor Statistics 
provides data from its payroll reports. ’ Virtually all of the three- or four-digit 
level series used to construct the two-digit level series are based on only one of 
these sources (i.e., not on a combination of these sources). 

Table 1 gives the fraction of output in each industry that is based on 
physical product data, electricity use, and labor use respectively.’ Some 
industries are based almost entirely on electricity use (e.g., furniture), while 
others are based predominantly on man-hour use (e.g., apparel). Overall, the 
series that are based solely on kilowatt-hours represent 35% of the output 
covered by the industrial production manufacturing index, and those based 
solely on production-worker-hours represent 29%. Only about one third of the 
industrial production index for manufacturing is actually calculated directly 
from data on physical units of output. 

3The physical product numbers are divided by the number of working days in the reporting 
period in order to put each series on a per-working-day basis. 

‘Unfortunately, the reports do not measure electricity use on a calendar month basis, because 
billing dates fall throughout the month and thus cover different month-long periods for different 
customers [Federal Reserve Board (1986, p. 42)]. 

‘Monthly movements in the data are reviewed to eliminate ‘abrupt movements that cannot be 
accounted for by such developments as work stoppages, power shortages, or cyclical movements’ 
and are presumed due to inappropriate reports [Federal Reserve Board (1986, p. 42)]. 

6The FRB also asks ‘self-generators’ of electricity in the manufacturing industry to report 
power used in manufacturing. 

‘Only one week of data (the week containing the 12th day of the month) is used to estimate the 
monthly labor input [Federal Reserve Board (1986, p. 42)]. 

*These fractions were aggregated, using value-added weights, from the numbers for the three- 
and four-digit industries given in Federal Reserve Board (1986, pp. 133-148). 
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Table 1 

Composition of IP, by source.a.b.C 

Fraction of index based on 

SIC Nondurable/ Physical Kilowatt- 
code durable output hours 

Food 
Tobacco 
Textiles 
Apparel 
Lumber 
Furniture 
Paper 
Printing 
Chemicals 
Petroleum 
Rubber 
Leather 
Stone, Clay, Glass 
Primary Metal 
Fab. Metal 
Machinery 
Elec. Machinery 
Trans. Equip. 
Instruments 
Other 
Nondurables 
Durables 
Total 

20 
21 
22 
23 
24 
25 
26 
21 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

N 
N 
N 
N 
D 
D 
N 
N 
N 
N 
N 
N 
D 
D 
D 
D 
D 
D 
D 
D 
N 
D 
T 

Production- 
worker- 

hours 

0.409 0.390 0.200 
0.903 0.097 0.000 
0.671 0.307 0.022 
0.000 0.165 0.835 
0.539 0.035 0.313 
0.000 0.953 0.047 
0.990 0.000 0.010 
0.297 0.703 0.000 
0.334 0.376 0.227 
0.924 0.076 0.000 
0.234 0.695 O.OQO 
0.547 0.151 0.302 
0.255 0.628 0.117 
0.908 0.021 0.071 
0.000 0.510 0.490 
0.005 0.673 0.240 
0.134 0.271 0.554 
0.418 0.005 0.577 
0.000 0.173 0.711 
0.000 1.000 0.000 
0.446 0.363 0.171 
0.242 0.348 0.375 
0.328 0.355 0.289 

Other 
data 

__~ 

0.000 
O.OQO 
O.Oi?Q 
0.000 
0.113 
0.000 
O.OOiI 
0.000 
0.062 
0.000 
0.071 
0.000 
0.000 
0.000 
0.000 
0.082 
0.041 
0.000 
0.117 
0.000 
0.020 
0.034 
0.028 

aSource: Federal Reserve Board, Industrial Production, 1986. 
‘The entries in the last four columns are the fraction of the industrial production index of each 

industry that is based on physical-output data, kilowatt-hours data, production-worker-hours 
data, and other data, respectively. 

‘Includes Federal Reserve estimates and combined kilowatt-hour and production-worker-hour 
data. 

The FRB constructs production factor coefficients (PFC ‘s) to convert input 
data into estimates of monthly output.’ The PFC’s are a weighted average of 
the ratio of annual Census output data to annual input data. adjusted to 
incorporate trends and cyclical movements in productivity.” These productiv- 
ity adjustments are ‘based on the historical behavior of the series in earlier 
cycles and on an assessment of the position of the series in the current cycle’ 

‘The FRB also applies analogous PFC’s to some of the physical product series, to account for 
incomplete sampling in the monthly numbers. 

“Census calculates both annual and quinquenniaf indexes of production, calculated as the 
deflated sum of shipments and the change in inventories (work in progress plus finished goods) 
using data from the Annual Survey of Manufactures and the quinquennial Census of Manufac- 
tures, respectively [Federal Reserve Board (1986, p. 46). U.S. Department of Commerce (1983)]. 
The FRB combines these to get a benchmarked annual index of production. 
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[Federal Reserve Board (1986, p. 49)]. The PFC’s do not vary seasonally. The 
estimate of monthly output is equal to the product of monthly input and the 
monthly PFC. Because of this procedure, using industrial production data to 
analyze short-run productivity changes [e.g., Stockman (1988)] may be mis- 
leading, since estimating productivity from the IP data will to a large extent 
result in backing out the FRB estimates of the PFC’s. 

2.2. Construction of Y4 

The Y4 measure of production is defined as y:” = x, + n, - nt_ 1, where yT4 
is real production during period t, x, is the real value of shipments during 
period t, and n, is the sum of the real values of the stock of finished goods and 
work in progress inventories at the end of period t.” Constant dollar ship- 
ments and inventories are provided by the Bureau of Economic Analysis 
(BEA) of the Department of Commerce and are available monthly from 1959 
to the present at the two-digit level. We adjust the finished goods and work in 
progress inventory series from cost to market by multiplying each by an 
industry-specific constant, as described in West (1983) and Holtz-Eakin and 
Blinder (1983), respectively. 

To arrive at the constant dollar inventory series, the BEA begins with data 
on the book value of inventories collected by the Bureau of the Census at the 
Commerce Department and adjusts these for differences between book and 
current dollar values and also for differences between current and constant 
dollar values. This complicated procedure incorporates information about 
whether firms use LIFO or non-LIFO accounting methods and involves 
estimating the accounting age structure of the existing stock of goods. The 
conversion procedures are described in Hinrichs and Eckman (1981) Foss 
et al. (1980), and Miron and Zeldes (1988a). 

The book value data are collected by the Census through the monthly M3 
(Manufacturers’ Shipments, Inventories, and Orders), the Annual Survey of 
Manufactures, and the quinquermial Census of Manufactures. The M3 is a 
voluntary survey of large companies. There are a total of only 4500 reporting 
units, made up of 3400 companies and 1100 divisions of 450 companies.” On 

“There is some debate as to whether to include work in progress inventories in the definition of 
Y4. Although the use of only finished goods inventories is more standard in work on inventories, 
Blinder (1986) argues that the definition including work in progress is a more desirable measure of 
production, and he suggests that the use of only finished goods inventories might be the source of 
the discrepancy between Y4 and IP [see West (1986, fn. 13) and Blinder (1986)]. We have also 
calculated the statistics in tables 2a and 2b using the finished goods only definition of Y4. The 
results, presented in Miron and Zeldes (1988a), are very similar to those in tables 2a and 2b and 
do not yield consistently higher or lower correlations between IP and Y4. 

‘*Reporting units often produce more than one type of good, and sometimes these goods fall 
into different industry classifications. In this case, all of the inventories and shipments of the 
reporting unit are lumped into the primary industry classification. Units report total book value 
inventories, and then a breakdown into three stages of fabrication: materials and supplies, work in 
progress, and finished goods. 
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Table 2a 

Summary statistics, seasonally adjusted data. 1967:5-19X4:12.“~b 

Mean Std. dev. Autocorrelation 
Cross- 
corre- 

IP Y4 t-stat. 

0.0025 0.0014 1.77 
0.0004 0.0002 0.12 
0.0014 0.0016 -0.16 
0.0010 0.0010 0.03 
0.0015 0.0023 ~ 0.55 
0.0030 0.0031 ~0.10 

0.0028 0.0023 0.67 
0.0030 0.0021 1.04 
0.0041 0.0030 1.54 
0.0009 0.0017 - 0.60 
0.0054 0.0023 2.29 

- 0 002X ~ 0.0032 0 21 

IP Y4 -stat lation 

0.009 0.021 
0.046 0.098 
0.021 0.035 
0.024 0.057 
0.026 0.051 
0.020 0.061 
0.019 0.024 
0.012 0.033 
0.015 0.026 
0.021 0.031 
0.031 0.043 
0.029 0.075 

r-stat. IP Y4 I 

12.14 ~0.27 -0.34 
7.60 ~ 0.52 PO.45 
3.54 0.31 -0.39 
X.2X -0.23 -0.35 
8.2X 0.04 -0.32 

15.24 0.05 PO.51 
2.62 ~0.02 ~ 0.34 

13.14 PO.13 PO.51 
8.42 0.10 PO.23 
3.25 ~0.12 0.37 
2.80 0.09 ~0.27 

13.19 -0.21 -0.44 

0.82 0.18 
0.64 0.19 
5.08 0.25 
1.10 0.09 
2.55 0.32 
4.96 0.16 
1 72 0.38 
3.5x PO.02 
2 32 0.17 
2.45 0.0x 
3.61 0.37 
2 2x 0.09 

Food 
Tobacco 
Textiles 
Apparel 
Lumber 
Furniture 
Paper 
Printing 

Chemicals 
Petroleum 
Rubber 
Leather 
Stone, Clay. 

Cilaas 0 0022 0.0009 1.71 0.020 0.034 6.99 0 01 0.34 3 31 0.33 

Primary 
Metal ~ 0.0007 -- 0.0007 0.04 0.041 0.042 0.10 0.19 0.10 0 X6 0.64 

Fab. Metal 0.0013 0.0011 0.15 0.014 0.051 22.63 0.41 ~- 0.44 7 79 0.25 

Machine? 0.0035 0.002x 0 X6 0.015 0.039 24.99 0 30 0.35 5.39 0.34 

Elec. 
Machinery 0.0049 0.0045 0.40 0.016 0.040 16.03 0.16 ~0.39 5 67 0.29 

Trans. Equip. 0.0016 0.0016 0.05 0.03 1 0.058 11.95 0.29 ~007 3 56 0.61 

Instruments 0.0048 0.0041 0.48 0.011 0.066 50.41 0.09 PO.47 5 5X 0.25 

Other 0.0014 0.0013 0.03 0.020 0.057 13.46 023 -0.3X 1.52 0.10 

Nondurables 0.0028 0.0018 2.47 0.009 0.014 6.30 0.30 0.25 3.2X 0.45 

Durables 0.0024 0.0021 0.64 0.014 0 025 14.51 0.47 0.09 5 36 0.59 

Total 0.0026 0.0019 1.88 0.011 0.017 x 49 0.44 ~0.10 4.91 0.61 

“The statistics m the table are computed for monthly logarithmic growth rate. 
hThe Y4 results are based on the finished goods plus work-in-progress detinition of output. The 

r-statistics are for tests of the hypotheses that the relevant moments are the same. 

each monthly survey, units get an opportunity to revise the previous two 
months’ information. 

The BEA reports only SA data, and therefore the above procedure gives 
seasonally adjusted Y4. We create NSA shipments and inventories data using 
the procedures in Reagan and Sheehan (1985) West (1986) and Miron and 
Zeldes (1988b). For both the level of shipments and the level of inventories, 
the technique is to multiply the real seasonally adjusted series by a seasonal 
factor equal to the ratio of the seasonally unadjusted to the seasonally 
adjusted nominal (shipments) or book value (inventories) data. This procedure 
is appropriate as long as there is relatively little seasonality in prices or in the 
factors used to convert from book to nominal.‘3 In Miron and Zeldes (1988a) 

t3The book/nominal distinction is only relevant for inventories (not for shipments). 
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we find that the seasonality in producer prices, while statistically significant, is 
sufficiently small relative to the seasonality in output that it is probably not an 
important factor in the reseasonalization of the data! 

3. The time series properties of the two measures of production 

In this section, we quantify the extent to which ZP and Y4 diverge and show 
that the differences are significant. The analysis is carried out for all 20 
two-digit manufacturing industries, as well as for three aggregates of these 
industries (durables, nondurables, and total). We consider first the seasonally 
adjusted data, since these are the ones most familiar to a majority of readers. 
We also present results for seasonally unadjusted data, however, and we 
examine the seasonal movements themselves. With the exception of the 
variance bounds tests, the results presented below all focus on the logarithmic 
growth rates of the relevant series. We employ growth rates because the 
resulting series are likely to be stationary whether the secular growth is 
generated by a unit root or by a deterministic time trend.14 

3. I. Descriptive statistics 

Table 2a presents the means, standard deviations, and first-order autocorre- 
lation coefficients of the log growth rates of the monthly seasonally adjusted 
ZP and Y4 series, as well as tests of the hypotheses that these statistics are 
equal for ZP and Y4. l5 The sample period is May 1967 through December 
1984.16 

The results in the table indicate that the time series properties of ZP and Y4 
are substantially different. The cross-correlations between the growth rates 
range from a low of -0.02 for Printing to a high of 0.64 for Primary Metals. 

141n Miron and Zeldes (1988a) we present results of Dickey-Fuller tests of the hypothesis of no 
unit root in the autoregressive representation of these series. In almost all of the two-digit 
industries, we do not reject the null hypothesis of a unit root at the 95% level of significance. 

I5 We compute these test statistics as follows. For the means, we regress the difference between 
the log growth rates of IP and Y4 on a constant and test the hypothesis that the constant term is 
zero. For the variances, we regress the log growth rate of IP on the difference between the log 
growth rates of IP and Y4 and test the hypothesis that the coefficient on the difference in growth 
rates is equal to 0.5. For the autocorrelations, we stack the IP and Y4 observations and regress the 
growth rate of output on the lagged growth rate, a dummy that is 1 for the IP observations and 0 
for the Y4 observations, and this dummy multiplied by the lagged growth rate. The test statistic is 
the r-statistic on this last variable. For the seasonal patterns, we regress the difference in log 
growth rates on a constant and eleven seasonal dummies and test the hypothesis that the 
coefficients on the eleven dummies are jointly equal to 0. In all of these tests, we use the Hansen 
and Hodrick (1980) and Newey and West (1987) procedure to estimate the standard errors (with 
the lag length set to 12 and the damping factor set to 1.0). These test procedures therefore allow 
for general serial correlation and/or heteroscedasticity in the log growth rates of IP and Y4. 

l6 We use only post-1967 data because there were changes in the definition of the SIC codes in 
1967 that make the pre-1967 data not completely compatible with post-1967 data. 
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Eighteen of the twenty-three correlations are less than 0.4.“,‘* The correla- 
tions are higher for the aggregates than for the individual series. 

Examination of the first-order autocorrelations reveals the surprising result 
that in 13 out of 23 cases the autocorrelation is positive for IP but negative for 
Y4. For example, for nondurables as a whole, the first-order serial correlation 
of growth rates equals 0.30 for IP and -0.25 for Y4. The difference in the 
autocorrelation coefficients is statistically significant in 17 of 23 cases. These 
differences are generally not eliminated over longer horizons; we find that the 
sum of the first 24 autocorrelations is almost always higher for IP than for 

Y4.19 Thus the ZP measure exhibits significantly more persistence than 
does Y4. 

Turning to the standard deviations, the results indicate that the ZP measure 
is much less volatile than the Y4 measure. In all cases the standard deviation is 
higher for the Y4 measure than for the IP measure, and in 12 of the industries 
the point estimates indicate it is more than twice as large. The differences are 

statistically significant in all but one case. Finally, in a few cases the mean 
growth rate is twice as high for one measure as for the other. The differences in 
means, however, are in most cases not statistically significant.20 

In table 2b we present summary statistics and hypothesis tests for the 
seasonally unadjusted data. The results are similar to those in table 2a. The 

correlations between the two series are in every case higher than with adjusted 
data, reflecting the comovements due to seasonality, but the correlations are 
nevertheless well below 1 in most cases. The seasonal patterns are in most 
cases similar with respect to the timing of the peaks and troughs. In several 
industries, however, the magnitude of the peaks and/or troughs is substan- 

“Harrison and Stewart (1986) report similar results for the two corresponding Canadian series. 
They report correlation coefficients between the detrended seasonally adjusted levels (rather than 
growth rates) as low as 0.56, with the majority of industries between 0.7 and 0.8. Fair (1969. 
p. 128) estimates the correlation coefficient between log growth rates in physical units production 
series and Department of Commerce shipments plus the change in inventories production series 
for three three-digit U.S. manufacturing industries. He finds correlation coefficients that range 
from 0.03 to 0.59. Sims (1974, p, 704), using U.S. manufacturing data, finds that labor input is 
estimated as a one-sided distributed lag of IP but a two-sided distributed lag of the BEA’s 
measure of shipments or shipments plus the change in finished goods inventories (see Sims’ 
footnote 20). Sims interprets this as evidence that shipments (as a proxy for output), or shipments 
plus the change in inventories, may be measured with greater error than IP. 

‘“The correlations between IP and shipments (unadjusted for inventory changes) are actually 
greater than those between IP and Y4 in 14 of 20 industries in the SA data (10 of 20 in the NSA 
data). 

“Campbell and Mankiw (1988) explain why the sum of the autocorrelations is a useful. 
nonparametric measure of persistence. 

2oDickey-Fuller tests on the difference in the logs of the two series indicate that in almost all 
cases we cannot reject the hypothesis of a unit root in this difference. The fact that the difference 
between the log levels of the two series is positively autocorrelated explains why we cannot usually 
reject the hypothesis that the growth rates are the same even though plots of the log levels in some 
cases diverge substantially over time. 
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Table 2b 

39 

Summary statistics, seasonahy unadjusted data, 1967:5-1984:12.“,b 

IP 

Mean Std. dev. Autocorrelation 

Y4 f-stat. IP Y4 r-stat. IP Y4 r-stat. 7 lation 

Food 
Tobacco 
Textiles 
Apparel 
Lumber 
Furniture 

Paper 
Printing 

Chemicals 
Petroleum 
Rubber 
Leather 
Stone, Clay, 

Glass 
Primary 

Metal 
Fab. Metal 

Machinery 
Elec. 

Machinery 
Trans. 

Equip. 
Instruments 
Other 
Nondurables 
Durables 
Total 

0.0025 0.0013 1.55 0.031 0.047 8.58 0.17 -0.10 4.24 98.0 0.73 

- 0.0009 - 0.0006 -0.09 0.144 0.150 0.48 -0.44 -0.37 - 1.15 96.9 0.61 
0.0008 0.0011 -0.19 0.082 0.110 8.46 -0.32 -0.41 1.62 133.7 0.87 

0.0009 - 0.0004 0.51 0.074 0.124 13.50 -0.32 -0.27 -0.76 133.7 0.63 
0.0009 0.0016 -0.45 0.054 0.086 11.77 -0.01 -0.16 2.35 75.3 0.72 
0.0030 0.0027 0.16 0.059 0.115 11.04 -0.39 -0.39 0.19 403.6 0.71 
0.0022 0.0017 0.65 0.063 0.059 1.57 ~ 0.30 -0.39 1.67 94.1 0.89 
0.0030 0.0020 0.82 0.038 0.052 4.94 0.44 -0.29 11.88 656.4 0.37 
0.0040 0.0025 1.30 0.027 0.057 13.33 0.06 -0.11 2.06 806.1 0.52 
0.0011 0.0015 -0.27 0.032 0.037 2.18 0.13 -0.33 4.38 72.8 0.37 

0.0051 0.0015 2.33 0.063 0.084 5.78 -0.10 -0.25 2.10 113.4 0.79 
- 0.0031 - 0.0035 0.19 0.082 0.110 4.53 -0.39 -0.42 0.62 66.8 0.62 

0.0019 0.0003 1.68 0.043 0.065 10.65 0.10 -0.13 4.01 205.4 0.74 

- 0.0014 -0.0017 0.26 0.064 0.072 2.10 0.15 0.02 1.91 20.7 0.85 

0.0012 0.0004 0.47 0.026 0.098 45.34 -0.07 -0.37 4.49 326.1 0.63 
0.0033 0.0027 0.37 0.029 0.095 34.34 0.00 -0.31 5.53 761.6 0.65 

0.0049 0.0043 0.46 0.032 0.091 22.81 0.03 -0.28 4.30 375.5 0.70 

0.0014 0.0008 0.34 0.070 0.120 20.62 0.03 -0.01 0.82 350.3 0.84 
0.0049 0.0040 0.50 0.020 0.101 45.07 -0.09 -0.39 4.56 304.0 0.45 
0.0012 O.COO9 0.17 0.049 0.103 14.75 -0.07 -0.19 1.86 134.9 0.62 
0.0026 0.0014 2.27 0.035 0.045 8.88 -0.08 -0.19 1.89 244.8 0.91 
0.0022 0.0016 0.61 0.032 0.078 24.62 0.01 -0.14 3.08 766.4 0.89 
0.0024 0.0015 1.25 0.032 0.060 21.52 -0.05 -0.16 2.07 819.7 0.92 

“The statistics in the table are computed for monthly logarithmic growth rates. 
‘The Y4 results are based on the finished goods plus work-in-progress definition of output. The 

t-statistics are for tests of the hypotheses that the relevant moments are the same. The X%tatistic is for 
the test of the hypothesis that the seasonal patterns in the log growth rates of IP and Y4 are the same. 
The 95% critical value of the x2(11) is 19.67. 

tially greater for Y4 than for IP. 21 Hypothesis tests indicate that the seasonal 
coefficients are statistically different in all 23 cases. 

In Miron and Zeldes (1988a) we present results analogous to those in table 
2a for growth rates of quarterly and annual averages of monthly data, 
respectively. The cross-correlations of the quarterly growth rates are higher 
than those of the monthly data, but still less than 0.7 in half of the industries. 
The correlations of annual growth rates are significantly higher, being greater 
than 0.9 in 15 out of 20 industries. The generally high correlations of the 
annual growth rates are consistent with the fact that the information in the 

*IFor plots of the seasonal patterns, see Mron and Zeldes (1988a). 
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Annual Survey of Manufactures and the quinquennial Census of Manufac- 
tures is in most cases used to benchmark both ZP and Y4. 

The evidence presented above demonstrates that there are dramatic differ- 
ences between the time series properties of the ZP and Y4 measures of 

production. The standard deviations and autocorrelations of the two series 
differ systematically, and the cross-correlations between the two series indicate 

that there is remarkably little variation that is common to both series. We have 
discussed the differences with researchers at the BEA and FRB, and, while 
they are aware of the problem and of numerous differences in the construction 
of the data, they are not able to offer a definitive explanation.22 

4. The variance of production and the variance of sales 

In this section we underscore, by way of an example, the economic impor- 
tance of the discrepancies between the two measures of production. We show 
that the results of Blinder’s (1986) widely cited study of firms’ inventory 
behavior are at least partially sensitive to the choice of output measure. 
Blinder (1986) emphasizes that, in the absence of cost shocks, the production 
smoothing model implies that the variance of production should be less than 

the variance of sales (shipments). 23 Using the Y4 measure of output, Blinder 

shows that the variance of production is greater than the variance of ship- 
ments for all but one of the industries examined, and he interprets this as 

strong evidence against the production smoothing model. 
In table 3 we present the ratio of the variance of output to the variance of 

shipments based on each of the two output measures. The sample period, 
inventory definition, and detrending techniques were all chosen to correspond 
as closely as possible to Blinder (1986). Thus, unlike the data in the previous 
tables, these data are levels (not growth rates), detrended with an exponential 
trend, and cover the period 1959:2-1981:7.24 We convert the ZP measure from 

**One possible source of discrepancy is that FRB uses value-added weights to aggregate the 
individual series, while the BEA, by adding constant dollar series, effectively uses gross value 
weights. We examine an alternate IP series calculated by the FRB using gross value weights (for 
seasonally adjusted total manufacturing). Over the period 1972:3-1984:12. we find that the 
correlation of growth rates between this series and the standard IP is equal to 0.83. The 
correlation between this series and Y4 is equal to 0.59. compared to a correlation of the standard 
IP and Y4 of 0.65 over the same time period. Thus, the use of value-added weights does not 
appear to be a quantitatively important source of the difference between IP and Y4. 

“If cost shocks are present, then this inequality need not hold [Eichenbaum (1984). Blinder 
(1986)]. Kahn (1987) argues that, if production for the period must be chosen before sales are 
known and if stockouts are possible, then this inequality can be violated even in the absence of 
cost shocks. 

“For a detailed description. see Blinder (1986) and Miron and Zeldes (198Xa). 
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Table 3 

Variance of production over variance of sales. seasonally adjusted 
data . 1959.2-1981:7.“.h . 

IP y-4 

-- Food 0.62 1.20 
Tobacco 0.54 2.43 
Textiles 1.17 1.06 
Apparel 0.91 1.38 
Lumber 0.94 1.12 
Furniture 0.96 1.24 
Paper 1.42 1.02 
Printing 1.15 1.18 
Chemicals 0.82 1.01 
Petroleum 0.59 1.06 
Rubber 1.12 1.13 
Leather 1.09 1.36 
Stone, Clay, Glass 1.08 1.12 
Primary Metal 0.98 0.96 
Fab. Metal 0.59 1.13 
Machinery 1.28 1.35 
Elec. Machinery 1.13 1.26 
Trans. Equip. 0.84 1.23 
Instruments 0.75 1.81 
Other 0.81 1.42 
Nondurables 1.52 1.05 
Durables 1.13 1.19 
Total 1.31 1.14 

“The statistics in the tables are computed for deviations 
from exponential trend; see text for details. 

‘The Y4 results are based on the finished goods plus work- 
in-progress definition of output. 

an index into a constant dollar figure by multiplying it by the ratio of average 
Y4 to average IP.25 

The results for the Y4 measure match Blinder’s results almost exactly. For 
all but one industry, the variance of output is greater than the variance of 
shipments. The results for the ZP measure, however, are quite different. The 
variance ratio is in most cases less than the one based on Y4, and for 11 
industries the variance inequality is actually reversed.26 It is especially note- 
worthy that reversals occur in five of the six industries identified by Belsley 
(1969) as production to stock: these are the industries for which the produc- 

‘sBecause the ratio of average Y4 to average IP is different for different averaging periods. the 
choice of base period for conversion of IP sometimes affects the resulting variance bounds ratio 
for a few industries. Results for different base periods consistently show, however, that the 
variance ratio using IP data is less than the ratio using Y4 data in a significant number of cases. 

26This reversal of the variance bounds inequality was first pointed out by West (1986, fn 13). 
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tion smoothing model is the most plausible theoretically.27 Had Blinder 
originally chosen to use IP instead of Y4. he would have reached substantially 
different conclusions about the empirical validity of the production smoothing 
model.*s 

5. The sources and importance of measurement error 

The fact that ZP and Y4 differ means that at least one of them is measured 
with error. So far, none of our results has required making assumptions about 
the types of measurement error present in the data. In this section we model 
the measurement error in the series. We begin with a general model and then 
gauge the importance of different types of measurement error under alterna- 
tive assumptions about the type of measurement error present. We also 
attempt (only partially successfully) to determine which types of measurement 
error are most likely to be present. 

We consider two types of measurement error, as in Mankiw. Runkle. and 
Shapiro (1984) and Mankiw and Shapiro (1986). The first type, classical 
measurement error, is uncorrelated with the true underlying series. The second 
type is correlated with the true series but uncorrelated with the observed 
series. This second type of measurement error could arise for two reasons. If 
the announced series are rational forecasts of the underlying series, then the 
measurement error will be a rational expectations forecast error and thus 
uncorrelated with the forecast itself. In addition, if there are productivity 
changes (true productivity shocks or, e.g., changes in productivity due to labor 
hoarding) that are not captured by the measured series, then the measurement 
error will include the productivity change, which will be correlated with the 

true output but may be uncorrelated with the measured figures. 
We consider the following model: 

yip + u:’ = y,* + ey, );y4 + u)” = yl* + e,‘“, (1) 

where y,* is the log of the true series; Y,‘~ and yly4 are the logs of the two 

measured series; e:’ and er4 are measurement errors that are assumed 
uncorrelated with y,* (and y,?,, y,:i); and u,!’ and 11:” are measurement 
errors that are assumed uncorrelated with y,” ( y,!!i, y,:‘,) and y,r4 ( y,Y”i, yrv,‘;‘, ), 
respectively. The cross-correlations of the errors etrP, e,Y4. u,“. and ~,r” are 

27These six industries are food, tobacco. apparel, chemicals, petroleum and rubber. 

2XWhile this may be interpreted as support for the production smoothing model, Miron and 
Zeldes (1988b) present additional tests and find that a generalized production smoothing model is 
rejected for both the Y4 data and the IP data (although the rejections are not as strong based on 
IP data). 



J.A. Miron and S.P. Zeldes, Production, sales, and the change in inventories 43 

assumed to be 0 at lags 0 and 1. 29. 3o The model in first differences is then 

Ay,” + Au:’ = A y,* + de:‘, Ayty4 + AU? = A y,* + Aer4, (2) 

where the contemporaneous orthogonality conditions assumed above hold for 
these first differences. 

Ideally, we would like to be able to answer the following questions. First, 
how poorly do the two series measure true production, i.e., how large is the 
variance of the measurement error relative to the variance of the true series? 
Second, which of the output measures is a better proxy for output, i.e., for 
which series is the variance of the measurement error smaller? 

Each of these questions could be answered if we could estimate the 
population moments V(Au”), V(Ae”), V(Auy4), V(AeY4), and V(Ay*). 
Under the assumptions given so far, these moments are related to the mo- 
ments of the measured series as follows: 

var( A y,“) = var( A y,*) + var( de:‘) - var( Au:‘), (3) 

var(AyT4) =var(Ay,*) +var(Aey) -var(A~y~), (4) 

COV( Ay,lp, Ay?) = var( A y,*) - var( Au,Y4) - var( Au:‘). 

Unfortunately, obtaining three sample moments does not enable us to estimate 
five population moments (although we can estimate certain combinations of 
the moments). 

As an example of the difficulties with inference, note that a large variance of 
e-type measurement error tends to increase the variance of measured output, 
but a large variance of u-type measurement error tends to decrease the 
variance of measured output. Thus, observing (as we have) that the log growth 
rate of IP has a smaller variance than Y4 could mean that IP is a better series 
(smaller classical type measurement error) or that IP is a worse series (larger 

29We make no assumptions about the autocorrelation structure of the individual measurement 
errors. 

30The assumption that e,, 1 and e,_t are uncorrelated with y,* seems plausible in the case of 
pure sampling error. Likewise, if the u’s are unmeasured productivity shocks, then the assumption 
that u,-i and u,+t are uncorrelated with the corresponding y, seems no stronger than the 
assumption of contemporaneous orthogonality. If u, is a rational forecast error based only on 
time I information, then the assumption that u,_r is uncorrelated with y, is not in general valid. 
Since the reported numbers are revised, however, they should properly be viewed as forecasts 
based on information through the end of the sample. In this case the forecast errors will be 
orthogonal to forecasts at all leads and lags in the sample. 



artificial smoothing or larger rational forecast error).31 Distinguishing between 
these possibilities and estimating the relevant parameters requires either addi- 
tional identifying assumptions or additional information. 

In section 5.1 below, we calculate the importance of measurement error 
under the assumption that all measurement error is of the e-type. In the 
following section, we make the calculations under the other extreme assump- 
tion that all measurement error is of the u-type. In each case, we use the 
sample moments to estimate the fractions (K”, ~‘~4) of the total variance of 
each series due to measurement error and the ratio (X”) of the variance of the 
measurement error in ZP to the sum of the variances of the measurement 

errors in IP and Y4. Under the assumptions in this paper, the optimal 
indicator of the true series based solely on the contemporaneous observations 
is a linear combination of the two series, and the weight on IP is equal to 
X’“.32 Finally, in section 5.3 we attempt to use information about the differ- 
ences in construction of ZP across industries to shed light on which type of 
measurement error is likely to be most important. 

5. I. Classical measurement error (e) 

Assume for the moment that V(Au”) = V(Au’“) = 0 so that all measure- 
ment error is the classical type. Under this assumption. cov( A,,“, Ayr4) = 
V( a_)~*).~~ We define K Ip = var( Ae’P)/var( A y I’) ( K’~ is defined analogously). 
In the absence of measurement error, a regression of one series on the other 
would yield a coefficient of unity. With e-type measurement error, the coeffi- 
cient will be biased downward, and the bias (the difference between unity and 
the coefficient) will be a consistent estimate of K for the right-hand-side 

“As long as the serial correlation in the growth rate of the measurement errors is less than that 
in the growth rate of the true series, higher measurement error decreuses the autocorrrelation of 
the growth rate of the measured series in a model with only e-type measurement error, while 
higher measurement error variance increuses the autocorrelation of the growth rate of the 
measured series with only u-type measurement error. Thus, the fact that the growth rate of Y4 has 
a lower autocorrelation than IP could again be evidence of a large e-type measurement error in 
Y4 or a large u-type measurement error in IP. 

“See de Leeuw and McKelvey (1983) for the case of e-type measurement error. An analogous 
argument carries through for u-type measurement error. These each assume that the optimal 
weights sum to 1, which might not be the case if some weight is put on the unconditional mean. 
Also, if the first differences of the measurement error are serially correlated, a superior indicator 
could be constructed using both contemporaneous and past values of the two series. 

33Prescott (1986) makes this observation and estimates the variance of true hours of employ- 
ment based on household and firm measures of hours. Lichtenberg and Grilichea (1989) also 
assume that only classical measurement error is present and estimate the same variance ratios as 
we do in this section for two measures of prices. They examine long-run inflation rates and base 
their measurement error estimates on sample moments computed across industries for a single 
time period, rather than across time for a single industry as is done here. 
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variable.34 Thus, regressing IP on Y4 gives us information about the measure- 
ment error in Y4, and regressing Y4 on IP gives us information about the 
measurement error in IP.35 

The results are presented in table 4. Looking at the seasonally adjusted data, 
these estimates indicate that in all but one industry at least 60% of the 
variation in the growth rate of Y4 is due to measurement error, and in 16 out 
of 20 industries it is over 80%. Looking at IP, we find that in 15 out of 20 
industries measurement error accounts for over 35% of the variation in the 
monthly growth rate. The estimated standard errors of the ratios indicate that 
in most cases they are estimated precisely. When we turn to the seasonally 
unadjusted data, we find a different set of results. Relative to the seasonally 
adjusted data, the measurement error shares are estimated to be smaller for Y4 
and ZP, and often negative for IP. The ratios should be smaller if seasonality 
in the measurement error is small relative to the seasonality in the true series. 
However, the negative estimates suggest a misspecification, to which we return 
in section 5.3.36 

The seasonally adjusted results in table 4 indicate that the optimal weight 
hrp (= V(AeY4)/[V(AeY4) + V(Ae’P)]) . IS in all but one case significantly 
greater than 0.5. 37,38 This indicates that under the assumption that all mea- 
surement error is of the classical (e) type, IP is the better measure of output: 
the variance in its measurement error is less, and an optimal indicator would 
place more weight on it. However, there is evidence of substantial measure- 
ment error in both series. 

5.2. u-type measurement error 

In this section, we make the opposite polar assumption: V(AeIP) = V(AeY4) 
= 0, so that all measurement error is orthogonal to the measured series. Here 

34Call 8,. Ip the estimated coefficient when AyY4 is regressed on Ay”. Then 

plim( 1 - 8,. ,p) = 1 - cov( Ay”, Ayy4)/var( Ay”) 

= 1 - var( Ay*)/[ var( Ay*) + var(Ae’P)] 

= ~ar(Ae’~)/[ (var(Ay*) + var(Ae’P)] 

= var(Ae’P)/var( Ay”) = IC”. 

35Using this simple regression technique has the advantage of enabling us to calculate in a 
straightforward way the standard errors of these variance ratios. We employ the Hansen and 
Hodrick (1980) procedure, as modified by Newey and West (1987), to calculate standard errors 
that are consistent given the serial correlation in the residuals. 

36We also calculated the tables using seasonal dummy adjusted data, and the results were 
similar to the SA results in table 4. 

37 We again use a simple regression techniye to calculate an estimate of X” and its standard 
error. The coefficient in the regression of Ay ’ on Ayy4 - Ay ” is a consistent estimate of VP. 

‘*The seasonally unadjusted results indicate that the optimal weight on IP is greater than 1, 
again suggesting the possibility of misspecification. 
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we define K as the variance of the measurement error as a fraction of the 
variance in the true series,39 and X” is defined as V(AU’~)/[V(AU’~)+ 
V(AuY4)]. These numbers are presented in table 5.40 

Looking at the SA data, the K’S indicate that measurement error continues 
to represent a substantial part of the variation in each series. The numbers for 
ZP are in all but three cases greater than 60%. The ratios for Y4 are generally 
in the neighborhood of lo-20%. Note that X1’ in this table is exactly 1 minus 
the value of X” in table 4. In other words, while the numbers in table 4 
indicate that Y4 contains more measurement error than ZP, the numbers in 

table 5 calculated under the alternative assumption about the type of measure- 
ment error suggest the opposite conclusion: that the measurement error in ZP 

is worse than that in Y4. 
The seasonally unadjusted results are also in table 5. Unfortunately, the 

negative estimates for K’~ and hrp again suggest a misspecification in the NSA 

data. 

5.3. Including both types of measurement error and attempting to distinguish 
between them 

What can be said if we are not willing to take as strong a stand as to which 
type of measurement error is present in the two series? We make two 
observations. First, by combining sample moments we can estimate the sum of 
the variances of AeY4 and Au” and also the sum of the variances of AeJP and 
Aur4. The ratio of the K’S in table 5 indicates that the former sum is 
dramatically greater than the latter.41 Thus, ey4 and uIp together appear to 
constitute the primary sources of measurement error. However, we cannot tie 
down the importance of ey4 relative to that of urp. 

Second, the fact that there is no issue in producing Y4 about adjustments 
for missing productivity shocks suggests that uy4 may be an unimportant 
source of measurement error. In this case, the estimates of the size of e-type 
measurement error in ZP in table 4 are accurate estimates, whether or not 
there is u-type measurement error in IP. 

j9Thus, for example. K” = V(AU’~)/V(A~*). We scale by the variance of AJ* rather than A.v. 
so that the ratio will be interpretable as a fraction between 0 and 1 [recall that in this model. 
V(Ay*) = l’(Ay) + I’]. 

40We estimate K” by estimating 1 - [VAy’Pjj(t’(Ay “) + t’(Ayy4) - cov(Ayfp, Ayr4))], 
which, under these assumptions, is equal to V(Au )/V(Ay*). Reversing IP and Y4 gives the 
analogous ratio for Y4. 

41Under the model with both e- and u-type errors, V(Ay,“) - co~(A,v,‘~, A?;,‘4) = V(Ae:‘) + 

I’(Au:~) and P’(Ay,“) - cov(Ay, lp A vy4) = L’(Ae,‘“) + V(Au:‘). The ratio of K” to K’~ in table , 
5 is equal to [V(AeY4) + V(Au’P)]/[i;Ae’P) + V(Auy4)]. 



J.A. Miron and S.P. Zeldes, Production, sales, and the change in inventories 41 

Table 4 

Estimates of e-type measurement errors, 1967:5-1984:12.a.b 

Seasonally adjusted Seasonally unadjusted 

1 
k/P se P, se /! IP se P,, se ‘(r, se x IP se 

__- 
Food 0.59 0.16 0.92 0.03 0.89 0.03 -0.10 0.09 0.52 0.04 1.09 0.07 
Tobacco 0.60 0.15 0.91 0.04 0.87 0.05 0.37 0.07 0.42 0.09 0.55 0.11 
Textiles 0.59 0.11 0.84 0.06 0.79 0.08 -0.17 0.05 0.35 0.03 1.37 0.10 
Apparel 0.79 0.21 0.96 0.03 0.87 0.04 -0.06 0.07 0.62 0.06 1.03 0.04 
Lumber 0.38 0.19 0.83 0.07 0.89 0.05 -0.15 0.07 0.55 0.04 1.12 0.05 
Furniture 0.52 0.22 0.95 0.02 0.94 0.03 -0.39 0.14 0.63 0.02 1.19 0.06 
Paper 0.52 0.10 0.70 0.11 0.68 0.07 0.15 0.03 0.06 0.04 0.26 0.15 
Printing 1.07 0.25 1.01 0.03 0.87 0.03 0.51 0.07 0.73 0.03 0.72 0.05 
Chemical 0.71 0.10 0.90 0.04 0.79 0.03 -0.11 0.14 0.76 0.02 1.03 0.04 
Petroleum 0.88 0.09 0.95 0.04 0.70 0.06 0.58 0.06 0.68 0.05 0.60 0.05 
Rubber 0.49 0.09 0.74 0.07 0.75 0.09 -0.06 0.03 0.41 0.04 1.08 0.10 
Leather 0.78 0.21 0.97 0.03 0.89 0.03 0.17 0.09 0.54 0.03 0.85 0.08 
Stone, Clay, 

Glass 0.43 0.10 0.81 0.04 0.85 0.05 -0.13 0.07 0.51 0.03 1.12 0.06 
Primaw 

Metals 0.35 0.10 0.36 0.10 0.51 0.13 0.05 0.06 0.24 0.05 0.85 0.17 
Fab. Metals 0.09 0.25 0.93 0.02 0.99 0.02 -1.33 0.26 0.83 0.02 1.13 0.01 
Machinery 0.12 0.12 0.87 0.02 0.98 0.02 - 1.10 0.10 0.80 0.02 1.15 0.02 
Elec. 

Machinery 0.32 0.17 0.88 0.04 0.94 0.03 -0.97 0.13 0.76 0.02 1.19 0.03 
Trans. Equip -0.13 0.10 0.67 0.07 1.06 0.05 -0.44 0.06 0.51 0.03 1.42 0.04 
Instruments -0.54 0.42 0.96 0.01 1.01 0.01 -1.27 0.28 0.91 0.01 1.06 0.01 
Other 0.72 0.21 0.96 0.02 0.91 0.03 -0.32 0.14 0.71 0.02 1.11 0.04 
Nondurables 0.31 0.07 0.71 0.08 0.84 0.05 -0.17 0.05 0.29 0.03 1.55 0.12 
Durables -0.07 0.08 0.68 0.04 1.03 0.04 -1.16 0.08 0.63 0.02 1.46 0.04 
Total 0.02 0.09 0.63 0.05 0.99 0.06 -0.75 0.07 0.52 0.02 1.66 0.05 

‘The statistics in the table are computed for monthly logarithmic growth rates. 
bThe Y4 results are based on the finished goods plus work-in-progress definition of output. 
X” is the wei#rt on IP in an optimal forecast of the true series. We estimate X” = COV(A~~~, Ayy4 - 

A r’P)/var(Ay -A “) 
(var(AeY4) + var(Ae”)). 

Under the assumption that var(Aur4) = var(Au”) = 0, A” = var(AeY4)/ 

K” is the fraction of the variation in IP due to measurement error. We estimate k” = 1 - 
cov(Ay “, Ayy4)/var(Ay’p). Under the assumption that var(Auy4) = var(Au’P) = 0, K” = ~ar(Ae’~)/ 
var(Ay’P). K y4 is defined similarly. 

While we have exhausted all of the information in the sample moments 
within each industry, we next consider using information about variations in 
moments and construction of the IP data acro.s.r industries. An important part 
of the measurement error in ZP may be due to the fact that a large number of 
the individual IP series are constructed from input data. The use of input data 
could add either e-type measurement error because it involves added noise, or 
u-type error because the use of inputs to measure output may omit productiv- 
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Table 5 

Estimates of tr-type measurement errors. 1967.5-lYX4:12.” ’ 

K 1 i’ X)4 Xl,, \c K)4 

Food 0.x3 0 10 0 11 0.03 ~ 0 OS 

Tobacco 0.x1 0 12 0 13 0.04 0.25 
Textile5 0 69 i) 1x 0.71 0.06 0.10 
Apparel 0.84 0.17 0.1: 0.03 0.07 
Lutnber 0.76 0 09 0 11 0.07 0.06 
Furniture 0.90 0.05 0.06 0.02 -0 11 
Paper 0.53 0 75 0.32 0.1 1 0.11 
Printing 0.88 I) 13 0.13 0 03 0 37 
Chemicals 0 73 0 19 0.21 0 04 0 02 
Petroleum 0.6X 0.2’) 0.30 0 04 0 31 
Rubber 0 5’) 0.20 0.25 0 07 i) 03 
Leather 0.86 0.11 0.11 0 03 0.09 
stone. Clay. Glass 0.70 0.13 0 15 0 04 0 Oh 
Primary Metal\ 0.27 0.26 0.49 0.10 0.03 
Fab. Metals 0.92 0.01 0 01 0.07 Oil 
Machinery 0.86 0.02 0.07 0 02 ~~ 0 12 
Elec. Machinery 0.84 0.05 0.06 0 04 ~0 14 
Trans. Equip. 0.70 ~ 0.04 0.M 0 07 0.1s 
Instruments 0.97 0.01 -0.01 0 01 0.05 
Other 0.8% 0.0x 0.09 0.02 0.0x 
Nondurables 0 63 0.12 0.16 0.0x 0.12 
Durablca 0.69 ~ 0.02 0.03 0.04 ~ 0.25 
Total 0.62 0.01 0 01 0.05 0.26 

!Thc statistics in the table are computed for monthly logarithmic growth rates 

0.54 
0.31 
0.38 
0.63 
0 SY 
0.71 
0.05 
0 57 
0 7x 
0 47 
0.42 
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0 XY 
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0 96 
0.76 
0.32 
0.79 
0.65 

Seasonally adlusted Seasonally unadtusted 
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0.09 0.07 
0.4S 0.11 
0.37 0.10 
!) 03 I).04 
0.11 0.05 

-0.1’) 0.06 
0.74 0.15 
0 2x 0.05 
0 03 0 04 
0.40 o.o- 
0 OS 0.10 
0 15 NOR 
0 12 0.06 
0 15 0.17 
0.13 0 01 
0 15 0 07 
0 1’) 0 03 
0 4’ 0 04 
11.06 0 01 

~~ 0.1 1 0.04 
0.55 0.12 
0.46 0.04 
0.66 0.05 

‘The y4 results are based on the finished goods plus Lvork-in-progress detinition of output. 
X” is the weight on IP in an optimal forecast of the true s&es. We estimate X” = I - 

cov(J 1,)‘. _I IV).’ - Jy”)jvar(J ).I4 
= 0 A” = L&AU”) /(var(Aa”.) 

- J I” ) Under the assumption that var( Jr”) = ur(_k~‘~) 

,iP. 
/ - var(Ju’P)). 

1s the fraction of the variation in IP due to measurement error. Wc estimate K”’ = 
1 ~~ ~ar(~,,“)/(var(~~,“) i var(J>,14) - cov(A I,“, A>,)‘)). Under the assumption that 
var( Jr”) = var(Je’P) = 0. ti” = var(,Iu’P)/var(Lj>,*). K” is defined similarly 

ity changes.” If the error induced by the use of input data is primarily of the 
smoothing variety (u”‘). then industries based most on input data should 
exhibit the most smoothing, and thus should have the lower variance (relative 
to that of Y4). However. if the use of input data simply causes more classical 
measurement error (e”), the high input data industries should have relatively 
high variance. We estimate the Spearman rank correlation between the use of 
input data (as reported in table 1) and the difference of the variances of ZP 

“As indicated previously, the FRB attempts to correct for this by using cychcally adjusted 
PFC ‘s. Here we allow for the possibility that this adjustment does not fully capture productivity 
changes. 
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and Y4 to be - 0.48 and -0.78 for SA and NSA data respectively, each 
significant at the 5% leve1.43 

This negative correlation provides evidence that u-type measurement error 
is present in the IP data and is related to the use of inputs. The interpretation 
is that the use of inputs for ZP serves to artificially smooth the data and 
therefore that the relatively low standard deviation of IP should not necessar- 
ily be taken to mean that it is a better measure of true output. 

One final point, suggested by the NSA results, concerns the possibility that 
the true coefficients relating yIP and yy4 to y* are not equal to 1. Recall that 
in the model above the regression of A y ” on Ayy4 and the regression of Ayy4 
on Ay” each give a coefficient that is biased downward from the true 
coefficient of 1. However, in the NSA results, the regression of A y y4 on A y ” 
in many cases gave a coefficient greater than 1, causing the negative estimates 
of K” in table 4 and K’~ in table 5. When the FRB does productivity 
adjustments within the year, they assume (approximately) that the elasticity of 
output with respect to inputs is equal to 1. They then modify this judge- 
mentally to account for cyclical factors but make no adjustment for seasonal 
factors. If the elasticity of output with respect to inputs is in fact greater than 
1, due to either labor hoarding or productivity shocks correlated with input 
use, then the FRB procedure biases upward the coefficient in the regression of 
Ayy4 on Ay”. In fact, there is a strong positive rank correlation (0.65) 
between the use of inputs and the regression coefficients of Ayy4 on Ay” 
using NSA data.44 Users of NSA data should thus be aware that in the 
industries based primarily on inputs, the seasonal movements in ZP appear to 
significantly understate the true seasonal variation in output. 

6. Concluding remarks 

In this paper we have documented the radically different time series proper- 
ties of two different measures of monthly manufacturing output. Under 
specific assumptions about the nature of the measurement error, we estimate 
that a large fraction of the variation in the observed growth rate of both 
measures of output is due to measurement error. The results suggest that 
empirical analyses that rely heavily on the time series properties of the 
month-to-month variation in either of these measures may give very mislead- 
ing results. 

43The Spearman correlations between the ratio of variances and the use of inputs are even 
stronger: - 0.75 and - 0.82 for SA and NSA data, respectively. 

“This problem may be present in the SA data as well, although the fact that the coefficients are 
almost never greater than 1 in the SA data suggests that this may be less of a problem in SA data. 
Even if it is present in the SA data, this will bias downward the estimates of e-type measurement 
error in IP in table 4, i.e., even if this is an issue, we can still conclude that measurement error is 
an important part of industrial production data under an e-type model of measurement error. 
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There are ample reasons for the presence of noise in both series. For Y4, 
real monthly inventory changes are difficult to estimate from book value data. 
For IP, the use of inputs to proxy for output involves strong assumptions 
about productivity. In both cases, there is likely to be standard sampling error. 

We find evidence that the error is concentrated in the sum of uIp and ey4, 
and that the use of inputs adds to urp, thus artificially smoothing the data. 
Unfortunately, we are unable to estimate the importance of u” relative to 
ey4, so we cannot unambiguously recommend one measure over the other. The 
finding that most of the measurement error is predominantly in uIp or ey4, 
however, is likely to be useful in certain contexts in choosing between these 
two measures of production. 
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