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Abstract. Simple results are derived from an exact conformal transformation of the flow field about a lifting 
circular cylinder at an angle of attack in incompressible flow to that about a profile. The mapping function is 
one proposed by Moriya several decades ago which stretches the field at great distances from the foil and is here 
used to derive a two-parameter family of symmetrical shapes. The geometry and flow speed are easily evaluated 
at arbitrary points on the profile surface and hence errors can be readily defined for evaluation of numerical 
predictions. The strength of equivalent contour distributions of sources, vortices and dipoles is also given. 

1. Introduction 

Exact solutions for incompressible potential flow about specific foils provide both general 
trends and a basis for error analysis when numerical methods are employed. Numerical 
solutions for two-dimensional flow about profiles are generally adequate but some questions 
remain relative to accuracy, efficiency, choice of formulation and robustness. Even three-di- 
mensional procedures are often checked for proof-of-concept using two-dimensional solutions. 
If exact solutions are simple, they encourage quantitative error analysis (such as the a posteriori 
error measures defined by the sum of the absolute or squared error at a number of points, or 
the maximum error found over the discretized solution domain). 

A classic procedure for defining exact solutions for two-dimensional fields is the conformal 
transformation of the known flow about a simple body, such as a circular cylinder, to that 
about the desired shape. Ashley and Landahl (1965) catalog a variety of transformations that 
have produced useful results. One transformation not included in their survey is that proposed 
by Moriya (1938, 1941). This transformation stretches and rotates the field at great distances 
from the profile as distinct from others. This stretching also occurs in the profile geometry 
mapping and elongates the shape in the chordwise direction, similar to other mappings. When 
the number of coefficients is great, this feature is irrelevant, but with an approximate analysis - 
or a reduced number of terms - the stretching of the far field provides added flexibility in that 
convenient orientation of the foil is found together with a fixed chordlength. This is in contrast 
to other transformations, such as that of Joukowsky (1910) for which evaluation of complex 
expressions are required to define the exact shape and surface speed for fixed chordlength. The 
Moriya transformation is specified as 

C-J 
z=x+iy=- 

a 
+c,+ g c+, 

n=l 
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where z = x + iy is the complex coordinate of a point in the field for the flow about a profile; 5 
is the complex coordinate of a point in the field for flow about the simple configuration; a is a 
characteristic dimension of the simple configuration, and C, = A, + i B,,, n > - 1, are complex 
transformation constants that map the simple body and flow field to that about the profile. The 
region far from the profile ( 1 z 1 + co) is stretched by 1 C_ 1 1 = (A? 1 + B! ,)112 and rotated by 
(Ye = tan -‘(B _ I/A _ 1); hence the free-stream is different between the simple and profile planes. 

In addition to lift, moment, surface speed and geometry for selected foils, the strength of 
contour distributions of doublet, source, and vortex elements is presented and may also be 
useful in evaluation of numerical methods. 

2. Examples of exact-transformation profiles 

If the simple flow in the { plane were taken as that about a circular cylinder (with 
circulation), then with the four C,,u” consisting of only real terms, Anan, - 1 < n < 2, a 
mapping of the cylinder, [ = a eiV, to a symmetrical profile (x(q) = x(2n - cp), y(q) = -y(2a 
- cp)) produces the parametric profile coordinates 

x(‘P)=A,+(A_,+A,)coscp+/f2cos2~, 

y(v) = (A_, -A,) sin ‘p-A, sin 2~. (2) 

The chordwise extent of the foil is maximum at cp = 0 and 7. We take the ordinate to be 
specified (below) as a two-parameter family (E, 8) and require that the remaining two free 
transformation constants be such that the chord lies between 1 (cp = 0) and zero (q = T). These 
conditions are satisfied by the following mapping coefficients given as combinations of the two 
parameters (e, 8) for which there is stretching but no rotation (B_, = 0) of the far field 
between z and 5: 

A _1 = (1 + 2~)/4, A,, = (1 - 2r8)/2, A, = (1 - 2~)/4, A, = ~8, (3) 

then the profile specification (non-dimensionalized by the chordlength c) is: 

x(v) = (1 + cos (p)/2 + ~fS(cos 2~ - l), y(q) = e(sin cp - 6 sin 2~), (4) 

for which 0 G x(q) G 1, with the trailing edge located at 9, = 0 and the leading edge at rp = 71. It 
is clear that if the Joukowsky transformation (or an extended version of it) were employed 
(with A -1 a fixed constant, independent of the foil), then only three (of the four) conditions 
would be met (typically, the nose, x(a), is allowed to extend slightly upstream of the origin) or 
an increased number of mapping coefficients is required to have the chordlength extend from 0 
to 1. 

A significant simplification for relating the z and l planes is that the equation for x(q) can 
be inverted to find q(x): 

cp(x) = cos-i 
[l + 16&(2x + 4~8 - 1)]“2 - 1 

86E (5) 

For S = 0, E = in (7 = thickness/chord ratio) the ellipse is defined in eq. (4) and for 6 = +, 
E = 27/(3&), a shape similar to the symmetrical Joukowsky profile, with a cusped trailing 
edge, and maximum thickness at cp = 2~/3, is obtained: 

x(cp) = (1+ cos (p)/2 + *(co, 29 - l), y(q) = s(sin q-- :sin 2q). (6) 

For values of 6 between 0 and : a rounded trailing edge is specified and the shape is more like 
a conventional foil. An example of one of these intermediate foils is given by (c = 0.451277, 8 
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Fig. 1. Shape, surface speed and perturbation potential for (a) 10% ellipse and (b) 10% cusped-tail foils. 

= $), which has a maximum offset at cp = 1.94553, or x = 0.29339 and a rounded tail. Since the 
ellipse and cusped trailing-edge foil provide both a simple convex and a more complex inflected 
shape for error analysis with numerical methods, no further information is presented on such 
intermediate foils. The section shapes for the ellipse and cusped trailing-edge profile are shown 
in fig. 1 for 10% thick profiles. 

The surface speed in the profile plane is obtained from an implicit differentiation of F(l), 
the complex potential for the flow about the circular cylinder with a stagnation point at rp = 0: 

Hence, the reference speed U at great distances from the profile is: 

ZJ= aV/A_, (8) 

where V is the speed at great distances from the circular cylinder. The final expression for the 
non-dimensional surface speed (in the direction of increasing cp) is 

45 -=- (t + c)[sin 93 cos (Y + (1 - cos cp) sin a] = 
u 

[(dx/dq)‘+ (dy/dq)2]1’2 

v 
1 

cos Ly + v sin (y 
2 . (9) 

The fundamental solutions V, and Vz (for LY = 0 and (Y = n/2 respectively) can be linearly 
combined to give the surface speed at any angle of attack. 

The lift coefficient is obtained from the circulation defined in F(l): 

c = PUT 
L - = 87rA_t sin (Y = 27r(l+ 2~) sin (Y 

:pu2c 

and the clockwise moment coefficient about an arbitrary point (x0, yO) is: 

c,=M= 
:pU%2 

-4n[sin2a A_,(A,-x,-A,) +(cos~~--l)L,yo]. 

(10) 

(11) 

Hence the moment about the quarter chord ($, 0) is: 

C, = -w<(l + 26)(1- 26)/2 sin 2a 112) 
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or the aerodynamic center (point on x axis with fixed moment; equal to C,,, = 0 for the present 
case) is 

x ac =A,-A,=$+e(+s). (13) 

In some applications, the (real) scalar velocity potential @ at points on the surface of the 
profile is of interest. The potential for the total flow field is: 

@(~)/U=R~[F(~(~))~~_~.~~]/U=(~+L)[COS((F-~X)-(P sincz]. (14) 

The (real) perturbation velocity potential $I at point on the profile surface is: 

+/U=@(cp)/U-cosaX(q)-sitray 

= (: + E)[COS(cp - CX) - cp sin a] - cos (Y x(q) - sin a~(+), (15) 

where the angular variable cp is given by eq. (5) and (x(v), y(cp)) points are specified in eq. (4). 
Plots of the perturbation potential at points on the body surface for (Y = 0 and a/2 are also 
given in fig. 1. 

3. Singularity strength for contour distributions 

If a description of the flow field were sought to represent the perturbation potential in terms 
of the singularity strengths for insertion in Green’s third identity, then the value of the 
perturbation potential at points on the body contour (the doublet strength) is given by eq. (15) 
and the strength of the source distribution [a = (a+/an)/U] along the contour is: 

o=$$=-(cosan,+sinoln,), (16) 

where n, and nY are components of the exterior unit normal n = (n,, ny). If N = T x k, where 
T = (a/acp){ x( cp)i + y( rp)j} and k = i x j, then n = N/ 1 N I. A distribution of vortices on the 
contour - rather than dipoles - has a vector strength: 

y = yk = n X Vp = n X (q,t - Ue,)/U, (17) 

where qs is the surface speed given by eq. (9), v is the gradient operator, t = T/I T 1 is a unit 
vector tangent to the profile in the counterclockwise direction (k = n x t), and e, = cos (Y i + 
sin (Y j is a unit vector along the direction of the far-field velocity vector. Lamb (1932) extends 
consideration of the field to points located inside the contour (for which there is an arbitrary 
velocity potential pi) and defines both a modified doublet (II) and a modified source (a) 
distribution along the body contour: 

P=(G-Gi)d” for the doublet strength, 

a=n~[~(~-~~)]a/U=(l/U)a(~-~~),,% forthesourcestrength, (18) 

where B denotes values on the contour. We treat the perturbation velocity potential and take 
the internal potential to be opposite that for the free stream: 

&=-U(xcos(~+ysina). (19) 

This internal uniform stream brings the flow to rest inside the profile. The doublet and source 
strength along the contour are, respectively: 

/.t=((:+e)[cos(cp-a)-g,sina]=@/U, o=n*[(qst--Ue,)+Ue,]/U=O. 

(20) 

Thus for this particular choice of & there is a distribution about the contour of only doublets 
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with strength equal to the total potential on the surface. This doublet distribution may be 

converted to a vector vortex strength: 

y=nX(VCL)=q&. (21) 

For the non-lifting case, the singularity distribution can be taken as only sources. To 
eliminate the presence of doublets or vortices, a potential for the internal field must be 
constructed to cancel the external perturbation potential on the body, which at zero angle of 
attack is: 

~B=[(f+~)COScp-x(cp)]U=C[coScp-6cos2~]U+C,. (22) 

For elliptic profiles (for which 6 = 0), this is a straightforward construction. Let the internal 
potential, evaluated on the boundary for a general angle of attack, be: 

$i,B = 2cu[x(q) cos Q: + y(q) sin CX] 6=0 

= 7U[(l + cos q) cos QI + 7 sin 9, sin (r]/2, (23) 

then to within a constant, the following strengths are found: 

p= sin (~(1 + 7)[(1 - 7) sin cp - (p]/2, (24) 

u= -(lfT)n*e,= -(1+7) 
7 cos ‘p cos a+ sin ‘p sin IY 

(sin*q + 7’ costs)“* . 
(25) 

Hence for a = 0, there is a distribution of only sources along the contour of the ellipse. Other 
non-lifting configurations may also be represented by a contour distribution of only sources, 

but the expression for the strength is lengthy. 
For the circular cylinder, T = 1, eq. (24) reduces to a linearly varying doublet strength (or 

constant vortex strength) as a function of arc length along the contour that results from the 
circulation about the circular cylinder: 

p= -sincrg, or y= -2sinak (26) 

and a source distribution along the contour of strength: 

u= -2cos(v-a). (27) 

In several numerical procedures, a distribution of sources together with a special distribution 
of vortices is selected for the solution representation. A subdivision of the surface into 2N 
panels on the contour may be selected with constant (or variable) singularity strengths across 
the panel. The discretized equations are often evaluated by specifying 2N body boundary 
conditions and the Kutta condition that the body streamline leave the contour appropriately at 
the trailing edge. It is thus convenient to have 2N + 1 unknowns. Giesing (1964) selects the 
source strength on each of the 2N subdivisions of the contour and a constant vortex strength, 
y,,, as the 2 N + 1 unknowns. Hence, the circular cylinder is the only configuration shape for 
which the present analysis provides an analytic comparison. 

4. Cambered foils 

Foil shapes with camber can also be easily derived for coefficients with n Q 2: 

x(cp)=A,+(A_,+A,)coscp+A2cos2~+(B,-B_,)sincp+B2sin2~, 

Y(V) = B, + (A-1 -A,) sincp-A2sin2~+(B,+B_,)coscp+B,cos2~. (28) 
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If the four Ai (- 1 < i < 2) are the same as in eq. (3) and if the B, are chosen as follows: 

B-i= -(f+y)/2, B,=f/2+u, B,=(f-~)/2, B,= -f/2> (29) 

then the profile specification (for x(O) = 1 and dx/dq = 0 at cp = 0) is: 

x(cp)=(1+cos(p)/2+~6( cos 2~ - 1) +f(sin cp - +sin 2~), 

y(q) = <(sin ‘p - S sin 29) +f(l - cos 2~)/2 + y(1 - cos cp). (30) 

These equations have X(T) = 0 but dx/dq = - 2f at cp = 71. The minimum x value occurs at 
cp = T+ 19 where 13 = 4f/(l + 8~6) and the parameter y can be selected to make y = 0 there. 
Problems with chordlength not a unit value (i.e. c = x(O) - x(n + 0)) and difficulty with 
defining q(x) reduce the accessibility of the results for cambered foils. We give only a few 
more details for this family. The surface speed is 

4s 2(C_, I[sin(a-cu, - cp) - sin( a - a,)] _=- 
u 

[ (Wdd2 + @y/dd2]“2 

and the lift coefficient is 

c, = 8n/c(A%, + B!,)1’2 sin((Y - a,,) 

where 

=2a/c[(l+2~)~+4(f+y)~]~‘~ sin(a--a), 

) C_, 1 = (A?, + B?,)1’2 = [ (1 + 2~)~ + (2f)2]1’2/4, 

a,=tan-‘(B~,/A_,)=tan-‘[-2(f+y)/(l+2e)]. 

(32) 

Brockett (1965) presents some explicit calculations for selected foils but these shapes are 
generally not convenient because of the iteration required to produce data at selected chordwise 
stations. 

5. Summary 

Simple exact results for the flow about a class of symmetrical foils have been derived that 
are suitable for quantitative error analysis of numerical methods. The shape and flow variables 
at points on the foil contour are easily and directly obtained at arbitrary stations. The 
simplicity results from use of the Moriya transformation that stretches the solution domain far 
from the profile thus allowing an additional degree of freedom relative to more well known 
mappings when only a few terms are employed. 
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