
Theoretical Computer Science 65 (1989) 85-119
North-Holland

85

FULL ABSTRACTION AND LIMITING COMPLETENESS
IN EQUATIONAL LANGUAGES

Satish R. THATTE

Department of Electrical Engineering and Computer Science, The University of Michigan,

Ann Arbor, MI 48109, U.S.A.

Communicated by M. Nivat

Received January 1988

Abstract. This paper introduces a notion of full abstraction for equational languages under which

each language has a unique fully abstract model which can also be characterized as the $na/

object in a category of coherent computable models for the language. We describe two potentially

different approaches to limiting completeness with respect to the fully abstract model-a traditional

one based on normal forms and a new one based on the usable data content of terms. The former

is used to prove limiting completeness for the language of regular .~~xtem.s [5] which includes as

subsets and restrictions the equational parts of many other languages. The latter is used to define

an abstract version of limiting completeness based on information .yJ’stem.s [171 which allows us

to derive a set of sufficient conditions for an equational language to be limiting complete for its
fully abstract semantics. We discuss cases where the two notions coincide-as they do for regular

systems-and cases where they do not. We believe that limiting completeness based on observable

data content accurately reflects programming intuition. If this thesis is accepted, the appropriate-

ness of the corresponding definition of approximant can be seen as a design principle to test the

mutual suitability of the parameters defining a language.

Contents

1. Introduction ..
2. Languages, models, full abstraction and finality
3. Limiting completeness with approximate normal forms

3.1. Term rewriting and regular systems
3.2. Approximate normal forms and limiting completeness.
3.3. Proofofkeylemmas ...

3.4. Review ...

4. A general limiting completeness construction based on observable data content
4.1. Representing observable data content
4.2. In formation systems ..
4.3. The general limiting model ...

5. Concluding remarks ...

Acknowledgment ..

References ...

86
87

94

9s

98

102

107

109

109
112

114

118

118
118

0304-3975/89/$3.50 @) 1989, Elsevier Science Publishers B.V. (North-Holland)

86 S.R. 77mrte

1. Introduction

We present a study of the semantics of programming languages (or those of their

parts) which are based on the use of equational methods. Examples include Standard

ML [ll], Miranda’ [20] and the equational language of Hoffmann and O’Donnell

[5]. Operationally, equational computation can be understood as term rewriting

and various aspects of this behavior have been thoroughly studied [6,7, 14, 191. The

denotational properties have been studied by Nivat [13] and the ADJ group [I, 21

using the notion of initiality. Raoult and Vuillemin [161 have used a more complex

approach to establish a correspondence between the denotational and operational

properties of their language along the lines of full abstraction [lo]. Intuitively,

initiality formalizes a view of equational computation as a completely transparent

visible process, while full abstraction views an equational program as a black box

with both visible and invisible aspects; the visible values being typically those

involved in input/output. The latter is a realistic view for many applications and it

is the one we are concerned with in this paper.

We would like the denotational semantics of an equational language to possess

two properties. It should on the one hand be abstract enough to semantically identify

two expressions whenever there is no visible way to distinguish between them, i.e.,

it should not impose distinctions based on differences in internal representation.

This is the intuition in full abstraction which is important in applications such as

program transformation. On the other hand, the semantics should not be so abstract

that equational rewriting is too weak to even approach the computational realization

of semantic equality for closed (or ground) expressions. Otherwise the semantics

could not be considered realistic. The notion of computability in the limit is required

since equationally defined expressions can intuitively denote values with infinite

extensions (like infinite lists or trees). One therefore cannot expect semantic equality

to be recursive, and one certainly cannot expect simple equational deduction to be

complete even for ground equations with respect to a sufficiently abstract semantics.

Wadsworth [21] introduced the idea of limiting completeness when faced with a

similar problem in his study of the D, model of the h-calculus. In the D, model,

semantic domains containing infinite values are constructed as completions of

partially ordered sets of finite values in which the infinite values arise as least upper

bounds (LUBs) of all their finite approximations. Limiting completeness uses the

idea of appnximants, which are a special class of expressions representing finite

values-each expression has a best direct approximant which represents its

“manifest” value, i.e., that part of its value which is apparent without further

evaluation. The operational semantics of a language (e.g., p-reduction for the

A-calculus) is complete in the limit if the LUB of the (possibly infinite) set of

approximants of the results of finite partial evaluations of an expression is (isomor-

phic to) the denotation of the expression. In short, this is the operational counterpart

’ Miranda is a trademark of Research Software Ltd.

Equational languages 87

of the idea of continuity, and it is sufficient to ensure computation of semantic

equality in the limit.

Our work can be viewed as an application of these ideas to equational languages.

We show that it is possible to extend the idea of finality to models of equational

languages to obtain a model which is the “right one” according to both of the

criteria outlined above. We give a general definition of full abstraction for equational

languages using sets of uisible terms (e.g., {true, false, 0, succ”(0))) as observable

values in place of ground domains. A unique fully abstract model in this sense

exists for each language. We then show in Section 2 that the final model for any

equational language is fully abstract provided that

l models for individual programs are constrained to be computable for visible values;

l models for entire equational languages are constrained to be coherent with respect

to language parameters in a natural sense.

The rest of the paper explores limiting completeness with respect to the final, or

equivalently, fully abstract model. We describe two potentially different approaches

to defining approximants; a traditional one based on normal forms and a new one

based on the usable data content of terms. In Section 3 the former is used to prove

limiting completeness for the language of regular systems [5] (elsewhere called

nonambiguous linear term rewriting systems [6]), which is the most general syntacti-

cally well-demarcated language of deterministic rewriting systems in current use

and includes as subsets and restrictions the equational parts of the three languages

mentioned at the beginning. This confirms a conjecture in [6]. The latter approach

is used in Section 4 to describe a more abstract version of limiting completeness

based on information systems [17] which allows us to derive a set of sufficient

conditions for an equational language to be limiting complete for its final semantics.

We discuss cases where the two notions of approximant coincide-as they do for

regular systems-and cases where they do not. The two notions are not comparable

in their generality in that there are cases where one leads to limiting completeness

while the other does not, and vice versa. Finally, it is worth noting that besides

allowing the construction of a language independent limiting operational model,

the use of information systems reveals the fact that the functions and values computed

by equational programs usually possess the pleasant properties that are traditionally

assumed for the base values and functions which are used with h-calculus dialects,

and often supplied in real life by equational definitions.

2. Languages, models, full abstraction and finality

We begin by defining the precise notions of program, language, and model which

we use in the rest of this paper. Since we are considering first-order equational

programs, we borrow most of the machinery for describing syntactic and semantic

aspects of individual programs from the literature on the semantics of algebraic

88 S. R. Thntte

specifications. It is assumed that the reader is familiar with the basic notions of

algebraic semantics. An excellent introduction is given in [2]. The description of

an equational language, in addition to describing a collection of programs, also

needs to specify the language specific aspects of observable behavior. In our case

this consists of the notions of visible terms and program extension.

Visible terms are one way to formalize whar is visible. Unlike the A-calculus,

where the basic domains and functions used for this purpose are usually external

to the language, our visible values are also algebraically specified. We choose a

simple but realistic approach in which the language description specifies a signature

of visible constructor symbols, and any well-formed term constructed from these

symbols is considered visible. The following is a typical example of such a signature:

zero: + Nat, succ: Nat + Nat,

true: + Bool, jizlse: + Bool.

Thus true and succ(zero) are visible values of sort Boo1 and Nut respectively, but

even if plus(zero, zero) is of sort Nut, it is not visible since it involves the non-visible

operator plus. We assume that the notion of what is visible is common to all programs

in a language.

Program extension is involved in deciding what is a legitimate context for observa-

tion of “external” behavior. Clearly, the specific notion of context one uses is crucial

to the meaning of full abstraction. Plotkin [15] and Milner [lo] first explored full

abstraction for typed dialects of the A-calculus using expression contexts. Expression

contexts were also used by Wadsworth [21] for the untyped A-calculus. This makes

sense because a program in a A-calculus is an expression. When full abstraction

was considered by Raoult and Vuillemin [16] for an equational language, they

extended the notion of context to include all expressions in all possible extensions

of a program, where the extension relation was taken to be simply inclusion between

programs as sets of equations. Their adaptation takes account of the full power of

discrimination to which the meaning of an expression may be subjected in practice.

Of course, languages may use a notion of extension which does not coincide with

inclusion. For instance, languages like Miranda require the equations for a single

function definition to be grouped together as a syntactic unit. In such cases, extension

is most naturally understood as consisting of new function definitions, rather than

the arbitrary addition of equations including new equations for previously defined

functions. We therefore include the specific notion of extension as a parameter in

the language description.

Formally, an equational language will be a triple (!N, <, 0) where !‘ri is the set

of programs (3, Y range over individual programs), < denotes program extension

which is assumed to be a partial order over !Ji and 0 is a (many-sorted) signature

over the visible sorts V. All O-terms will be called visible terms. A program &

consists of

(1) A signature _X 2 0 over a set SZ V of sorts.

Equational languages 89

(2) A countable set, also called 2, of (oriented) E-equations, thought of as rewrite

rules.

It is assumed that all O-terms are normal forms in all programs. We use the program

name as a subscript to distinguish between different signatures when needed. It is

assumed that if % < Y then %! c Y and I,, c 2,.

The initial E-algebra will be denoted by T,, and TL will also be used to denote

the (many-sorted) set of all C-terms. Given a X-algebra A, the unique evaluation

morphism from Tz to A which simply evaluates terms according to their interpreta-

tion in A will be denoted ambiguously by A itself. A E.,-algebra A satisfies d if

A(t,) = A(t,) for every ground instance t , , t, of an equation in 3. It respects visible

terms if A(t,) f A(t2) for any pair t,, 1 t of distinct O-terms. It is I,,-reachable if

the unique homomorphism from TLn to A is surjective. Any reasonable program

model must satisfy these three conditions. The reason for the first is obvious. Respect

for visible terms ensures that visible distinctions such as those between, e.g., true

and false, are not compromised. This is just a version of the idea of consistency.

Reachability is not always considered essential. For instance, the standard models

of the A-calculus are not reachable. For a final semantics, reachability is technically

convenient, and in any case, one is really only interested in the reachable part of

any model. It is usually easy to restrict a model to its reachable part.

One of the basic results of algebraic semantics [2] is that there is an initial algebra

in the category of Z,,-algebras which satisfy .(Jn. This algebra semantically identifies

ground terms exactly when their equality is provable from the equations. We use

the notation = fl to denote semantic equality in the initial algebra for %!, or,

equivalently, provable equality within 9. It is obvious that the initial algebra for ti

satisfies LB, respects visible terms and is Z,,-reachable.

In addition to the three properties defined above, a model for a program i%, needs

to be computable for visible results in the sense of the following definition.

2.1. Definition. A Z.,-algebra A is %-computable if for each t E T,,, v E T,,, A(t) =

A(v) e t=#v.

To put it another way, a E‘,-algebra is 9?.-computable if the word problem for

visible terms is solvable with simple equational deduction. The connection between

=,# and “real” computation is that for confluent programs (see Section 3.1 for a

definition), equational deduction can be implemented with rewriting. This notion

of computability is natural for the semantics of programs (cf. the “termination

lemma” in [16]) because the ultimate means of observation in a program is the

output of actual execution, and visible terms represent values that can be output.

It would be strange to claim in such an environment that an expression is semantically

equal to 1, say, when upon evaluation it does not yield 1 as output. Our definition

of computability differs from the one given by Goguen and Meseguer [3] in two

ways. They require the word problem to be solvable for all terms, but do not restrict

the decision procedure to be simply =,*. We feel that their definition is appropriate

90 S.R. Thatte

for models of data type specifications rather than programs. Note that %-computa-

bility is a stronger version of respect for distinctions between visible terms. The

respect condition can therefore be left out when computability is required.

A I,fi-algebra A is a model for a program 3 if A satisfies 3, is &-reachable and

Z-computable. Should a model for a language be anything more than a collection

of program models? It is natural to require some coherence conditions based on

the common language parameters-visible terms and extensions. Visible terms are

already respected by program models. Technically, we need a coherence condition

related to extensions which will allow us to derive the fully abstract model (yet to

be defined, but known to depend on extensions to provide contexts for observation)

as the final model in the category of language models. There is a very natural

condition which meets this criterion. The elements of an equational program always

support a dual interpretation (mediated by confluence or some similar restriction)

as equations that must be satisfied and as rewrite rules that must be able to compute

visible results. We have assumed that a program extension always amounts to adding

new equations. Intuitively, when one adds new equations, one does not mean to

discriminate between expressions that were known to be equal as a consequence of

equations that were present before the addition. One could not reason about a

program with any security if the reasoning may be rendered invalid when the

program is extended. This leads to the notion of stable extension which is the

coherence condition we need. Given J (i < 9, a model B for Y is said to be a stable

extension of a model A for % if there is a homomorphism h : A + BII, where B12,>

denotes the reduct of B to E,,, i.e., B considered as a ,X,-algebra. A less abstract

way to understand stable extension when A and B are Z;,-reachable is that it

requires A(t,) = A(t2) 3 B(t,) = B(t2) for all E./-terms t,, t2. A model SI for a

language (!I], < , 0) assigns an algebra &.a to each program % E 91, such that

(1) & is a model for 3;

(2) 93 < Y implies &,, is a stable extension of ti.*.

Algebraic semantics traditionally considers initiality or finality in categories of

algebras for individual programs. This approach can be extended to models of

languages in a natural way. If & and %’ are models of a language (!I{, <, O), then

a morphism 4: .d+ % is simply a collection {&: sdR + B.a 1% E!]{} of &

homomorphisms. It is easy to show that, whenever 3 < 9, and ~2 and cpz are the

homomorphisms from the models of %! to those of Y in & and 93 respectively, the

following diagram commutes

The models of a language together with the morphisms between them clearly

form a category. The existence of an initial language model follows easily from the

Equational languages 91

existence of initial program models-the former is simply the collection of all initial

program models together with the obvious homomorphisms guaranteed by initiality.

We now show that the final model is also guaranteed to exist, and is moreover

always the fully abstract model for the language.

In defining the fully abstract model for an arbitrary equational language, the key

step is a definition of observably distinct behavior. Informally, one can say that two

expressions are observably distinct when there is a context in which insertion of

each leads to two distinct visible results. In classical terminology, two expressions

which are distinct in this sense are said to be separable. This definition is actually

too strong because it does not take into account distinctions between unsolvable

and solvable expressions. For instance, suppose g is defined by the equation “g = g”.

Clearly, g is unsolvable and does not provide any information about its value. In

most languages, g will not be separable from any other term because any context

in which the insertion of g leads to a visible result must essentially ignore the

inserted term, which means that the insertion of any other term also leads to exactly

the same visible result. A more realistic definition is obtained if separability is

weakened by not requiring the insertion of both expressions to produce visible

results. Wadsworth [21] used a similar weakening of separability which he called

semi-separability in studying the correspondence between operational and denota-

tional distinctions in the h-calculus. In order to give a version for equational

languages, it is necessary to introduce the notion of a (term) context, which needs

a few syntactic notions about terms.

Syntactically, X-terms are understood as trees labeled with a function symbol

from 1 at each node. The symbols at leaves may also be variables. A subterm is

just a subtree reached by a path (which we shall sometimes also call an occurrence).

A path p is a (possibly empty) string of integers, and t/p denotes the subterm

reached by p in term t. The empty path A reaches the term itself, the string “k”

reaches the kth argument, “km” reaches the mth argument of the kth argument,

etc. Given paths p and 9, p. q denotes their concatenation. The symbols G and <

denote the prefix and proper prtZfix relations on paths respectively. Paths(t) denotes

the set of all paths that reach some subterm in t. The expression t[p + w] denotes

the term obtained by replacing t/p at p by w. Paths p and 4 are independent if

neither p d q nor q s p.

A context is a pair (c, q) such that c is a term and q is a path in c. A context in

which q = A is said to be empty. Following traditional notation, a context will be

denoted by C[1, and the term obtained by inserting a term t in C[] will be written

as C[t]. If C[] = (c, q) then C[t] = c[q+ t].

2.2. Definition. Two ground terms t and u are said to be separable in 3 iff there

is an extension 9 of 3 and a context C[] such that C[t] =:, u and C[u] =‘, w,

for some u, w E T,,, u # w. We write t = ,rl u to mean that t and u are not separable.

It is possible to show that separability is closely connected to the final object (if

it exists) in the category of all models for a language if the requirement that program

92 S.R. Thutte

models must be computable is replaced by the weaker requirement that distinctions

between visible terms must be respected. Indeed, the final object exists ifT the relation

--,n is a congruence on TLn for each program !%, and the final object in this case

is obtained by simply taking the quotient TL,/== n as the model for each program.

These ideas are more relevant to the semantics of abstract data type specifications,

and are discussed elsewhere [12]. As it happens, such a final object does not exist

for most equational programming languages precisely because this notion is “too

strong” in the sense of the discussion above. We now defne the more relevant notion.

2.3. Definition. Two ground terms t and II are said to be semi-separable in 9 iff

there is an extension Y of 9 and a context C[] such that C[r] = , v and C[U] # ‘, U,

or is vice versa, for some u E T(.). We write t= n u to mean that f and u are not

semi-separable.

It is not difficult to prove that every language has a model in which semantic

equality for each program SZ coincides with z,~.

2.4. Lemma. The relation = ,n is a congruence on T,,.

Proof. It is obvious that =,# is reflexive, transitive and symmetric. To see t, =.n u,,

1 s is k, impliesf’(t,, . . , t,)=.,f‘(u,, . , IA,), suppose that C[f(t,, . . , t,,)]=.,, v
for some context C[1. By the definition of = n, using the rest of the term as the

context for t, at each step, we have

C[J‘(t,, . . . 7 t,,)l=nC[f'(U,, t?,...,f~)I=.nC‘[.f(U,,U7,'.', t,)l

=,c[.l'(u,,u,,...,u,,)l=.~. q

We would like the required language model to assign to each program 9 the

quotient T, ,/ = 7 as its meaning. It is obvious that the quotient satisfies 3 and is

Z,,-reachable. It respects visible terms and is .“R-computable because an empty

context can be used to semi-separate a visible term from any term not provably

equivalent to it. The model also satisfies the stable extension property.

2.5. Lemma. t, =,# t, * t, =,, tZ ,for all Y< 8.

Proof. Easy given the observation that any extension of Y is also an extension of

.9 by the transitivity of <. Any demonstration of semi-separability in Y is also a

demonstration of semi-separability in &. 0

We can now define full abstraction.

2.6. Definition. ~4 is the fu/l~j abstract model for (!I, =S , 0) iff &.fi(t,) = d,#(f2) ti
t, = yp t2.

Equational languages 93

The fully abstract model is obviously unique up to isomorphism. It is interesting

to compare this definition with the direct counterpart of the original definition of

full abstraction [lo]. We shall call a model satisfying the original definition a

Milner- Plotkin model.

2.7. Definition. .d is a Milner-Plotkin model if .&(t,) = &.#(tz) @ A,/(C[t,]) =

&J:,(C[tJ) for all Yz= 3 and all nonempty C[1.

Full abstraction in the Milner-Plotkin sense is a rather weak property for pure

equational languages. In particular, Milner-Plotkin models are not unique. It is

straightforward to show that the fully abstract model for a language is a Milner-

Plotkin model, subject to the following simple constraint.

2.8. Definition. We shall say that the language (!N, <, 0) is articulated ifi whenever

there is a term t E 7” n and a visible term u such that t Z.# u, there is a nonempty

context C[] which semi-separates t and u. 0

An articulated language is simply one that is sufficiently fleshed out to allow the

definition of a function to recognize a visible term in any program, as all real

languages obviously do. The easiest context to effect the separation would normally

be a visible context.

2.9. Theorem. If 3 = (!I{, 6, 0) is articulated then the fully abstract model ,for 3 is

a Milner- Plotkin model.

Proof. Suppose ti is the fully abstract model. Given Lemmas 2.4 and 2.5, it is

obvious that &.fl (t,) = d, (t2) implies &, (C[t,]) = .&, (C[tJ) for all .‘P + ,%! and

all C[1. The converse, if &:,(C[t,]) = .J&,(C[t,]) for all Yz= %! and all nonempty

C[] then %ti4:*(t,) = d (R(tJ, follows from the definition of = since equality in .&

coincides with =. The only contexts involved in the definition of =!# which are

missing in the antecedent of the converse are the empty ones. However, if t, =:, u

but t2 f,. u for some Y > 3 and visible term II, then in an articulated language there

is a nonempty context C[] and Y’& .cP which can be used to separate t, from v,

and therefore also from t,. The “missing” contexts therefore do not provide new

information. 0

To show that the final model is fully abstract, we need the following lemma.

2.10. Lemma. A model ,ti isjinal in a category of models for a given language i’for

every model 93 in the category, any program 3 and any t, u E TX I)’ B3, (t) = B,,(u) 3

d:,(t) = .dfl(u).

94 S. R. Thatte

Proof. Easy with the observation that there is a homomorphism from %I:,, to &,a

iff %,,(t)=%.,(u) + &,fi(t)=&(u) when both B,* and dfl are .X9-reach-

able. 17

2.11. Theorem. For any language 2 = (!)I, =s, @), there is a jinal object .PZ? in the

category qf models for Y. Moreover, s4 is the fully abstract model ,for 2.

Proof. The proof naturally proceeds by showing that the fully abstract model &

for Y is final in the category of models for 2. Suppose % is a model for Y, and

S,,(t) = S,,(u). We need to show that cd,ti(t) = .d,,(u). Suppose by way of contra-

diction that %d,)(t) # S,,(u). There is therefore a context C[] and an extension Y

of & such that C[t] =.., v and C[u] f ,, v, for some v E T(.). Since ,%‘:, is computable,

%I!:,(C[t]) = v and %:, (C[u]) # v. Since .%, (as a morphism) is homomorphic,

Bo:, (t) # .3&,(u). This contradicts the assumption that %I is a model since the stable

extension condition in the definition of language models is violated. 0

The definitions and results of this section are completely general. For instance

they apply to Raoult and Vuillemin’s language [16] of simple recursive equations

and canonical simplification rules, with a single visible constant 0. Raoult and

Vuillemin have shown that the fully abstract model for their language is initial in

the category of models which assign least extensions of algebras satisfying the

simplification rules component of each program. Theorem 2.11 shows that it can

also be characterized as being ,final in a natural category of models. The concrete

fully abstract model they construct uses approximate terms and approximate reduc-

tion (see next section) and as such can be seen as a proof of limiting completeness.

We now turn to proving limiting completeness for a different language-the language

of regular systems.

3. Limiting completeness with approximate normal forms

Limiting completeness is a language specific property, since it amounts to an

assertion about the power of actual computation in a language. We would like to

show that realistic equational languages have sufficient computing power to realize

their final semantics. Such a proof needs a detailed and complex analysis of term

rewriting in the chosen language [16,22]. In this section we consider limiting

completeness based on approximate normal forms as the partial finite operational

values of expressions. We have chosen the language of regular systems [.5] as a test

case both because it includes as subsets many current languages and also because

quite a bit is already known about its operational behavior, including a standard

definition of approximate normal forms. The first part of this section is a review of

the notation and terminology of term rewriting and important definitions and results

Equational languages 95

about regular systems from the literature. We then construct the limiting operational

model for the language and show that it is isomorphic to the final model.

3.1. Term rewriting and regular systems

We begin by reviewing some of the standard machinery of term rewriting systems,

i.e., of the operational semantics of equational programs. Our notation is similar to

that of [6]. The ideas of paths, subterms and contexts were introduced in Section 2.

An equational program % is described by a countable set of rewrite rules which are

just ordered pairs of terms with variables. The operational interpretation of 9. is

embodied in the usual reduction relation +.iR between terms. Suppose (I = r) E

3, t, u E TE*, and t/p = ICY for some substitution CY and some p E Paths(t). Such a

path p is called a redex occurrence, and the set of all redex occurrences in a term t

(w.r.t. 32) will be denoted by RO.# (t). We shall write t + “, u if u = t[p + rcy 1. In

general, we write t +.s u if t +“, u for some p E Paths(t). The reflexive transitive

closure of +.ti is denoted by + 5. If t -$ u, we say that t derives u, and call the

process a derivation, or an %-derivation to be more precise; tJ92 denotes the set of

all u such that t -2 u. When a term t contains a number of redices reached by a

set U of mutually independent paths, all of them can be replaced simultaneously,

since the order in which they are replaced is immaterial to the final result. If the

term u is that result, then we write t + .z u, and call it a (single step of a) multideriva-

tion. All derivations in thefollowing are assumed to be multiderivations unless otherwise

stated. We frequently need to label derivations, as in A : t + f u, whereupon A stands

for the derivation. If A, and A, are derivations then A, . A2 denotes their concatena-

tion. The empty derivation (equivalently, a derivation of length zero) is denoted by

E. The set of all %-derivations starting with the term t is denoted by ofi(If

A:to+t,+...+t,I, then Last(A) denotes t,,, and A[i,j] denotes the subderivation

. . . + t, provided 0~ i G j< n. A[O, 0] is simply e. The length of a (multi)deriva-

:I,‘, A, denoted by IAl . IS simply the number of steps in it, with IF/ = 0.

Note that we have tacitly assumed that the operational semantics of equational

languages allows arbitrary rewriting, rather than restricting rewriting to replacement

of leftmost-innermost or leftmost-outermost redices. Neither of these traditional

evaluation strategies is adequate to implement the full logical power of equational

deduction. Indeed, in general a language may not possess a simple “safe” evaluation

rule of this kind at all. We are thus concerned with the most powerful operational

semantics possible. The problem of efficient implementation of such a semantics

has been explored elsewhere [5,6,14,18].

The derivation relation + 5 is said to be confhrent iff whenever t + 3 u and t + s v,

there is a w such that u -iis, w and v + f w. The importance of confluence is that it

is a sufficient condition for determinism in the operational semantics-it ensures

that normal forms are unique when they exist among other things. The theory of

confluent derivations is of independent interest, and it can be developed in a very

abstract manner [7] with many applications.

96 S.R. Thatte

One of the advantages of describing rewriting using equations is that it is easy

to trace the fate of parts of a term as the term is repeatedly reduced. Formally, we

would like to define a function which, given a path q in t and a derivation A : t + 5 u,

will give us the “addresses” of (possibly reduced) copies of t/q in U. This is the

classical residual function and the residuals of q after A are denoted by q\A. If

A: t+$ u, where t/p = la and u = t[p + ray] for (I, r) E .9?, q E Puths(t), and X denotes

the set of all variables, then q\A is defined by cases as follows:

(I) qg P: q\A={ql,
(2) q=p. w, w~Puths(l) and l/wsfX: q\A=(?,

(3) q=p. w’s, and l/w=xeX: q\A={p. u~s~r/~=x}.

The process of residual formation traces the way pattern matching associates

parts of the matched expression with variables in the (left-hand side) pattern, which

are then rearranged in the result of the rewriting step according to the occurrences

of the variables in the right-hand side. Strictly speaking, the notation for residuals

should mention the rewriting system involved, but we shall omit this for readability;

the system will usually be obvious from context. It is easy to extend this notion to

more general arguments. If the first argument is a set of paths, we have lJ\A =

U uiu u\A. If A is a multistep derivation, define

(1) If A=A, *Al then U\A=(UA,)\A,,

(2) U\&= u.

If A is a multiderivation, then U\A = U\B where B is just a version of A in which

each step A[k, k+ 11: tk + :z tk+, of A is stretched out into a simple derivation

reducing the redices in U one at a time.

A crucial concept which we shall often need later is that of derivations which

“free” from reductions corresponding to a set of paths in the original term in

derivation. Given a derivation

UC, t’, L’,, I
A: to--+ t, - . . . F t,, n 30,

.‘fl .‘R !R

and U c Puths(t,), A is said to be U-free iff (U\A[O, i]) n CJ, =@ for 0~ i < n.

A regular system is a set of equations (1, = r, , . . . , I,, = r,,} which satisfy

following conditions:

are

the

the

(1) Left-linearity: There are no duplicate occurrences of a variable in any left-hand

side li, 1 G id n; i.e., all left-hand sides are linear.

(2) No stray variables: Each variable in ri occurs in li, 1s is n.

(3) No ambiguity: If a substitution unifies I,, 5, then it must unify r, and r, as well.

(4) No overlap: If q E Puths(l,) and q # A then 1,/q cannot be unified with any

l,,lCi,jsn.

The rewriting relation defined by a regular system is guaranteed to be confluent.

Indeed, the restrictions above are motivated mainly by the need to ensure this. They

nevertheless yield a language that is very attractive for many applications as demon-

strated by Hoffmann and O’Donnell [4]. A program is thought of as a set of rules

rather than as a set of function definitions, and any superset of rules that is a valid

Equational languages 97

program is considered a program extension. The particular visible signature used

is immaterial so long as the set of visible terms is nonempty. As we shall see, all

normal forms are effectively visible in a regular system. We could allow a countably

infinite set of rules in a regular system without affecting the results in the following

in any way. This would be useful in modeling the operational semantics of equational

definitions where ambiguous equations are allowed and ambiguities are resolved

by considering the equations sequentially rather than as a set, or by using the most

specific equation matching the expression.

The idea of residuals can be generalized into an elegant theory of derivation

spaces for regular systems [6]. We have room here to recall only the properties we

actually need. Readers interested in the full treatment as well as its application to

the solution of the important problem of sequential (call-by-need) computation with

equations should consult the original reference.

The basic idea is that if it is possible to produce many different derivations starting

with a single term, then one can speak of the residual of one such derivation with

respect to another. By analogy with residuals of paths (or occurrences), the residual

of A and B is denoted by A\B. The residual in this case is itself a derivation which

can be thought of as “finishing the job” of A with the result of B. Formally, if

A: t +; IA and B: t -5 v then A\B= C: v +,y” w. This leads to the definition of

the concatenation of two derivations from the same starting term, achieving the

effects of both. The concatenation is denoted by B U A, where B U A = B. (A\ B).

We can now state a fundamental property of regular systems which underlies the

pleasant properties of their derivation spaces.

Parallel Moves Lemma. Let A, BE D./,(t) for a regular system 3, with IAl = IBI = 1.

Then Last(AUB)= Last(BUA) und,for each PE Puths(t)p\(AUB)=p\(BLlA).

This lemma, which is a strong form of confluence, permits a generalization of the

residual relation to arbitrary derivations. For A, BE D!,,(t), with IBI = 1, define

A\B E D.#(Lust(B)) by induction on IAl.

(1) F\B=F,

(2) (A, . &)\B = (A,\B)(4\(B\A,)), with IA,1 = 1.
Note that A,\(B\A,) is defined by induction, since IB\A,I = 1, and the former can

be concatenated after A,\B by the preceding lemma. Now this can be generalized

to arbitrary derivations A, B E D,# (t). Define A\ B E D,) (Lust(B)) by induction on

I@
(1) A\& = A,

(2) A\(B, . B2) =(A\B,)\B,, with IB,[= 1.

The definition of U and the parallel moves lemma generalize to derivations of

arbitrary length in the natural way. For A, BE D*(t), define

l A-B e VCE D&(t). C\A= C\B,

l AcBeALlB=B.

We now state some properties of the derivation space assumed in later proofs.

98 S. R. Thatte

For any regular systems %?, and for all A, B, C t Dd(t)

(1) C\(AU B) = C\(BUA),

(2) ALl(BUC)=(ALlB)LlC,

(3) AUB- BUA,

(4) A= B =+ Lasr(A) = Last(B),

(5) IA\BI = IAl,
(6) A~B~A~E=BforsorneE.

3.2, Approximate normal forms and limiting completeness

It is known that nontermination is not the same as meaninglessness in computation

based on rewriting. Wadsworth [21] made this point strikingly for the A-calculus

by showing that there is a nonterminating A-expression which is semantically and

operationally equivalent to the identity function (hx.x). Lazy evaluation allows

nonterminating expressions to be used in equational computation. For instance, the

equation

irzf = cons (1, irzf)

can be taken to define the infinite list of 1’s. One problem with expressions like in.f

is that they never manifest their entire result in a finite normal form, which has

traditionally been considered the operational counterpart of denotational value. In

a sense their value resides in the entire range of their visible uses, but it would be

desirable to establish the correspondence in a more direct way. Approximate terms,

originally introduced by Wadsworth [21], are now commonly used for this purpose

[1,9, 161. The key intuition here is an exact counterpart of the intuition underlying

Scott’s theory of continuous domains [17] that infinite values in computing are

limits of directed sets of finite approximations. To make this precise, one needs a

way to fix the revealed partial value in the results of finite rewriting. Wadsworth

used the notion of a direct approximant obtained by replacing the unevaluated parts

of an expression by a new constant 0. The successive results of rewriting inf’ are

then 0, cons(1, 0), cons(1 cons(1, n)), etc. Assuming that 0 is the least element in

a partial order on terms, this directed set (actually a chain) will clearly produce the

entire infinite list as its limit. Of course terms containing R need not be in normal

form. The extension of rewriting to terms with R is called approximate reduction.

In the h-calculus, one simply replaces all redices by R to obtain the direct

approximant, which is the approximate normal form in the sense that it shows the

outer (head) structure of any eventual normal form. The corresponding construction

in equational languages is a bit trickier. Since redices are program specific, so are

approximate normal forms. It is convenient to formulate an approximate normal

form function wS for a given program 2. Suppose we assume that

l R is a new symbol distinct from all symbols used in programs.

l L:# is the set of left-hand sides of equations in 3 where each variable has been

replaced by R.

Equarional languages 99

l The partial order G on terms is generated by monotonically extending the relation

Vt E T=. 0 s t over all function symbols, i.e.,

f(t ,,..., tk)sf(u ,,..., uk) e t,cq, lsick.

l The relation tTu (t is compatible with u) is equivalent to 3~. t s v and u s v.

Here is the approximate normal form function defined by Huet and Levy [6] for

a regular system.

Let t=f(t ,,..., t6), ka0

h?(t) =f(w?(t,), . . . , %(tk)), w,,(t)= 5
1

if W,s(t)TL9

W!7(f), otherwise,

where t?L,, if there is a u E L.# such that t?u. The idea of w9 is to replace with 0

all redices and also all those subterms which may eventually become redices after

some rewriting, leaving the maximal prefix (in the c order on terms) which is

guaranteed to be a prefix of any eventual normal form. The definition of w,# is

obviously completely general for equational languages. The only qualification is

that it is a little conservative in deciding on the “maximal” prefix because it takes

into account only the left-hand sides of the equations concerned. This is in line

with Wadsworth’s original definition. The following three properties of wg are easy

to prove [6]:

(1) (Idempotence) wd(wd(t))=w8(t),

(2) (Monotonicity) x S y * wIfl (x) G w!,/,(y),

(3) (Increase with rewriting)x+$y+ ~,~(x)~w~(y).

Limiting completeness asserts that the limiting operational model is the same as

the intended denotational model. The actually computed naive result of an

expression t in a program 93 is simply tJ%, which is already a little abstract since

it takes into account all possible rewriting sequences; the effect is usually achieved

by a single safe sequence (see [6, 181 for results on safe sequential computation in

regular systems). The limiting model is obtained from the naive operational model

by using approximants to eliminate incidental and superficial differences. For

instance, the two equations in

92 = {a = cons(1, a), b = cons(1, b)}

obviously define the same infinite list, but the sets aJ3 and bJ% are disjoint.

However, we have

o.,,(a.l%) = w,fl(bJS) ={Q cons(1, a), . .}

thus revealing their sameness. There are cases where one more refinement is required.

For instance, with

9. ={a =cons(l, a), b=cons(l, cons(1, b))},

we have w.,(aJS) g ~,~(b,l%) although the two lists are again intuitively identical.

The difference this time is that b skips the computation of certain approximations

(those with an odd number of l’s) to the final value. The straightforward way to

smooth out this wrinkle is to require that the sets of approximants used as values

100 S.R. Tharte

in the limiting model be downward complete. Formally, let r, denote w,#(T,,). For

any subset VG Tn, the downward completion of V, denoted by v, is defined as

Observe that the set w,#(tJCR) is always directed since the regular system % is

confluent and w,# increases with rewriting. A natural set of values for the limiting

model of .%! is therefore the (many-sorted) set of all (finite and infinite) downward

complete directed subsets of T#. It can be shown that such values are ideals, and

for each sort they form a domain in Scott’s sense [17]. We defer this aspect until

Section 4, where a domain-based model is constructed using information systems.

The discussion above leads naturally to a straightforward construction for the

limiting operational model for regular systems. Defining ./f.@(t) = wfi(tl%‘), we

would like JCL/, to be the unique homomorphism from T,* to the algebra (also called

.,ti,, as usual) assigned to 92 in the limiting model ,U. We therefore define the

(putative) algebra M, by letting the carrier for each sort be the sets of values Jd,ti(t)

for all terms t of that sort, and define the denotation for each f E I,4 as the function

.ffl where

assuming of course that x, , . . , xI, are values of the right sort. For constants c E I,#, c!~

reduces to the denotation .j61,n (c) of c as an expression. To show that JU, is a proper

,X,-algebra, all one needs to do is to show that there is a homomorphism from T2 ,~

to Jfd,,, i.e., to show that

.N.,,(f’(r,, . . , fr)) =.f/!(“~n(f,),‘. . , .fil Y?(fa)).

This coherence condition is actually quite difficult to prove, and in order to avoid

obscuring the structure of the limiting completeness proof, the proof of the following

continuity lemma is deferred to the next section. The intuition underlying the lemma

is that any finite computation can be done in a “call-by-value” fashion lf one knows

ahead of time just how far to go in evaluating the arguments before evaluating the

function applied to them. In the terminology of information systems (see Section 4.1),

it asserts that computation in regular systems can be seen operationally as the

application of functions defined by approximahle maps. This is commonly assumed

to be a property of computation. Theorem 5.4 of Wadsworth [21] proves a similar

syntactic property for the h-P-calculus.

Continuity Lemma. For each x E .A *(,f(t, , . . , ta)) there are y, t .M.8(t,), . . , y, E

Aa such that xE.Mn(f(y,, . ,~y)).

We also often need the following pleasant consequence of equational computation.

Monotonicity Lemma. [f t s u and t + r,’ v, then u + ,‘,’ w and v c w.

Proof. Easy by structural induction on t. 0

3.1. Lemma. Each .,U,# is a Z,,-reachable 2 .-algebra.

Equational languages 101

Proof. By the Continuity Lemma, we have

J&?(f(t,, ‘. . , k))~.f~(“h?(f,), . ‘. , Avn(fk)).

The converse,

JK:,(S(t,,‘.., fk))~f~(~!~(fl),...,JtliR(fk)),

follows easily by the Monotonicity Lemma. The reachability is obvious from the

definition of the carriers in A! d. 0

We have not yet shown that A is a model for the language of regular systems in

the sense of the definition in Section 2. It is easy to show that each AA is a model

for %

3.2. Lemma. Qt, ME TX,. t=,nu =+ A!,(t)=.&,(u), i.e., JR,, satisjes 3,

Proof. If t =.# u then by the confluence of 9? there is a v such that t +s v and

u + 5 v (see Lemma 2.1 in [7] for a proof). Now suppose x E _K, (t). There must

be a w such that t -5 w and x s w,#(w). Since t + 2 v, by the confluence of 3,

there must be a z such that u -5 z and MI +$ z. Since w,, increases with derivation,

w.n(z)~08(w) and x<w,~(z). Therefore, since u -5 v-3 z, x~~cZ,,(u). This

shows that An(t) c An(u) and also vice versa since the choice of t was arbitrary. 0

3.3. Lemma. QVE T,.). AL,(t) = A,fl(v) * t -5 v, i.e., AZ,, is ?2-computable.

Proof. Since visible terms are normal forms, A,(v) = {u}. Therefore A,(t) =

./X.,,(v) implies VE Al.*(t) which is possible only if t +$ v. 0

This result holds for all normal forms, not just for visible terms, so all normal

forms are in a sense visible in a regular system. Indeed, one could generalize the

idea of visible terms to include all those terms which are their own approximants

in a limiting complete model. In this sense, constructor terms can be shown to be

the visible terms in languages like Miranda (see Section 4.1).

Proving the stable extension condition for .& is much more difficult and requires

a detailed analysis of the operational behavior of regular systems along the same

lines as the Continuity Lemma. We therefore defer the proof of the following lemma

to the next section.

Stable Extension Lemma. For all regular systems 92, 9, ~2 c Yand.&,ti (t) = .A .n (u) a

&,(t)=&(u).

To finish the proof of limiting completeness, JR must be shown to be jinal in the

category of models for the language of regular systems. One way to prove this is to

show that the equality congruence induced by Ati includes z,~, since = R is known

to be the congruence in the final model. This requires the following result, which

asserts that for each approximant there is an “observer” which recognizes exactly

the information represented by that approximant. The idea is similar to the defining

property of “articulated languages” in Section 2.

102 S.R. T/m//e

Recognition Lemma. For each 2 E ?li and each x t w,#(TX,), there is an extension

Y> 3, a context C[] and a visible term v such that for any t E T,,, C[t] =yf v e x E

A:@(t).

Proof. Let y be the term obtained by replacing each R in x by a distinct new

variable. Let Y = {g(y) = v} u 3, where g is a new unary symbol and v t Tc9. This

is a regular system because all conditions except the no overlap condition are

obviously satisfied and since x is not compatible with any existing left-hand side,

the no-overlap condition is not violated. We need to show that g(t) + *, v iff x t

A*(t). The if part follows easily by the Monotonicity Lemma. For the only if part,

observe that the last step for any derivation g(t) + “, v must be of the form g(u) --z .A v

where t -3 u and u 3 x. The rest follows easily from the fact that w,~ is monotonic

(uax + w.~(u)~w,~(x)) and idempotent (w.~(x)=x). 17

3.4. Lemma. t2=!* u =3 dM#(t)=Je~(u)

Proof. Easier in contrapositive form. Suppose A,(t) f A,#(u). Suppose without

loss of generality that x E V&!fi(t) but x g d&,n(u). The Recognition Lemma implies

that t and u are semi-separable. 0

These results are summarized in the following theorem.

3.5. Theorem. The limiting operational model (.ll) based on approximate normalforms

is isomorphic to the ,jnal model,for the language qf‘ regular systems.

Proof. Immediate by preceding lemmas and Lemma 2.10. 0

3.3. Proof of key lemmas

There are intuitively two reasons why regular systems satisfy the Continuity and

Stable Extension Lemmas. The first is that if a derivation A does not reduce any

redex in a set U of redex occurrences in the initial term t (A is U-free), then the

approximate normal form of t with respect to U contains all the information about

t required and revealed by A. The second reason is the property called the Parallel

Moves Lemma in Section 3.1, which allows permutations of derivations. Among the

technical machinery required to prove the first property, we need to formulate an

alternative definition for w fi to allow us to speak of the approximate normal form

of a term with respect to only a subset of the redices. This notion is captured in the

function a,.

Q./,(t)={qEPath.~(t)It/q~~,~,t/q~L.andt/qfR},

~,_n(t)=ifQlfl(t)=I?then telse~,n(t[Q4(t)+R]),

%?(t, U)=T,(t)(dTU+fil),

wn(t) = a,,(4 RO,(t)).

Equational languages 103

The property to be proved can now be expressed graphically as follows

(u+re 1
*

A:t - U - W?Y?(U)
.Y?

& 4 II

r[V+R] x: u[V\A+R] =w + w,~(w)
.Y?

II II

Lemma 3.10 below proves most of the relationships in this diagram. The proof relies

on the fact that subterms which are compatible with redex patterns without being

redices themselves (which are replaced by vi/, with a) are essentially useless in

derivations besides not contributing to the approximate normal form of the result

of the derivation. This is shown in Proposition 3.8, which requires some auxiliary

results. Let SUB,fl = {t/p 1 t E L., and p E Paths(t)}-SUB., is the set of all parts of

redex patterns in o-term form.

3.6. Proposition. If‘ t?v and t 3 v for some v E SUB,fl, then, for any derivation A E

b(t),
(1) Last(A) 2 L.,,

(2) Lasr(A)Tv and Last(A) 3 v.

Proof. By induction on the structure of f. The basis, t E & or t = fl is trivial. Assume

that the proposition holds for all proper subterms of t =f(t, , . , tk), and consider

some z’ =f(vr , . . . , vk) which satisfies the antecedents of the proposition. Suppose

for the sake of contradiction that derivations which contradict (1) exist, and let
t+s u be a shortest derivation such that u 2 L,). Since it is a shortest derivation,

we must have u=f’(u,,...,u,), and t,+su,,lsi~k. Suppose UZCEL.~. For

each t,, there are two possible cases:

Case 1: t, 3 v,. By the nonoverlap condition in the definition of regular systems,

w(v,) = v,, and by the monotonicity of w, w(ri) 2 Q. Since w increases with derivation,

we have w(u,) 2 v, and hence U, 2 v,.

Case 2: t, & v,. This implies v, # 0 and therefore v, E SUB,,. Since tiTv,, we have

uitvc and u, k vi by the inductive assumption.

In each of these two cases, u,tv, for each i, and hence u?v. However, u 2 c,

therefore v?ct L,#. The only way to reconcile this with the nonoverlap condition

is if u = c, which gives ui 3 u;, 1 s is k. Case 2 is therefore irrelevant, but then t, 3 u,,

1 c is k and t 2 v thus contradicting the antecedent of the proposition. This com-

pletes the proof of assertion (1). Assertion (2) follows from this argument also since

we have shown that u?v and u & v in any derivation from t that does not reduce

a redex at A, which is now seen to include all derivations, given (1). El

104 S. R. Thatre

3.7. Corollary. If t?v and t 3 v.for some v E L!# then VA E D,fi(t), Last(A) F SUB,*.

Proof. Consider an arbitrary u such that t -$ u. By Proposition 3.6, we have U~V

and u ? v since L,n G SLB9. The rest follows from the non-overlap condition for

regular systems. Cl

3.8. Proposition. Suppose z = t/q and z?v and z ? v for some v E L,#. Then, for every

A: t+s * u, there IS an A,: t, + ,fl u,, . yuch that

(1) t,=t[q+fi] andu,=u[U+R] where CJ=q\A.

(2) faths(t,)\A = Paths(t,)\A,.

Proof. By induction on IAl. The basis case is trivial: if A = 8, then A, = E. Suppose

A=A, . A,, A,: t +*, u,, Al: u, + ;I u and (A,1 = n. By the inductive hypothesis,

there is a I_+, , such that U, = q\A, and u,, =~~,[U,+O].Foreachp~ lJ,,z+s u,/p,

and therefore, by Proposition 3.6 and Corollary 3.7 above, u,/ptv and u,/p &- SUB.#;

which means, among other things, that r E U, is ruled out. Now define AYI: uy, -5 uy

based on the possible relationship between r and U,.

C’ase 1: r > p E U,: In this case, A,, = F and U = U,

Case 2: r < p E U,: Since u,\p 3 SUB., for any p E U, , AyJ: uy, -:, uy, and uy

will satisfy the required relationship with u.

Case 3: rY U, and r Y? U,: In this case also, A,:: uy, -+(> u,,, and moreover,

u= u,.

In all three cases, Paths(t,)\A, = Paths(t,)\A given that Paths(ty)\Ay, =

Path.s(t,)\A, by the inductive hypothesis. 0

Proposition 3.9 makes the similar point that a redex that is not reduced during

a derivation also does not contribute anything and could be replaced by R at the

start of the derivation without effect.

3.9. Proposition. Suppose z = t/q 2 L,# and A: t + s u is {q}-free. Then there is a

corresponding A, : t, + !J u y such that u,, = u[U t 01, where t, = t[q +- 01 and U =

q\A.

Proof. Similar to Proposition 3.8 except that r E U, is ruled out by the explicit

assumption that A is {q}-free, and t,/p 9 SUB,,, for any p E U, by the nonoverlap

condition. 0

We can now state and prove the main properties of the partial approximate normal

forms produced by g,/?, which were diagrammed above.

3.10. Lemma. Suppose U G RO,#(t), v = a(t, U) = t[Vt 01, and A: t -5 u is U-

,free. Then there is a derivation B: v +:, w such that

(1) w=u[WtR] u,here W= V\A;

(2) w n(u) =w,/?(w).

Equational languages 105

Proof. The proof of both parts is based on a fairly easy recursion induction on the

definition of 7; i.e., an induction on the depth of the tail recursion required to obtain

(T(t, U) from t[U + 01. Consider the sequence t,, t,, . . . , t, where t, = t[U + 01,

t ,+, = t,[Q(t,) + 01, and t, = T(t,) = u, where n is the smallest number such that

t, = t,,+,. Define U, to be the set of paths such that I, = t>_,[U5 + Q], and U,,= U.

By Proposition 3.9, there is a derivation A,: t, -5 w. such that w. = u[W,,+ a],

W,, = U,,\A. By Proposition 3.8 there are derivations A;: t, + 5 wi, 1 c is n, such that

w, = w,_,[W, + 01, W, = U,\A,_,. Let V, be sets of paths such that ti = t[V, + 01,

0 G is n. Clearly, V,, = U, = U and V,, = V. It is easy to see that w, = u[X, + 01 where

Xi = V,\A, since V, is simply the union of U,, . . , U, except for the elimination of

those paths which have a prefix in the union, since by (2) in Proposition 3.8,

U,\A,_, = U,\A, O< is n. We thus have V,, = V, w,, = w, X,, = W and A,, = B.

For part (2) weneedto showthat w,,(u) =w,,(w;) for 1~ isn, ofwhich wn(u)=

w $(wo) follows from the fact that wg = u[U\A + 01 and U\A C_ R0.,(u). To see

that w,~(w~)=w,,(w,_,), note that t,=tj_,[U,+R], w,=w,-,[U,\A,_,+fl], and

A,: t, +$ w,, O< i S n. For each q E U,, t,_,/qtL,, and t,_,/q? L,, by the definition

of Q. Therefore, by part (2) of Proposition 3.6, for each p E U,\A,_,, w_,/pTL #.

The rest follows from the definition of w,~. Cl

It is not hard to see how this property can be combined with the permutations

permitted by the Parallel Moves Lemma to derive Stable Extension Lemma. That

Lemma in effect states that each finite element in the value of an expression t in

an extension 9 & %’ is implied by a finite element of its value in the original program

3 (see Lemma 3.13 below). This can be proved by showing that all the steps in an

Y-derivation for t which can be performed within the smaller program ?i? can be

broughtforward into an initial subderivation, and since the %-redices in the result

(say u) of this subderivation are not used in the rest of the derivation, one can

mimic the rest of the derivation with the approximate normal form we(u) =

u!,(u, RO,,(u)). The permutation part is proved in Lemma 3.12. The basic permuta-

tion step needed in Lemma 3.12 as well as the similar Lemma 3.14 for continuity is

given in Proposition 3.11.

3.11. Proposition. Suppose U, V is a partition of Puths(t), A E D:,(t) is not U-free,

and A[O, k] is the longest U-freeprejix of A. Then there is a C = C, . C2zA such that

c,: t -3 t’ for some Uo~ U, CJO, k+l] is U\C,:free, and (CZI=IAl.

Proof. Suppose A: t,, +,YI t, + 7 . . . + 78 t,, where t = t,, and n > 0. Consider

II, -+,.R “h+l Ik+,. Clearlv .”

W,,, n U\A[O, k] = X # 8.

Let Uo~ U be the smallest subset of U such that X G U,,\A[O, k]. Let C,: t -‘,I t’

and C2 = A\C,. We know that \C,/ = (Al. Let

W’ W’ cz: t;,+:,‘t;+...+#“t:,, where t[, = t’.

To see that CJO, k+ l] is U\C,-free, it suffices to observe that Wk+, n

(U\C, . C*[O, k])=(i). 0

3.12. Lemma. Suppose A: t +$ u and 92 c 9. Then there is a B = B, ’ B,z A such

that B,: t + s v and B,: v + z w is RO,# (v) -free.

Proof. Let U = RO,,(t). The proof is by induction on m where m = IAl -k and k

is the length of the longest U-free prefix of A. The basis m = 0 is trivial. If m > 0

then A is not U-free, and by Proposition 3.11, there is a derivation C = C, . C,zA

such that C,: t + .ygl t’ for some U,,G U, CJO, k+ I] is U\C,-free and ICzl = IAl. Let

U’ = RO,/,(t’). Clearly, CJO, k + I] is U’-free since the redices in CJ’ are either those

in U or created by the reduction of U,, . The former are not reduced in CJO, k + I]

by Proposition 3.11 as mentioned above and the latter were not even present in

A[O, k + 11, hence cannot be present in its residue. Hence the value of m for Cz is

less than for A and by the induction hypothesis applied to C7 there is a derivation

E=E,‘E2~D:,(t’)suchthatEaC2,E,:t’ + *, v and EZ is RO,n(v)-free. Therefore

B, = C, E, and BZ = E, provide the required solution. c7

3.13. Lemma. Zf.9~9, then,M,,(t)=.l/l~,(.,~,,(t)).

Proof. A:/(t) 2 A/!,(.M,,(t)) is obvious. Suppose A: t + 3 u. By Lemma 3.12 we have

a B= B, . B,zA such that B,: t -5 v and B,: v -2 w is RO,n(v)-free. Now apply

part (2) of Lemma 3.10 to B, and let U be RO,,(v). We then have a C: u.~(v) -“/ ~9’

such that w,,, (w’) = w,,(w). Since wJI increases with derivation and B 3 A, w , (~2’) =

w~,(w)~w~~(u). We therefore have “~:,(t)E.~I:,(“~,n(t)). 0

Stable Extension Lemma. If’%! G Y, then &(t,) = &,(t2) =+ .,&,(t,) = &,(t,).

Proof. This is just a corollary of Lemma 3.13. 0

The proof of the Continuity Lemma is similar to that of the Stable Extension

Lemma, except that the permutation this time must bring forward the derivation

steps applied to those subexpressions with respect to which the limiting value of

the expression is required to be approximable and continuous. This is shown to be

possible in the following lemma.

3.14. Lemma. Suppose U, V is a partition qf Paths(t), and there is no u E U, v E V

such that u < v. T%en ,for every A E D,,(t), there is a B E D,,(t) such that B 17 A and

B= B, . B2 where B, is V-free and B, is (Paths(Last(B,))- V)-free.

Equational languages 107

Proof. The proof is identical to the proof of Lemma 3.12 except that U’=

{U’E Puths(t’))3u~ U\C, such that U’ 2 u}, and V’ = Puths(t’) - l-J’. Clearly, I/’ and

V’ satisfy the antecedents of the lemma with respect to t’. The induction hypothesis

applied to C, yields E = E, . E, E D,(t’) such that E 2 G, E, is V’-free and E, is

(Puths(Last(E,)) - V’)-free. Therefore B, = C, . E, and B2 = E2 again provide the

required solution. 0

Continuity Lemma. For each x E A,n (f(t, , . . . , tk)) there are y, E .d,, (t,), . . . , y, E

./ti,,(t,) such that x E &,(f(y,, . . . , yk)).

Proof. Let t =f(t,, . . , tk) and V = h. There is a A: t -$ u such that x 4 w!~(u).

By Lemma 3.14, there is a B E DYj (t) such that B 2 A and B = B, . B,, B, is A-free

and B, is (Paths(z)-A)-free, where z = Lust(B,). Apply Lemma 3.10 with U =

RO,,(z)-A. Now a(z, U) is obviously of the form f(y,, . . . , yk) where y, E

.,ti.a(t,), . . , yk E A,#(tk). The rest follows by Lemma 3.10. q

3.4. Review

It is natural to ask how general this proof of limiting completeness is. It would

be nice if one could distill sufficient conditions for a language to be limiting complete

for its final model. In retrospect, one can enumerate the following sufficient condi-

tions:

l All programs are confluent.

l w,~ increases with derivation.

l The Recognition Lemma.

l The Continuity Lemma.

l The Stable Extension Lemma.

The first two conditions are easy to verify and are usually satisfied. The Recognition

Lemma, used in the proof of finality for Jzz, was a consequence of the Monotonicity

Lemma which holds for all equational languages, together with the idempotence

and monotonicity of w,~, which are inherent properties of w,~ not connected with

regular systems. The only language specific property it depends on is that for each

x E w.,(TL .), the partial value represented by x is precisely recognizable by a context

because it can be used as an argument pattern on the left-hand side of a rule in an

extension of 9 after replacing n’s with variables. The last two of the conditions

above are not particularly easy to verify as we have seen, but they do have intuitive

interpretations. The main requirement for them seems to be the possibility of carrying

out the “permutations” of derivations made possible by the Parallel Moves Lemma

for regular systems, together with the no-overlap property. Many equational

languages use programs that are restrictions of regular systems, and for these the

two properties hold as special cases.

An important question is whether the approximate normal form function (w,~)

is always the right notion of approximant. Intuitively, this has to do with the nature

of “information” in equational computation. Taking w,~ as the approximant function

10X S. R. Thatie

implies the traditional view that normal forms are visible values, as we observed in

proving that An is .%-computable for a regular system 3. This view turns out to

be inappropriate for a common style of equational programming, exemplified by

the equational subsets of Standard ML and Miranda. These languages differ from

regular systems in two ways. They enforce a rigid distinction between constructors

and delined function symbols, and they in effect allow only new function definitions

in extensions as we noted in the introduction. The intuitive view in these languages

is that only constructor terms represent visible information. Interestingly, the corre-

sponding notion of approximant turns out to be the right one for full abstraction.

Consider for instance the following somewhat artificial program:

Y?={f‘(con1)=0,g(con2)=I},

where the constructors are conl, con2,O and 1, and the defined symbols are f and

g. Clearly, ,f(con2) and g(con 1) are normal forms in this program. If normal forms

are in effect visible, these two terms should be separable. In fact, of course, they

are not even semi-separable because an extension of .Y? is not allowed to add new

equations forfand g and other functions are not allowed to use the non-constructors

,f or g in their argument patterns. In other words, ,f‘(con2) = R g(con1) but

.&4,a(.f’(c~n2)) # A,(g(conl)). If we use the approximant function suggested above

(call it 7~~) which simply replaces all subterms with a non-constructor at the head

with R, we have ~-~(,f’(con2)) = r,,(g(conl)) = 0 which captures the intuition that

normal forms with non-constructors at the head are “meaningless”. Given the

limiting completeness proof for regular systems in general, it is not hard to show

that nTTn is the right notion of approximant to prove limiting completeness for

constructor-based regular systems with functional extensions. The details are left

to the reader.

One would like to generalize the ideas of the last paragraph so that the right

approximant does not have to be guessed. In the next section, we offer such a

generalization based on a formalization of the notion of observable data content,

and use it to demonstrate the sufficiency for limiting completeness of the five

conditions listed above. In this context, we also demonstrate the connection between

the final/fully abstract models of equational languages and the formulation of Scott’s

theory of domains based on information systems. It should be noted that this

generalization does not work for all languages. For instance, the language of

constructor-based regular systems with the original supersets-as-extensions para-

meter requires approximate normal forms as approximants whereas the observable

data content of terms in the language in the sense of the next section yields constructor

terms as approximants. Technically, therefore, the two approaches to the definition

of approximant are incomparable in their generality in proving limiting complete-

ness. We believe that the observable data content is a better reflection of programming

intuition about “manifest value”. If this thesis is accepted, the appropriateness of

the corresponding definition of approximant for limiting completeness can be seen

as a design principle to test the mutual suitability of the parameters defining a

Equational languages 109

language. The language of regular systems does pass this test because the two notions

of approximant coincide for that language as we show below.

4. A general limiting completeness construction based on observable data content

Instead of choosing a specific language to test the new notion of observable data

content, we shall use the insight gained from Section 3, and specifically the sufficient

conditions of Section 3.4, to construct a language independent operational model

which is limiting complete for the final model for any language which satisfies these

conditions. Our central assumption in this section is that equational programs define

functions to manipulate recursive data structures which are represented directly by

terms viewed as labeled trees. Like the h-calculus, the single syntactic category of

terms is used to represent both static data and dynamic computed expressions. In

some equational languages such as Miranda these roles are clearly demarcated by

the exclusive use of constructor symbols to represent data structures. In the language

of regular systems the roles are more ambiguous but still discernible; it is in fact

possible to interpret this and many other languages as constructor based languages

which take a few short cuts [19]. The idea of coding data with A-expressions is

somewhat unnatural in that semantically A-expressions are taken to denote functions.

The price for a natural representation of data in equational programming is the

need for a direct semantic interpretation of the dual role of terms. This leads to a

potentially different notion of approximant, focusing not on the normal form but

on the possible role of the term as a data structure. The two crucial properties of

this variant are that the approximant of a term is indistinguishable from the term

in its role as data, and it is moreover a unique representation of the observable data

content-another term which behaves identically in its role as data will have exactly

the same approximant.

4.1. Representing observable data content

To construct a general framework for interpreting equational computation based

on these intuitions, one needs to find a language independent way to encode the

observable information embodied in a term in its role as a data structure.

Operationally, a data structure must be passive in that none of its redices or their

residual copies can be reduced. The observable information about a term as a data

structure is therefore simply the totality of contexts in which the insertion of the

term in a passive form leads to the output of an observable value.

Formally, if U = { p Ip 3 q E Puths(t)} and A: t -5 u is U-free then A is said to

be q-static. A is Q-static if it is q-static for each q E Q G Paths(t). A q-static derivation

essentially treats t/q as a passive data-structure. The informal notion of a context

for the observation of passive terms can be formalized by defining an observer as

a triple (C[1, v, Y) such that C[] is a context in program Y and v is a visible

110 S.R. Thatte

term. The set of all observers relevant for a program 6% will be denoted by O,,.

O,=l(C[lJJ,WIJ o <.YandC[]=(c,q)wherec~‘&,}.

We shall use (t),n to denote the information content of t as a data structure in 9..

Before defining (1) ,R it is convenient to define the set [uI] of all data structures that

“satisfy” an observer u = (C[1, v, 9).

[[uJ = {t E TL n 1% d 9, C[] = (c, q) and C[11 + 5 u by a q-static derivation}.

Intuitively, an observer is a context C[] in program Y which wishes to “observe”

(i.e., evaluate to) the visible value u. The set [ul contains precisely those data

structures which, when used to fill the hole in C[1, evaluate to the desired output

V. We can now define (t),# as the set of all observers satisfied by t:

These definitions extend naturally to sets of contexts and sets of terms respectively.

If U is a set of contexts then [U] = n,,,: r, [Iun, and if V is a set of terms then

(V), = U,, v (v) a, Intuitively, a data structure belongs to [U] iff it satisfies all

observers in U whereas (V),, denotes all observers satisfiable through some term

in V. (t),# is an abstract representation of the data content approximant T,~(I). The

approximation relation s between concrete approximants translates to the subset

relation for abstract approximants. A nice feature of the abstract version is that one

can speak naturally about the approximant of a set of terms, which roughly

corresponds to the LUB of the individual approximants.

The concrete approximant function 7 , fl can now be seen as a canonical data

representation function for the language, acting as a retract from TL n to Z,n -R-terms.

Such a retract and the corresponding approximation order must satisfy the following

axioms which establish their relation to abstract approximants:

It is easy to show that these axioms imply that T,~ is idempotent, and a projection

(x,,(r) s t). With the Monotonicity Lemma, the axioms also imply that r.# is

monotonic. We leave the details to the reader. As an example for T,~ consider a

constructor-based language like Miranda. In such a language, passive terms with a

non-constructor at the head have no observable data content since they cannot be

matched by a pattern. The function 57, n therefore replaces all such terms by R as

we suggested in Section 3.4.

Although the normal form oriented approximant function w R does not always

satisfy these axioms, the two notions of approximant do coincide for regular systems

as we now show. This result indicates that the language of regular systems is

particularly well-rounded in some sense.

4.1. Proposition. For any A: t + 5 u and any q E Paths(t), there is a B = B, . B,z A

such thal B,: t -*, t[q + v] = w ji,r some v, and B2: w + * ,# x is q-static. Moreover, if

A is Q-static,for some Q then B, and B, are Q-static too.

Equational languages 111

Proof. This is just a corollary of Lemma 3.14, letting U = {r E Paths(t) 1 3~. r =

P.9). 0

4.2. Proposition. t, G t2 implies (t,) d C (t2) .#.

Proof. Follows easily by the Monotonicity Lemma. 0

4.3. Proposition. (w,n(t)),fl ~(t):~ for all tE T,,.

Proof. Suppose (C[1, v,Y)E(t)s, where C[] = (c, q). Therefore, A: C[t] -“, ZI

by a q-static derivation and 9? < 9 Let Q = {q . p Ip E RO:,(t)}. A is clearly Q-free.

Let u = a(C[t], Q) s C[w:?(t)]. By Lemma 3.10, there is a derivation u -“: U, there-

fore by the Monotonicity Lemma there is a derivation C[w:?(t)] + 3 ~7, and therefore,

(C[],v,Y)~(w:&t))!~. Since q,(t)~cos,(t), we have (C[],v,P’)~(co~(t)),, by

Proposition 4.2. 0

4.4. Corollary. (wLfi(t)).n =(t).&.

The following proposition points out that if an approximate normal form is a

prefix of a term, then it is a prefix of the approximate normal form of that term.

4.5. Proposition. w,,(f)S t’ ifSwln(t)sw,fl(t’).

Proof. Easy induction on the structure of cofl(t). 0

The next proposition is a variant of the Recognition Lemma.

4.6. Proposition. For every t E T2 I), there is a u E (t) ,/) such that t’ E [uj implies

W,#(t’) 2 W,#(t).

Proof. Let t, be the linear term obtained by substituting a distinct variable for each

R in wzfl(t). Let Y = .%! u {g(t,) = u} where g is absent from the rules in 9, and u

is a visible term. Let u = ((g(t,), l), u, 9’). Clearly, u~(t),#. If t’E[u] then u I,,,

since % < 9. Given that the only rule for g is the one we added to .Un above, t’ must

be a substitution instance of t,, so, by Proposition 4.5, w_/(t) s w,a(t’). 0

4.7. Corollary. (t,),~E(tz)ln =3 ww(t,)Sw,a(tz).

Proof. If (t,):, s (I,),*, then the special u E (t,)!# given by Proposition 4.6 must also

belong to (t&, and therefore tz E [u]. 17

4.8. Lemma. (tl)aG(tz),iR e cos(t,)~coR(t2).

112 S. R. Tharte

Proof. Immediate by Proposition 4.2, and Corollaries 4.4 and 4.7. 0

Since o,~ = n.) for the language of regular systems, that language can be used as

a proven example for the general construction in the rest of this section.

4.2. Iqformation systems

Information systems are a natural vehicle for the task of building a general limiting

model because they can easily accommodate the language independent representa-

tion of observable information and approximants described above. They also reveal

the connection between the semantics of equational computation and that of higher-

order systems such as the A-calculus. This is helpful because the two paradigms

coexist in many real languages, with the equational component providing the base

values and functions for higher-order computation. It turns out that if the sufficient

conditions of Section 3.4 are satisfied by a language, the model based on the new

notion of approximant is not only limiting complete but also has other pleasant

characteristics including functions that are continuous in a nice way and carriers

that are well-formed and well-understood structures called domains. Such charac-

teristics are often assumed for the sets of base values and functions used in A-calculus

dialects.

In order to keep the notation and technical machinery simpler, we assume that

the language concerned has a single sort and all programs use single-sorted signatures

based on this common sort. It is clear that the generalization from the single-sorted

to the many-sorted case is not very difficult. Arity restrictions on functions are still

assumed to be in force. Before carrying out the construction, we review the basic

definitions concerning information systems. The original reference [171 gives a lucid

explanation of the intuitive ideas. Note that our definitions of information system

and Cartesian product differ in minor ways from those given by Scott.

An information system is a triple I = (D, Con, +), where 19 is called the set of

propositions, each asserting a ,$nite amount of information regarding possible data

elements defined by the information system. Con is a set of,finite subsets of 0, and

the idea is that all finite collections of mutually consistent propositions are in Con.

The entailment relation + between members of Con and members of D embodies

the notion that if the information in a proposition is contained completel_v in the

collective information provided by the propositions in a consistent set, then the set

entails the proposition regarding the elements for which all propositions in the set

hold. Following Larsen and Winskel [8], we have dropped the empty proposition

d as a component in the definition. A triple constituting an information system

must satisfy the following axioms, which are more or less self evident:

(1) BsCECon3 BECon,

(2) d E D + {d} E Con,

(3) Bkd j Bu{d}c Con,

(4) BE Con and bE B j B+b.

(5) B,CECon,BkCandC+dd Bk-d

Equational languages 113

In the last axiom, we have used the natural generalization of t to a relation

between consistent sets, where B k C iff B F c for each c E C. The set of data elements

defined by such an information system Z is denoted by 111. Each member of 111 is

a set of propositions (not necessarily finite) that is con.sistent in itself and deduchely

closed or closed under entailment. More formally, given an information system

I = (0, Con, t), e E]I(iff

(i) B c e and B is finite =$ BE Con,

(ii) Bse and Bku 3 aEe.

Sets of propositions which satisfy (i) are said to be consistent, and for anq’ set B

of propositions, the deductive closure of B is Z? = {a I C s B and C t a}. Obviously,

Z? is an element in 111 iff B is consistent. Roughly speaking, the element Z? represents

the LUB of the finite values in the set B, and is very similar to the downward

completion defined for sets of approximate normal forms in Section 3.2. The only

difference is that deductive closure also completes the set B upwards in the sense

of including all the data structures obtainable by overlapping members of B. This

is immaterial for w.#(tJ%) since it is directed. The approximation order on elements

of 1~1 is simply the subset relation, and (Ill, G) forms a consistently complete

algebraic cpo, i.e., a domain.

Approximable maps are a way to define continuous functions between domains

without directly specifying the values of such a function for an injinite input. This

is possible since any infinite value in a domain is in a sense imaginary, in that it is

always obtained as the limit of all finite approximations to it. It is therefore sufficient

to specify the behavior of the function for finite inputs and its behavior in the infinite

cases then simply follows, given certain restrictions. Formally, an approximable

map f’: I, + I, between information systems I, = (D,, Con,, t,) and Z2 =

(LA, Con,, F?) is a relation between Con, and Con2 such that the following axioms

hold:

(1) Mfti,

(2) Uf VI, and uf VI * u.f (VI u VA,
(3) U’t, U, Uf V and Vt, V’ + U’f V’.

The intuitive justification for these axioms is straightforward, and is found in

[17]. There is a natural way to think of such an approximable map as a (continuous)

function between the corresponding domains. Given any e E I I, 1,

f(e)={xEDZ13UGesuchthat U~Con,and Uf{x}}.

It is easy to show that f understood this way is indeed a continuous function of

the appropriate type. Following Scott, we shall use the names of approximable maps

ambiguously to also represent their incarnations as continuous functions. We need

one final notion to accommodate the fact that we are dealing with polyadic func-

tions-we need a notion of Cartesian products. Again, for convenience, we have to

modify the standard construction given by Scott [17], and use an alternative

equivalent construction:

114 S.R. Tnatte

Let I,, I,, . . , II, be information systems where I, = (D,, Con,, E,). Then their

product I, x I, x . . x It_ is the information system Z = (D, Con, +) such that

(1) D=D,x...xD,,

(2) Con = { VI ith(V) E Con,, 1 d i 4 k},

(3) V~diff ith(V)t,ith(d),l<isk,

where ith((d, , . . , c&)) = d, and ith(V) = {&h(d) 1 d E V}. It is easy to check that I

is indeed an information system. It is also straightforward to show that this notion

of product is appropriate in the category of information systems and approximable

maps. We leave the details to the reader.

4.3. The general limiting model

We shall construct a limiting operational model X for an arbitrary language 5?

which satisfies the five conditions listed in Section 3.4 (and restated in a modified

form below) and show that they are sufficient for limiting completeness by showing

that “4’ is isomorphic to the final model for 2. The algebra assigned by J!~ to a

program 3 will be single-sorted due to the restriction assumed above, and the

carrier for the algebra will be an information system I,*. The value domain generated

by I,fl (i.e., 11!81) IS not z,,-reachable since it is a complete partial order usually

containing uncountably many elements. However, all the unreachable elements will

be injinite. Since only finite data values are actually computable in any program,

this is not very damaging. A restriction to reachability is straightforward, and we

shall limit ourselves to showing that JV” is the final model for a given language

assuming such a restriction.

The construction of Ifl is easy since the construction of an information system

only requires the specification of finite values. The material for finite values is

already at hand-the set TX, of ground terms in their role as data structures. The

abstract approximant (t).# will do as a unique representation of the information in

the finite data structure t. It is of course possible that (t,) !n = (tJ :fl for distinct terms

t, and f2, so we are indirectly carrying out a quotient construction. Formally, the

information system for the domain of ti is defined as follows.

4.9. Definition. I,n = (TL n, Con,,, k.*), where U E Con,, iff U G TL *, U is finite, and

there is some t E Tl ,i such that (U).,&(t),,. For UEC~II,, and TV

T 2,, Ut,riff(U),,z(t),.

In other words, a finite collection of data structures will be considered to be

mutually consistent if there is a single data structure encompassing all the information

in the collection. The entailment relation +!/, is simply containment with respect to

information content. It is easy to check that I ,/1 is indeed an information system.

We now restate the sufficient conditions for limiting completeness in a form that

is suitable for working with information systems. In particular, we avoid the use of

rr8 and work with terms directly in their role as data structures. The actual

Equational languages 115

verification of these conditions must usually involve the use of rTTIH mediated by the

two axioms that relate it to abstract approximants.

For any u E 6,, let u’ = {u 1 [u] c [VI}. The set c contains observers less demanding

than u. Therefore, if u E (t)# for some t then 6 G (t),. Let P,,, denote the set

11,. . . > m} of paths. The deductive closures used in the conditions below relate to

entailment in the relevant (information system) carrier. The formulation of the

recognition condition is similar to the variant in Proposition 4.6.

l All programs are confluent.

l (Unfolding) f +$ u + (t),# G (u).~.

l (Recognition) For each t E T,* there is a u E (t),, such that G = (t)!#.

l (Continuity) For each u ~f(f, , . . , tk)J!3?. there are y, E f,J!3?, . . , y, em such

thatJ‘(y,,.. . , yk) + f z by a Pk-static derivation and (u) .* c (z) ,n.

l (Stable extension) !G%! 6 Y and tJ% =a + m= uJ,Y.

In a language which satisfies the first two of the conditions above, the set rr,#(t&3)

is directed, which is equivalent to saying that the set tJ,% is consistent in I,#. The

deductive closure of the naive operational denotation of an expression is therefore

an element in the value domain 11,,1.

4.10. Lemma. WE 11.~1 for each t E TA (I and 2 t !N.

Proof. All we need to do is to show that tl% is consistent. If V is any finite subset

of t.l%, then by the confluence of 3, there is u E tJ9? such that u + 5 u for each

~1 E V. By the Unfolding Condition and axiom (2) for rtfln, (u) ,# 2 (V) .#, therefore

VECon,. 0

The two axioms for the approximant function v fl imply a natural correspondence

between deductive closure and downward completion which means that the natural

notions of semantic equality are the same for both abstract and concrete

approximants.

4.11. Theorem. ?@=m@ ~,(t~~)=~,,(u$92), using closure under entailment

in the former and downward completion in the latter.

- -
Proof. (3): Suppose f&9? = u&3, and x E rVJ(t&Z). There must be a z E tJ9 such

that x s v!#(z). By the antecedent, z E uJ9? hence there must be a U c uJ9? such

that U t., z, and therefore (U) :R 2 (z) ,#. Since 3 is confluent, there is a w E ~4%

such that v -*, w for each v E U. By unfolding, we have (w).,, 2 (LI) .# 2 (z) 8. By

axiom (2) z-~~(w)z T:~(Z)ZX and XE T!~(u&~?).

(G=): Similar. q

Construction of the rest of the algebra K ,@ is straightforward. For each constant

gE-&, g,=gJ%. For each ~EE,~ of arity k, we need an approximable map

f9: 15 + Iyn which will capture the computation off in 3 for all possible jinite data

116 S. R. Thatte

structure inputs. Given a term u =,f(f,, . . . , tk), this includes all derivations from u

in which all r, are passive, i.e., all P,-static derivations. Suppose we have the k-fold

product system I”, = (Tin, Con;, +k);.f-# G Con, li X Con:, is the smallest relation

such that:

(1) (t,,...,tk)~~tiff(t,,...,t~)j~tbyaP~-staticderivation;

(2) V,fn U if Vf8 u for each u E U;

(3) if V’ t”, V, U t:, U’ and V.ffl U then V’j> U’.

Condition (1) gives the basic relation between data structures based on Pk-static

derivations. The other two are simple closure conditions which round off the relation

to ensure consistency and uniqueness.

4.12. Lemma. .ffl is an approximable map ,for each & E !li, k-arvf E 2 *), k > 0.

Proof. We need to show that the three axioms for approximable maps hold forf-,.

Suppose U E Con%, Uj,i V and L/f> V’. We have @f9 (i) by condition (2) in the

definition off*. Condition (3) is itself the last axiom. It remains to show that lJjL/ V

and U.ffl V’ implies U.fn (Vu V’). Given condition (2) above, this reduces to

showing that (Vu V’) E Con,,. Since U E Con, “, the k-tuples in U are mutually ,
consistent as data structures. By the definition of consistency, there is a tuple

(t,, . , tr) such that (t,),, ~(ith(U)),n, 1 s is k. Given the structure of the

definition of ffl, there must be Y, Y’r Con: and W, W’r Con,, such that

U t”, Y, U t”, Y’, W F n V and W’ t,, V’ and one can show Yf8 W and Y’.f, W’

using conditions (1) and (2) of the definition offfl alone, i.e., for each w E W, there

is a y = (J*, , , . , .vA) E Y such that .f(.I’,, . . , _vk) + 3 MI by a P,-static derivation, and

similarly for W’ and Y’. By the definition of entailment, (f,) 4 2 (JI,),), 1 s i s k. By

axiom (1) for r.n,.f(7T.d(4’1), . . . , ro(,vk)) + 5 w by a PA-static derivation, and by

axiom (2), nn(t,)z 7~(,r~), 1 c i G k. By the Monotonicity Lemma and the fact that

r,#(I,) s t,, for each M: E W there is a PA-static derivation ,f(t, , . . , tr) +f z such

that (2) n 2 (w),,, and similarly for each w’t W’. We therefore have Vu V’G

.f(t,,..., tk)J,9? and hence Vu V’E Con.,. 0

We complete the proof that J\‘.~ is a ,‘,n-algebra by showing that the natural

denotation t&k% of each t E T, n yields a homomorphism from TLn to J$-'.~.

4.13. Lemma. _,V,, (t) = tJr?n for all terms t.

Proof. Proceed by induction on the structure of t. The basis case is trivial. Now

suppose A”.,(t,) = t,J!GB, 1 s i G k. Consider r =f(t, , . , th). We first show that - __
.A?(t,&, . . . , fk19?)~ tl%‘, which amounts to the claim that if VE Cons, VC

(?J%,. . . - , tkJ%‘) and Vj,; U then U c ?@?. By our definition of Cartesian product,

ith(V) c t,JLB, 1 s is k, and by confluence and unfolding, there are U, t t,Jti such

that ith(V) c (L’,),~. Let u = (u, , . . , uk) and we have {v} t”, V. Now by the definition

Equational languages 117

of jYfl,, we must have a W such that W t!, U, and for each w E W, there is y E Ti n

such that V FL y and { y} fX {w} by condition (1) in the definition of fH. Therefore,

{u} I-i {y} and the rest follows by the Monotonocity Lemma and the axioms for

r,# as in the proof of Lemma4.12.

The continuity condition comes into play in the converse, i.e., in showing e =
-~

f#(t,~9?, . . , tk&9?) 2 tJC+?.. All we need to show is that t&9? G e. Suppose IA E tJ9?,

i.e., t -2 u. By continuity, there are U, E tiJ92, 1 c is k, such that for some

w,f(u, , . . , uk) -+ $ w by a P,-static derivation and (u) ,# c_ (w) *. Clearly, w E e and

therefore u E e. q

Since the stable extension property has been assumed, it only remains to show

that each P h ,& is %-computable in order to demonstrate that K is a model (except

for X,-reachability which can be easily obtained by restricting the domain II,fil)

for any language that satisfies the five sufficient conditions above. This property as

well as the fact that K is final and therefore fully abstract are easy corollaries of

the following simple lemma. Let 9!#(t) = (A”#(t)),#.

4.14. Lemma. 9,fl(t,)=9,a(t2) a N,4(t,)=,/lr,fl(tz).

Proof. The if part (G=) is obvious by the definition of 9,. Suppose 9,/, (t,) = 9,n (tJ

and z E X,(t,). By the recognition condition, Vu E (z)* such that (z):,, = ii. But

u E &(t,) = scfl(tJ, hence there is an x E X,#(t2) such that u E (x),~. Therefore

(z).~=GG(x),, and by Lemma 4.13, Zen,,. 0

The %-computability of N, follows as an easy corollary.

4.15. Lemma. X, is F2-computable, i.e., for each visible term v and t E TX *, JN”~ (v) =

N:*(t) @ t +f z1.

Proof. Assume N,(u) = X,(t), and therefore .FH (v) = sX(t). Obviously, there is

a (C[],9?, u) E 9,(u) where C[] is an empty context. Therefore (C[I,%!, v) E

SYj(t) which is only possible if u E tJ%. q

4.16. Proposition. t, “* t, * 9:n (Cl) = 9, (f2)

Proof. Obvious from the definitions, since (t&92), = (tJ,9’i)!, by the definition of
entailment in IA. 0

The finality of JV, follows immediately.

4.17. Lemma. t,zd t2 =3 N,(t,) =,Ir,(t,).

118 S.R. That@

Proof. Obvious by Proposition 4.16 and Lemma 4.14 above. q

To summarize we state the following theorem.

4.18. Theorem. For a language which satisjies theJve conditions listed at the beginning

of Section 4.3, the limiting operational model N, built with domains and approximable

maps, is isomorphic to the jnal model.

Proof. Immediate by preceding lemmas. 0

5. Concluding remarks

There are several reasons to believe that the semantics for equational languages

presented above is the “right one”. It is fully abstract and final in a natural sense.

The fundamental operational semantics of many commonly used languages are

limiting complete with respect to it. Its components can be constructed in the form

of approximable maps and Scott-domains which makes it suitable for coupling with

the standard semantics of A-calculus dialects. One limitation on its generality is

that it is effectively focused on sqfe (call-by-need) operational semantics, one that

guarantees computation of all visible results derivable by equational deduction. This

is also the case for most other formal approaches including initial algebra semantics.

Unsafe evaluation strategies such as call-by-value obviously correspond to a different

and in some ways much simpler semantics because only finite values are computable

in call-by-value fashion even in the limit. It would be interesting to consider the

use of our framework for computation rules other than call-by-need. In fact, the

sufficient conditions used in Section 4 can be reinterpreted in a more general way

as conditions on the derivation relation (-:>) which can be restricted to, say,

innermost rewriting only. It seems possible to derive a more abstract theory based

on an arbitrary +f along the lines of [7].

Acknowledgment

I am indebted to Lawrence Moss for suggesting the idea that language models

form a category to which the usual notions of initiality and finality can be “lifted”.

References

[l] ADJ-J.A. Goguen et al., Initial algebra semantics and continuous algebras, J. Assoc. Cornput.
Mach. 24 (1977) 68-95.

[2] ADJ-J.A. Goguen et al., An initial algebra approach to the specification, correctness, and

implementation of abstract data types, in: R.T. Yeh, ed., Current Trends in Programming Methodolog)

IV (Prentice-Hall, New York, 1978).

Equational languages 119

[3] J.A. Goguen and J. Meseguer, Initiality, induction and computability, in: M. Nivat and J.C.
Reynolds, eds., Algebraic Methods in Semanrics (Cambridge University Press, London, 1985)

459-542.

[4] C.M. Hoffmann and M.J. O’Donnell, Programming with equations, ACM TOPLAS 4(l) (1982)

83-112.

[5] C.M. Hoffmann and M.J. O’Donnell, Implementation of an interpreter for abstract equations, in:

Proc. 11th POPL (Salt Lake City, 1984) 111-121.

[6] G. Huet and J-J. Levy, Call-by-need computations in nonambiguous linear term rewriting systems,

Tech. Rept. 359, INRIA (Le Chesney, France, 1979).
[7] G. Huet, Confluent reductions: abstract properties and applications to term rewriting, J. A.ssor.

Comput. Mach. 27(4) (1980) 797-821.

[8] K.G. Larsen and G. Winskel, Using information systems to solve recursive domain equations

etfectively, Tech. Rept., CS Dept., Carnegie-Mellon University (Pittsburgh, 1983).

[9] M.R. Levy and T.S.E. Maibaum, Continuous data types, SIAM J. Comput. ll(2) (1982) 201-216.

[lo] R. Milner, Fully abstract models of typed A-calculi, Theoret. Comput. Sci. 4 (1977) l-22.

[ll] R. Milner, A proposal for standard ML, in: Proc. lYg4 ACM Symp. on LfSP and Functional

Programming (1984) 184-197.

[12] L. Moss and S.R. Thatte, Final semantics of languages of specifications, in: Proc. 5rh MFPS
Workshop, Lecture Notes in Computer Science (Springer, Berlin, to appear).

[131 M. Nivat, On the interpretation of recursive polyadic program schemes, Swzposia Mathematics 15

(1975) 255-281.

[141 M.J. O’Donnell, Computing in S_w/ems Described by Equa/ionr, Lecture Notes in Computer Science

58 (Springer-Verlag, New York, 1977).

[I51 G. Plotkin, LCF as a programming language, in: Proc. Cmf: Program Procing and Improving

(Arc-et-Senans, 1975).

[161 J.C. Raoult, and J. Vuillemin, Operational and semantic equivalence between recursive programs,
J. Ascot. Comput. Much. 27(4) (1980) 772-796.

[17] D. Scott, Domains for denotational semantics, in: Proc. ICALP’XZ, Lecture Notes in Computer

Science 140 (Aarhua, Denmark, 1982) 577-613.

[1X] S.R. Thatte, A refinement of strong sequentiality for term rewriting with constructors, Infirmat.

Compur. 72(I) (1987) 46-65.

[191 S.R. Thatte, Implementing term rewriting with constructor systems, Theoret. C’ompuf. Sci. 61 (1988)

x3-92.

[20] D.A. Turner, Miranda: A non-strict functional language with polymorphic types, in: Lecture Notes

in Computer Science 201 (Springer-Verlag, New York, 1985) l-16.

[21] C. Wadsworth, The relation between computational and denotational properties for Scott’s D,
models of the A-calculus, SIAM J. Compur. 5(3) (1976) 488-520.

[22] C. Wadsworth, Approximate reduction and lambda calculus models, SIAM J. Comput. 7(3) (1978)
337-356.

