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We discuss QED radiative corrections applied to narrow resonances in e+e annihilation. 
We establish a simple and precise prescription for extracting radiative corrections from experi- 
mental data. This prescription differs from those used in measurements of charm and bottom 
resonances and leads to resonance parameters which are significantly different. Using a simulation 
method, we calculate these differences, and conclude that the masses and widths of 4' and T 
resonances change by up to three standard deviations from presently accepted values. 

Introduction 

In  this paper  we examine the radiative corrections to very narrow resonances such 

as the q, and  7' particles. We focus on the de terminat ion  of their mass M, their total 

width F, and  their partial  width to electrons F °. Our  objective is to review 

exper imenta l  results that were obtained in analyses with incorrect radiative correc- 

tions. Our  analysis  shows in fact that the errors incurred are up to three times bigger 

than  the uncer ta int ies  quoted for the current  world averages [1]. 

In  sect 1, we present  the prescript ion for radiative corrections used in our 

analysis.  We briefly discuss why this t reatment  is a significant improvement  over 

that  used in  most  of the previous analyses of ~b and T resonance data. In sect. 2, we 

discuss in detail  our method for correcting existing data, the effects of different 

a lgori thms on the extraction of the resonance parameters,  and the effects of other 

possibly  re levant  differences between experiments.  In  sect. 3, we use our prescrip- 

t ion to refit the ~ and T resonances, and extract new values for the resonance 

parameters  in a way that is independent  of the experimental  conditions.  Sect. 4 is 
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dedicated to a discussion of the results, comparison with other results, and conclu- 
sions. 

1. Initial  state radiative correct ions  to narrow resonances  

In e + e -  collisions, the nominal collision energy, v~ = 2 E, is set by E, the energy 
of the incident beams. The actual c.m. energy available for the annihilation is 

reduced by bremsstrahlung to ¢ s ( 1 -  k ) ,  where kE is the total energy of the 

emitted photons. The observed cross section, Oob~(S ) at the nominal energy Cs, can 
be written as a convolution of the Born cross section o0(s(1 - k)) and a dimension- 
less sampling function f(k, s) [2], 

Oobs(S) = ff(k, s ) % ( s ( a  - k ) ) d k .  (1) 

In the vicinity of a quarkonium resonance we have 

s F  2 

O0 = O'n°nres "~- O'peak (S  --  m 2 )  2 Jr- s F  2 '  ( 2 )  

where M is the mass and F is the total width of the resonance. It is well known that 
f(k, s) is dominated by initial state effects [3]. Effects of final state radiation on the 
cross section are usually ignored at the fraction of a percent level. 

We employ the following expression for f ( k ,  s), based on the results of Kuraev 
and Fadin [4], truncated to first order in the hard photon terms, and to second order 
in the vertex terms: 

f (k ,s)=(l+Svp)( l+K)[f lk~-a( l+81+82)- f l (1-k/2)] ,  (3) 

where fl is the electron equivalent radiator thickness, 

2o(s) 
fl = - -  log __-77_2 - 1 . 

q7 m e 
(4) 

The 8 n terms arise from the leading parts of the vertex correction diagrams of order 
n, K is the K-factor, and 8vp is due to the photon vacuum polarization. These terms 
are all reproduced in the appendix. We note that for the hadronic contribution to 
the vacuum polarization, 8h, we use values based on a calculation by Berends and 
Komen  [5], namely 8 h = 1.1 _+ 0.5% at V~- -- 3 GeV, and 3.4 _+ 1.0% at ~/s -- 10 GeV. 
The quoted uncertainties are our estimates. The uncertainty in 8 h turns out to 
dominate  the error in our calculations. 
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In the past, most experimenters have fit the narrow resonances of the ~b and T 
families using a different expression for f (k,  s), based on the classic work of 
Jackson and Scharre [6], 

f ' ( k , s ) = a t o t a ( k ) + l e k B - l - ~ ( l - k / 2 ) ,  ~tot = al  -1- avp -~- K .  (5) 

Here 6(k) is the Dirac function. This expression was obtained from a first order 
perturbative calculation with the inclusion of exponentiation of soft photons. 

There are essential differences between the distribution functions f(k,  s) and 
f ' (k ,  s). The differences occur in second order in c~. First, in the formulation by 
Jackson and Scharre, the photon vacuum polarization 6"p is approximated by the 
electron loop 6 e only, excluding contributions from hadrons, muons, and ~- leptons, 
6 h, 6,, and 6~. Secondly, the vertex correction (1 +61) should multiply the 
bremsstrahlung term k s - l ,  at least to first order, and hence should enter as an 
overall multiplicative factor to this term, as in eq. (3). Thirdly, the vacuum 
polarization should also enter as an overall multiplicative constant. The factoriza- 
tion of the virtual terms arises naturally from those semi-classical formalisms which 
are based on factorization principles [7, 8]. This factorization of the virtual correc- 
tions can be checked to first order by doing an explicit second order calculation. A 
second order calculation [9] does not, however, determine unambiguously that the 62 
term factorizes, though it is a natural choice and it agrees with the Bloch Nordsieck 
theorem [10]. In the definition of f '(k,  s), the virtual corrections were not properly 
separated and the 6(k) terms gives a finite probability for the electron and positron 
to annihilate without soft photon emission, in direct disagreement with the 
Bloch-Nordsieck theorem. This locally distorts the cross section by a fraction 

10% at ~ =  3 GeV, and --- 14% at ~ - =  10 GeV. 

The convolution integral of a Breit-Wigner resonance cross section with f (k,  s) 
can be solved analytically. We use the expression given in the appendix, which was 
derived by Cahn [11] for the Z ° resonance. We have added the photon vacuum 
polarization and ~2 terms.  Since the energy spread of the incident beams, oE, is 
much greater than the resonance width, F, it dominates the shape of the visible 
resonance. We account for the energy spread by further convoluting the cross 
section with a gaussian resolution function of width o E. The convolution is done by 
numerical integration. We believe that the error associated with our use of eq. (3) is 
about 1%, coming mostly in normalization uncertainties associated with vacuum 
polarization. 

2. Distortion of the resonance shape and analysis method 

A resonance is described by its mass, M, and two of the following three 
parameters: the total width, F, the cross section integral A, and the cross section at 
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the peak, %eak" These three parameters are related by the equation 

1 A = 5rrFOpeak. (6) 

The observed width and maximum cross section are strongly influenced by the 
energy resolution o E and differ from the resonance parameters /" and Ope~k by 
orders of magnitude. 

In the following, we consider specifically the resonance cross section for the 
channel e + e - +  hadrons. The area under the resonance, A, is related to the 
measured partial width to electrons, Fee xp, and the branching ratio for this process, 

in our case Bh~ d, by 

6gr 2 
= I FexpB with = F h a d / F .  (7) A ~rFOpeak-- M 2 ¢ had, Bhad 

Under  the assumption, which has been experimentally verified [1], that the total 
width is the sum of the partial widths to hadrons and charged lepton pairs, and that 
the leptonic widths are all equal, we have 

F = F ~  p + m F ~  xp, and mB e+Bha d = l .  (8) 

Here m stands for the number of partial widths into lepton pairs, m = 2 for 
charmonium and m = 3 for bottomonium states. The leptonic branching ratios are 
determined experimentally, and therefore the relations above can be used to 
measure the quantities F and ~exp. 

We note explicitly the nature of F e×p, defined in eq. (8), and draw the distinction 
with the quantity of theoretical interest [12], F °. The physical coupling of the 
resonance to leptons through one photon is Fee ×p, which is obtained from the data by 
making all radiative corrections except vacuum polarization corrections. This is the 
quantity which, divided by the measured branching ratio, gives the total width. The 
value of F °, on the other hand, is drawn from the data by making all radiative 
corrections including vacuum polarization. Thus Fe ° reflects the coupling strength at 
tree level only. The quantity Fha a, which couples to the resonance mostly through 
three gluons, does not have QED vacuum polarization corrections, and in this case 
Fexp  = F0ad.  

had 
Historically, experimenters have generally included some level of vacuum polar- 

ization in their corrections, and have therefore implicitly extracted F °. For the 
remainder of our discussion we follow this precedent, though at the end we include 
values for Fee xp in summary tables. The relationship between the two quantities is 

Fe e x p =  (1 + 8vp)Fe ° . (9) 
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Fig. 1. The difference between the cross section for the F(9460) calculated with f (k ,  s) from eq. (3) and 
with f ' (k ,  s) from eq. (5) using the same input parameters. The solid line represents the difference for the 
full vacuum polarization terms in f ' (k,  s), while the broken line gives the difference for only the electron 

contribution the vacuum polarization. Ratio C is defined later in the text. 

Since radiative effects in the final states are negligible, the branching ratios do not 
depend on radiative corrections. Thus differences in the formulation of the radiative 
corrections will cause changes in two parameters, the integral A and the partial 

width F~ °. They will scale proportionally, with a factor that depends on the 

branching ratio for the particular channel under study. If one studies simultaneously 
the resonance cross sections into hadrons, muon pairs, and electron pairs, the three 
integrals will change by the same fraction, giving approximately the same change to 

F~ °, while the ratio between the three integrals (which determines the branching 
ratios) remains unchanged. Differences in the formulation of the functions f(k,  s) 
and f ' (k,  s) affect the resonance mass very little, at the level of one part in 105. 

The difference between our treatment of the radiative corrections and the formu- 
lation by Jackson and Scharre is illustrated in fig. 1. We plot the difference between 
the cross section for the ~°(9460) calculated with f(k,  s) and f '(k, s) using the same 
input parameters.  The cross section is overestimated by f '(k,  s) on and below the 
resonance, and is underestimated above the resonance. We illustrate both the case 

where the vacuum polarization in f '(k,  s) includes all terms, 6v' p = 6 e + 6~ + 67 + 8 h, 
and where it is reduced to the electron loop, •v'p : 6e" This latter case is the 
formulation that most previous experiments had used to fit narrow resonances. The 

use of the electron loop alone in the vacuum polarization reduces the difference in 
the predicted cross section at the peak resulting from the incorrect treatment of the 
virtual terms in f ' (k,  s). 

Because the discrepancy between the two radiative correction schemes varies 
across the resonance, one must take into consideration the distribution of data 
points. Experiments collect most of their luminosity on the peak. When the data are 
fit, the X 2 weights the points on the peak strongly, so that shifts in the free 
parameters  arising from the differences between f ( k , s )  and f ' (k ,s )  will be 
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influenced most strongly by the discrepancy between the two functions in the 
vicinity of the resonance peak. This is further enhanced by fluctuations in 
the non-resonant  cross section that can obscure the structure of the radiative tail of 
the resonance. Since f '(k,  s) consistently overestimates the resonance area, fits 

based on this function compensate by underestimating Fe °. In addition, f '(k,  s) 
suppresses the radiative tail and thereby leads to an overestimate of the non-reso- 
nant  cross section, which is also a free parameter of the fit. The magnitudes of the 

shifts in the parameters obtained by the fit to the resonance will depend on details 
that will vary from experiment to experiment, such as the ratio of resonant to 
non-resonant  cross section ( R / N R ) ,  the amount of integrated luminosity taken on 

the peak, and the energy spread of the machine. 
At the T(9460), for example, we have R / N R  = 5 and the radiative tail of the 

resonance is almost undetectable. The fitted values of F ° consequently reflect the 

large discrepancy in predictions of the peak height by the functions f(k,  s) and 
f ' (k,  s). Quantitatively, the fractional differences in the fitted values of F °, AF° /~  °, 
are almost equal to the fractional differences in the peak cross sections predicted by 

f ( k , s )  and f ' (k ,s) .  Any increase in the machine energy spread, o E, further 
enhances this effect as it further obscures the radiative tail. At the J / ~  (3097), where 
the machine energy spread is smaller, the radiative enhancement to the tail of the 
resonance is clearly observable, and the fit is more sensitive to the underestimate of 
the cross section at the resonance tail by f ' (k,s).  The total correction to the 
resonance integral or F~ ° is significantly smaller than the difference in the peak 

heights. 
The fractional difference in the total cross section (resonant plus non-resonant) 

for the T(9460) calculated using f(k,  s) and f ' (k,  s) with the same input parame- 

ters is shown in fig. 2. As in Fig. 1 f ' ( k ,  s) is calculated both for 8v' p = 6¢ + 6~ + 6~ + 
6 h and 6v' p = 8 e. Limits on the total change in Fe ° from fitting with f (k,  s) and 
f ' (k,  s) can be derived directly from fig. 2. The largest shift in F~ ° occurs if data 

points are taken only where the discrepancy is maximal (on the peak) and where it is 
minimal (about 20 MeV above). In this somewhat contrived scenario, the data above 
the resonance fix the non-resonant cross section, and the points on resonance 
determine F °. Fig. 2 illustrates that the shift in F ° caused by using f ' ( k ,  s) instead 
of f (k ,  s) to fit the data is 12% or 6%, depending on whether the full or the reduced 
vacuum polarization is included in f '(k,  s). In real experiments where the data 
points are more evenly distributed in energy, the changes in F ° will always be less 

than quoted above. 
To  correctly reproduce the complicated interplay of the fit parameters and to 

study the dependence and correlations among them, we resort to a technique of 
simulating the data obtained by various experiments to measure the + and 
resonances. We generate data points by calculating the cross section at a given 
energy V~ using our definition f (k,  s) and errors proportional to O(~ob ~ . Subse- 
quently, the generated data points are fit by functions based on both f(k,  s) and 
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Fig. 2. A comparison of the calculated hadronic cross section near the T(9460) resonance. The curves 
represent the fractional difference between the calculations using f(k, s) in eq. (3) and f '(k, s) in eq. (5) 
with the same input parameters. The solid line represents the difference for the full vacuum polarization 
terms in f'(k, s), while the broken line gives the difference for only the electron contribution the vacuum 

polarization. Ratio C is defined later in the text. 

f ' ( k ,  s). W e  s tudy  the changes to the f i t ted resonance  pa ramete r s  using the hadron ic  

cross  sect ions  only.  

F o r  a c o m p a c t  p resen ta t ion  of  the results in the fol lowing section we f ind it 

conven ien t  to in t roduce  the rat io  

(~tot 
C =  8 l + 8 v  p + 8 2 + K ,  (10) 

wi th  3to t a s  def ined  in eq. (5). Hence,  C takes in to  account  the inconsis tent  

t r e a tmen t  of  the vacuum polar iza t ion  terms in the l i terature,  as descr ibed  above.  

The  d e n o m i n a t o r  is the correct ion to the soft b remss t rah lung  term (i.e. the first 

term) in f ( k ,  s) when we assume the vir tual  terms are small.  In the denomina to r ,  we 

take  8vp = 8 e + 3u + 3, + 3 h, while the value of 3v' p impl ic i t ly  conta ined  in 3to t may  

be  r educed  to 6 e as in the Jackson and Scharre ansatz. Using the ansatz  we ob ta in  

C = 0.85 and  C = 0.70 at 3.1 GeV and 10 GeV, respectively.  Using full vacuum 

po l a r i z a t i on  in ~tot w e  obta in  C = 1.03. Since 82 is not  inc luded in 3tot, the ra t io  C is 

never  qui te  equal  to one. 

In  a d d i t i o n  to our  analysis  of  s imulated resonance  cross sections, we have also 

ref i t  o r ig ina l  M a r k  I da t a  [13] on the ~(3097) and ~(3685) resonances  to de te rmine  

which  of  the  two calculat ions  of the radia t ive  effects fit the da ta  best. We  analyze 

h a d r o n i c  cross  sect ions only and fix the lep tonic  b ranch ing  ratio.  F o r  the ~b(3097) 

we ob t a in  X 2 per  degree of f reedom of  27 .3 /22  and  30 .9 /22  using f ( k ,  s) and 

f ' ( k , s ) ,  respect ively.  F o r  the +(3685) the cor respond ing  resultg are  10 .4 /10  and 

12 .4 /10 .  The  two fi t t ing funct ions yield different  values for the parameters ,  but  
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nearly the same values of X 2. Thus, the similar quality of  the fits ensures that the 
extracted errors on the parameters are correct for both  fits. Based on the existing 

da ta  alone a discrimination between f (k,  s) and f '(k,  s) cannot  be made. We arrive 
at the same conclusion in the course of our analysis of simulated data. 

3. Analysis of simulated data 

In this section, we show how we apply corrections to published experimental 

results on the parameters  of narrow resonances based on fits to our simulated data. 

We deliberately consider only experiments listed in the 1986 Review of Particle 

Properties [1]. In changing values of the resonance parameters we strictly use 

in format ion  contained in the original experimental [14-18] and theoretical [6,19, 20] 

papers. References for the J /~ ,  ~', T(1S), T(2S)  and T(3S)  are given in [14], [15], 
[16], [17] and [18] respectively. In ref. [19, 20] the virtual terms are treated correctly 

but  because the nature of the J / ~  was not established at the time, the vacuum 

polar izat ion contr ibut ions are not explicitly included. 
In  order  to correct measurements based on data  we cannot  access and which have 

been corrected with eq. (5), we use the simulated data  as described in the previous 

section. We generate cross section data as a function of energy according to eq. (1) 

and eq. (3), with experimental parameters such as energy resolution equal to those 

of  the publ ished papers. We then fit the data to the convoluted cross sections 

obta ined  using the functions f (k,  s) and f '(k, s). The four free parameters of the fit 

are M and F, the mass and the total width of the resonance, the beam energy 

spread, o E, and the non-resonant  cross section, o n . . . . .  . Thus, B c, the branching ratio 

into e l ec t rons ,  is fixed at the world average value [1 ]. 
In  correct ing published values of the resonance parameters,  we take account  of 

the fact that  experiments differ f rom one another in several significant ways: 
1. No te  that  e+e - storage rings differ in their energy resolution. In the 3 GeV 

range, SPEAR,  A D O N E ,  and D O R I S  have roughly the same resolution, o E ~ 1 

MeV. A r o u n d  10 GeV, CESR and VEPP IV have an energy resolution of o E ~ 4 

MeV, while D O R I S  has o E ~ 8 MeV. In a comparison between our procedure and 

other  radiative correction procedures, a change in o E from 4 MeV to 8 MeV 
increases the correction to F ° by 0.5% (C = 1). We take this effect into account. Fig. 

3 shows the dependence of the F ° correction on the ratio C, for o E = 4 MeV and 

o E = 8 MeV. 
2. In different experiments, the percentages p of  the total luminosity collected on 

the resonance peak, as compared to below or above the peak, can vary substantially. 
To unders tand  the effect of this difference in the distribution of the data on the 

measurement  of  the mass and width, we have generated, for a given o E, two data  
sets, one with a fraction p = 0.3 and the other with p ~ 0.7 of the luminosity 

assigned to the peak of the resonance. For  this purpose the peak region is defined as 

M +  2o w For  the experiments considered, the accumulated data are distributed 
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diamonds) and 

wi th in  these limits.  The correct ion to the par t ia l  width  Fe °, for C = 1, Increases by  

1% when  we vary  the fract ion p f rom 0.3 to 0.7. F o r  every exper iment  under  study,  

we eva lua te  the fract ion p and then ob ta in  the specific correc t ion  by  in te rpo la t ion  

be tween  the results  for p = 0.3 and p = 0.7. The error  associa ted with this p rocedure  

is e s t ima ted  to be less than 0.5%. Fig. 4 shows the dependence  of the Fe ° correc t ion  

on the ra t io  C, for samples  with p = 0.3 and p = 0.7. 

3. Mos t  of  the measurements  on the g, and  T resonances  have been radia t ive ly  

co r rec t ed  based  on the prescr ip t ion  by  Jackson and Scharre [6]. F o r  these, we 

typ ica l ly  der ive  changes in F ° of  2% at the T(9460) by  fits to s imula ted  data.  One 

expe r imen t ,  unfor tuna te ly ,  a d d e d  the full and  correct  vacuum pola r iza t ion  to 

f ' (k ,  s), and  this resulted in a large correct ion to F~ ° of  = 9%. Two other  experi-  

men t s  de r ived  resonance  pa ramete r s  using a lgor i thms [19, 20] which are ident ical  to 

ours ,  except  for the vacuum polar iza t ion  and the 62 terms. 
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In summary, the fact that the changes to the resonance parameters vary from 

experiment to experiment is almost completely due to the differences in the 

radiative corrections that the various experimenters applied. The energy resolution 

and the statistical spread of the data have only small effect on the variation between 

experiments. 

If the fitting formula factorizes the virtual terms as in f (k ,s) ,  then missing 

vacuum polarization terms only enter as a correction to the normalization. This 

means that the fit predicts the mass correctly, but it underestimates the area under 

the resonance by a fraction approximately equal to 6 h + 6~ + 8~ + (~2. 
If the fitting formula separates real and virtual terms as in f '(k,  s), the problem is 

more complicated. The dependence of the correction on the ratio C is best found by 

fits to simulated data. When full vacuum polarization is used, i.e. C = 1.03-1.04, we 

find a systematic increase in the mass, the non-resonant cross section, and the beam 

energy spread, and a decrease in the leptonic width. This is consistent with fig. 1, 
and was also observed in simulated data at the Z ° resonance [2], where C = 1. When 

the virtual terms in f '(k, s) are set to zero, which is equivalent to setting ~tot = 0 in 

eq. (10), then C = 0 and f (k ,  s) and f '(k,  s) are identical in shape (the hard term is 
not significant), but their normalizations differ by a factor 1 + 61 + 62 + 6vp + K. 

This will produce no change in the mass, but will increase the leptonic width. 
Intermediate values of C will generate corrections to the leptonic width and mass as 

displayed in figs. 5 and 6. The shift in the mass AM is normalized to the energy 

resolution aE, because we find empirically that for a fixed ratio C the mass shift is 

proportional to a E. This behavior is attributed to the fact that the equivalent 

radiator thickness/3 is the same at the + and T to within 10%, and because f (k ,  s) 
has a very similar shape for the two resonance families. Notice also that above 

C = 0.8, AM/a  E remains constant. These curves can be used to correct experimen- 

tal results which are not listed here. 
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TABLE 1 

Summary of the corrections to the parameters of ~ and T resonances, listed by experiment 

New value New value 
Quantity Ref. F ° Fee ×p Old value 

F e, JAb(3097) Boyarski [14] 4.6 keV 4.8 keV 4.8 keV 
F e, J/+(3097) Baldini [14] 4.5 keV 4.7 keV 4.6 keV 
F e, J/~b(3097) Esposito [14] 4.5 keV 4.7 keV 4.6 keV 
F e, J/~/,(3097) Brandelik [14] 4.5 keV 4.6 keV 4.4 keV 

1~., q,(3685) Liith [15] 2.0 keV 2.1 keV 2.1 keV 
F c, ~(3685) Brandelik [15] 2.1 keV 2.2 keV 2.0 keV 
F e, T(9460) Berger [16] 1.36 keV 1.46 keV 1.33 keV 
F c, T(9460) Bock [16] 1.10 keV 1.18 kcV 1.08 keV 
I~, T(9460) Albrecht [16] 1.25 keV 1.34 keV 1.23 keV 
Fe, T(9460) Niczyporuk [16] 1.15 keV 1.24 keV 1.13 kcV 
Fc, T(9460) Tuts [16] 1.18 keV 1.27 keV 1.15 keV 
F e, T(9460) Giles [16] 1.42 keV 1.53 keV 1.30 keV 

Fe, T(10023) Bock [17] 0.40 keV 0.43 keV 0.39 keV 
F~, T(10023) Niczyporuk [17] 0.58 keV 0.62 keV 0.56 keV 
F~, T(10023) Albrecht [17] 0.60 keV 0.65 keV 0.58 keV 
F~, T(10023) Tuts [17] 0.58 keV 0.62 keV 0.56 keV 
I~, T(10023) Giles [17] 0.57 keV 0.61 keV 0.52 keV 
F~, T(10355) Tuts [18] 0.40 keV 0.32 keV 0.39 keV 
F~., T(10355) Giles [18] 0.46 keV 0.49 keV 0.42 keV 
M, T(9460) Artamonov [16] 9460.5 MeV - -  9460.6 MeV 
M, T(9460) Mac Kay [16] 9459.87 MeV - -  9459.97 MeV 
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TABLE 2 
New world averages for those resonance parameters which change by more than 50% of a 

standard deviation. Also given are the percentage change in the experimental quantities, and 
the statistical significance of the change in units of overall experimental error 

New world New world Fractional Statistical 
Quantity average [keV] average, i~ = I~ change change 

F °, J/+(3097) 4.57 ± 0.51 keV 4.53 _+ 0.35 keV -4.0% 0.50 
FJ ~, +(3685) - -  2.05 _+ 0.21 keV 0 0 
F °, T(9460) - -  1.279 _+ 0.050 keV 4.5% 1.1o 

FJ ~, T(10023) - -  0.569 _+ 0.033 keV 6.0% 1.0o 
FJ ~, T(10355) - -  0.423 + 0.031 keV 5.2% 0.% 

F~ ×p, J/+(3097) 4.77 +_ 0.51 keV 4.72 + 0.35 keV +0.4% 0.1o 
F~ ×p, +(3685) - -  2.14 + 0.21 keV 4.4% 0.40 
F~ ~p, T(9460) 1.376 + 0.050 keV 12.4% 3.00 
I[U p, T(10023) - -  0.612 _+ 0.033 keV 14.0% 2.3o 
Fp  p, T(10355) - -  0.455 + 0.031 keV 13.2% 1.7o 

F, T(9460) 48.5 ± 3.2 keV 12.6% 1.7o 
F, T(10023) - -  34.2 _+ 7.3 keV 14.0% 0.60 
M, ~0(9460) 9459.93 _+ 0.19 MeV - -  0.001% 0.5o 

T a b l e  1 l ists the values  of the masses  a n d  wid ths  of the + a n d  T r e sonances  f rom 

e x p e r i m e n t s  r e fe renced  in  the 1986 Review of Par t ic le  Proper t ies  [1]. Both previ-  

ous ly  m e a s u r e d  a n d  ref i t ted values  are given. W e  wou ld  l ike to po in t  ou t  tha t  ou r  

m e t h o d  is o n e  of  s imu la t ion ;  it shows f luc tua t ions  of typica l ly  2 - 3 %  in  the f i t ted 

p a r a m e t e r s  w h e n  cross sect ions are ass igned errors tha t  are c o m p a r a b l e  to those in  

p u b l i s h e d  expe r imen t s .  Likewise,  fits p e r f o r m e d  o n  the real  da t a  f rom a given 

e x p e r i m e n t  c a n  devia te  f rom our  values  at the few pe rcen t  level. The  overall  error  of 

o u r  m e t h o d ,  ba sed  on  m u c h  smal ler  p o i n t  to po in t  errors,  is conserva t ive ly  esti- 

m a t e d  to b e  1%. I t  is to be  a d d ed  in  q u a d r a t u r e  to the theoret ical  error  d iscussed in 

sect. 1. 

U s i n g  the  cor rec t ions  to F ° ,  we have der ived  the cor rec t ions  to F t ak ing  in to  

a c c o u n t  the  er ror  o n  the b r a n c h i n g  ratio.  W e  decoup le  the m e a s u r e m e n t  of FJ ~ a n d  

F b y  c o n s i s t e n t l y  us ing  the wor ld  average b r a n c h i n g  ra t io ,*  a n d  no t  the pa r t i cu l a r  

va lue  as m e a s u r e d  by  a g iven exper iment .  It  can  be easi ly shown  that  F ° a n d  B e can  

have  b o t h  i n d e p e n d e n t  a n d  cor re la ted  sources  of sys temat ics  w i th in  the same  

e x p e r i m e n t ,  a n d  our  m e t h o d  t ends  to e l imina te  such poss ib le  cor re la t ion .  N e w  and  

m o r e  prec ise  m e a s u r e m e n t s  of the l ep ton ic  b r a n c h i n g  ra t ios  cou ld  i n d u c e  s ign i f i can t  

c h a n g e s  in  the  va lues  of the tota l  widths .  

T a b l e  2 c o n t a i n s  the s u m m a r y  of ou r  results,  p r e sen t ed  in  the form of new  wor ld  

averages  for  the r e sonance  pa rame te r s  tha t  change  s ign i f ican t ly  wi th  our  new  

* We use branching ratios from ref. [1]. Refs. [22] and [23] also use a single average branching ratio to 
obtain F, but more recent measurements are included there. 
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analysis .  Quan t i t i e s  winch do not  change the world average by  at least  50% of  a 

s t a n d a r d  dev ia t ion  are not  listed, a l though we have inc luded  the lep tonic  widths  for 

all  five na r row  resonances.  We have only inc luded in the analysis  resonances  which 

are  be low the threshold for open flavor product ion .  The  correct ions  to resonance  

p a r a m e t e r s  above  this threshold resemble  the correct ions  discussed for the Z ° [2], 

and  are  small .  This  is true even for the T(4S) ,  which has a shape that  has been 

m e a s u r e d  wi th  far  higher precis ion than any other  open flavor resonance.  In this 

case, the cor rec t ions  to all three resonance  pa ramete r s  are less than 50% of  the 

overa l l  expe r imen ta l  error. 

4. Conclusions and discussion 

In  conclus ion,  we have appl ied  an improved  prescr ip t ion  for Q E D  radia t ive  

co r rec t ions  to na r row resonance  p roduc t ion  in e+e  - annihi la t ion.  The es t imated  

u n c e r t a i n t y  of  1% in the 3 -10  GeV region of center  of  mass  energy is domina t ed  by  

the u n d e r s t a n d i n g  of the hadron  par t  of the p h o t o n  vacuum pola r iza t ion  [21]*. The 

m e t h o d o l o g y  used here for the re-f i t t ing of  ~ and T states takes into account  

d i f ferences  in the da ta  of the var ious  exper iments .  The observed shifts of  the mass, 

to ta l  width ,  and  electron par t ia l  width  of these resonances  are small,  but  when we 

c o m b i n e  the new values for all exper iments  and  form new world  averages, the 

changes  are  significant .  The values of several quant i t ies  change as a result  of  our  

r eeva lua t ion  of  the radia t ive  correct ions  by  up to three s t andard  deviat ions.  The 

imp l i ca t i ons  of  the reanalysis  of ~p and T states for qua rkon ium potent ia l  models  

have  been  d iscussed  elsewhere [22, 23]**. 

Recen t ly  two other  papers  [22,23] have deal t  with the subject  of rad ia t ive  

co r rec t ions  to na r row resonances.  Both use a fo rmula t ion  that  is consis tent  with eq. 

(3). However ,  Buchmii l ler  and Cooper  [23] rescale the results  for the ~0 states using 

on ly  the peaks  of  the resonances,  thereby ob ta in ing  changes to world  averages which 

are  s l ight ly  larger  than ours. The  correc t ion  method  of KSn igsmann  [22] gives 

resul ts  for the  T resonances  which are near ly  ident ical  to those of ref. [23]. However ,  

his resul ts  for  the + states differ  subs tant ia l ly  f rom ours, and we believe that  this is 

because  our  me thod  of s imulat ing cross sect ion da ta  correct ly  accounts  for the 

var ious  nont r iv ia l  effects arising f rom a resonance  fit. As discussed in sect. 2, the 

J/~b and  ~b' resonance  da ta  are more  sensitive to these effects than are the T data .  

* Since 8 h is calculated from a dispersion relation integral which includes low energy c+e --, hadrons 
data, then a better understanding of the ~ and T families could, in principle, reduce the error on 8 h 
at ~/~ < 100 GeV, which may ultimately limit tests of the Standard Model at the Z ° resonance. 
However, our analysis has a negligible impact on the overall error for 6 h of 3 6%, as determined in 
the recent calculations of ref. [21]. 

** We do not support the statement that the treatment by Kuraev and Fadin does not include vacuum 
polarization [see eq. (6), ref. [4]]. However. this is not relevant for the analysis of this paper. 
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Appendix A 
We use in our analysis the form of the distribution function f(k, s) from eq. (3) 

which has been convoluted [see eq. (1)] analytically with a Breit-Wigner according 
to Cahn [11]. We add, however, the 6 2 and 8vp terms given below. We then 
convolute this result, g(s), with a gaussian energy resolution function. 

r 2 [ s  ~ /3 
g(s)=o1(l+a1+82)r:+M ~[~-~a :,~(cose,/3)-a~ ~1+---~ • (cos 0,1 +/3)] 

~/sF [ 2M 2 ( M - f ' s - ) ]  
-o l /3-- : -  tan -1 _ _  _ tan-1 

F F ' 

where 

% = Opeak(1 + 8vp)(1 + K ) .  (A.1) 

Ref. (4) yields the result: 

31 = 3/3, (A.2) 

fl2(124 k 3 s 37) 8 2 = -  • log _-2-7_2 + 2 w  2 - -  . (A.3) 
m e 

The K-factor is defined as (a is the fine structure constant) 

K = - . (A.4) 
~r 3 

The vacuum polarization term is given by the sum of the loops over leptons and 
hadrons, 

8vp = 81+ 8h, with Be= 8 e -I- 8t2 "q- 8, r . (A.5) 

The vacuum polarization contribution of charged leptons of mass m i is 

2 a ( 5  1 m 2 ) 
8 , = - E 7 \ ~ +  ~log s . (A.6) 
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T h e  q u a n t i t i e s  a ,  cos  v, a n d  q~(cos 0, f l )  a re  d e f i n e d  as  fo l lows:  

59 

M 2 ( s / M  2 -- 1) 2 -'l'- F 2 ( s / M 2 )  2 

a 2 = F2 + M 2  ; (A.7) 

M 2 ( s / M  2 - 1) + r2(,/M 2) 
cos  0 = - ; ( A . 8 )  

a ( F 2 + M  2) 

rrfi s i n ( ( 1  - f l ) O )  
q) (cos  0,  ,8) = ( A . 9 )  

s in  0~ s in  0 
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