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Abstract: We discuss a finite method of feasible directions for linear programs. The method begins with a 
BFS (basic feasible solution) and constructs a profitable direction by combining the updated columns of 
several nonbasic variables eligible to enter. Moving in this direction as far as possible, while retaining 
feasibility, leads to a point which is not in general a basic solution of the original problem, but corresponds 
to a BFS of an augmented problem with a new column. So this is called an interior move or a column 
adding move. Next we can either carry another interior move, or a reduction process which starts with the 
present feasible solution and leads to a BFS of the original problem with the same or better objective 
value. We show that interior moves and reduction processes can be mixed in many  ways leading to 
different methods, all of which can be implemented by  maintaining the basis inverse or a factorization of 
it. Results of a computational experiment are presented. 
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1. Introduction 

We consider the linear program (LP): 

Minimize z ( x  ) = cx 

subject to Ax = b, 

x>~0, 

where A is an m by n matrix, b is a column vector 
of size m, c is a row vector of size n, and 
rank(A) = m. Let K denote the s e t  of feasible 
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solutions of (1). I f  E is any matrix, we let E.j 
denote its j - th  column. 

Let x s be a basic vector, associated with the 
basis matrix B for (1). Denoting the vector of 
nonbasic variables by xD, and the matrix of col- 
umns associated with them in (1) by D, we can 
rearrange the variables in (1) and write the equality 
constraints in (1) as Bx s + Dx D = b; and the ob- 
jective function z ( x )  as csxB + CDXD. The basic 
solution of (1) corresponding to the basic vector 
x 8 is ff = ( ~ ,  xD) = ( B- lb ,  0), and it is a BFS of 
(1) if B - l b  >t 0, and an opt imum solution if cD = 
cD - cBB-1D >10. ?D is the row vector of nonbasic 
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relative cost coefficients in (1) with respect to the 
basic vector xB. 

If ~ is a BFS and ~9 ~ 0, rearrange the non- 
basic variables in the vector x D into two parts, 
XD, ~ and XD, 2, where Xoa consists of all the varia- 
bles in x o with relative cost coefficients ?j < 0, 
and xo, a are all the other nonbasic variables in 
x D. Let (D 1, D2), (C'D,1, CD,2) and (CDa, C0,2) be 
the partitions of D, ?D and c D, respectively, corre- 
sponding to the partition (XD, 1, XD,2) of X D. 
Rather than considering one variable from XD, 1 as 
the entering variable, as in the primal simplex 
algorithm, the feasible direction methods dis- 
cussed in this paper consider a subset or all Of the 
variables in DD,1, and construct a profitable direc- 
tion to move by taking a nonnegative combination 
of their updated columns. Let ~0 >t 0 be a column 
vector of nonnegative weights of the same dimen- 
sion as XD:. The direction of movement chosen is 

Y = ( Y B ,  YD,1, Y D , z ) = ( - B - 1 D ,  °~, ¢o,0). 

The next point obtained is 

.2 + • y = (-~B + XYB, xD,~ + XYD,1, XD,2 "1"- ~kYD,2), 

where the step length X is given the largest possi- 
ble value, 0, that keeps the next point nonnega- 
tive. In general, when 0 > 0, this move from ~ to 
the new point ~ + Oy takes us through the relative 
interior of a face of K. 

If the new solution 2 = Y + Oy is again a BFS 
of (1), we proceed as before, but in general it will 
not be a BFS. When 2 is not a BFS of (1), extend 
the original tableau for (1) by adding a new varia- 
ble x ,  +1 associated with the original column vec- 
tor D~o~ and the original cost coefficient cz~,a~, 
and use the convention that any feasible solution 
(xB, xo,1, XD,2, X,+a) for the extended problem 
corresponds to the solut ion ( £ B, 2 D,X + 
X,+l ¢°, YD,2) for the original problem. The move 
in the original problem from ~ to 2 amounts to 
bringing x ,+l  into the basic vector xB in the 
extended tableau by means of an ordinary primal 
simplex pivot step, so that a BFS for the extended 
tableau is obtained (this BFS corresponds to the 
feasible solution 2 for the original problem, under 
the correspondence discussed above) and we can 
proceed again as before using the extended tableau. 
Before this pivot step, the relative cost coefficient 
of x~+l in the extended tableau with respect to 
the basic vector x B is of course equal to ?D:W, and 

it becomes zero after this pivot step is completed. 
Since the original column and the original cost 
coefficient of x ,+ l  in the extended tableau are 
D1¢0 and CDA~0, respectively, it easily follows that 
in any basic vector for the extended tableau in 
which xn+ 1 is a basic variable, the relative cost 
coefficient of at least one of the original variables 
in Xoa corresponding to a positive weight in ~0, 
must be nonnegative. 

We will call this move from ~ to 2 an interior 
move, or a column adding move when it is carried 
out by extending the tableau with a new variable 
as discussed above. 

When the method is continued in the same 
manner, new variables will be added, and the 
tableau will continue to be extended. As soon as 
one of these new variables leaves the basic vector, 
it is deleted from the tableau altogether. Because 
of this, all nonbasic variables at every stage of this 
process will always be original problem variables 
in (1). 

The above arguement implies that each of these 
new variables in the current basic vector at any 
stage of the method corresponds to a positive 
combination of a different subset of original varia- 
bles. Also, since any existing new variable in the 
tableau has to be a basic variable at that stage, the 
total number of new variables at any stage never 
exceeds m. 

The process of extending the tableau with new 
variables continues until at some stage either the 
optimality criterion or the objective unbounded- 
ness condition is satisfied for the current aug- 
mented problem. If the optimality criterion is 
satisfied, an optimum solution of the original 
problem is the one corresponding to the present 
solution of the current augmented problem. If the 
objective unboundedness condition is satisfied for 
the current augmented problem, the objective 
function in the original problem is unbounded 
below too. In either case the procedure terminates. 

Finite termination of this algorithm has been 
proved for any choice of values for the weights ~0j 
as long as the same set of values are used for 
identical sets of eligible variables throughout the 
algorithm [7]. 

The current solution of the extended tableau 
will always be a BFS of the extended problem at 
each stage in this algorithm. However, the corre- 
sponding solution of the original problem (1) may 
not be a BFS of (1). If x ÷ is the solution of the 
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original problem (1) corresponding to the current 
solution at some stage, it is possible to apply a 
reduction process, beginning with x +, and obtain 
a BFS of the original problem (1), Y, say, satisfy- 
ing z(£)  ~< z(x+), together with a basic vector for 
(1) associated with it, and start the whole proce- 
dure afresh with this basic vector. 

In this paper we discuss several possible 
strategies for mixing the column addition moves 
and the reduction processes to obtain a variety of 
methods. We show that each of these methods can 
be implemented by maintaining the inverse of a 
basis of order m, or a factorization of it, as in the 
usual simplex algorithm. In these methods, as long 
as column adding moves are being carried out, the 
present basis will always be a basis for the ex- 
tended tableau at that time, some of its columns 
being the new columns associated with the new 
variables at that stage. Whenever the reduction 
process is carried out, a BFS, say ~, of the original 
problem will be obtained from the present feasible 
solution.of the original problem, the present basis 
in the extended problem at that stage will be 
converted into a basis for the original problem (1) 
associated with Y, and all new variables and col- 
umns associated with them in the extended tableau 
will be eliminated. 

We also present the results of a computational 
experiment. 

2. The reduction process 

At some stage of the algorithm suppose we 
have an extended tableau with r new variables 
x n + l , . . . , x , + ~ .  Let X = ( X l  . . . .  ,x , ,  x , + l , . . . ,  
x,+~) T be the vector of variables in this extended 
tableau. Let XB denote the present basic vector 
and B the corresponding basis in the present 
extended tableau. Let -~=(Ya . . . . .  x~, x~+~,. . . ,  
Yn+~)Tdenote the associated BFS of the present 
extended problem and let ff = (~a . . . . .  ~.)v be the 
feasible solution of the original problem corre- 
sponding  to .~. All the new variables  
x~ + 1 . . . . .  x ,  + ~ are basic variables in X~. 

Let 

F =  (A.j: 1 ~<j~< n, and A. s is either a column of 
B or appears with a positive weight in one or 
more of the columns of new variables in Xn }, 

and 

J ( ; )  = ( J: > 0}. 

Clearly for each j ~ J( .~) ,  A .g E !". The reduction 
process goes through several steps. In each step at 
least one column is eliminated from F, and changes 
are made in the present feasible solution for (1) 
and the present basis, and the basis inverse is 
updated. The reduction process terminates by 
either detecting the unboundedness of the objec- 
tive function in (1), or when the present extended 
columns are eliminated and the basis consists of 
original columns in (1) only. We will now describe 
the first step in this process. 

Look for a column A .j for some j ~ J (~ )  that 
appears with a positive weight in the weighted 
sum corresponding to a column of B associated 
with a new variable. If no such column exists, X B 
must be a degenerate feasible basic vector for the 
current extended tableau, and in the associated 
BFS X the values of all new variables, namely 
-~n+l  . . . . .  "~n+r, are zero. This implies that the pre- 
sent feasible solution ~ is a degenerate BFS of the 
original problem (1). To convert the present basis 
B into a basis of the original problem (1) associ- 
ated with ~, replace each of the new variables in 
the present basic vector Xs by an original prob- 
lem variable in (1) that can replace it, one after 
another. This takes exactly r degenerate pivot 
steps, at the end of which we will have a basic 
vector for the original problem (1) associated with 
the BFS Y, and the associated basis inverse; 
terminate the reduction process. 

On the other hand, if one or more such col- 
umns exist, select one of them, say A. j .  Let 
( /31  . . . . .  fire) T = B-aA.A. Then A. A - B(/31, . . . ,  
13,,)T = 0 is a linear dependence relation for the set 
of vectors F. Suppose this relation is Ej ~ rajA. j  = 
0, where a = (aj: A.j ~ F) 4: 0. Define x(?~) = 
(xj(X): j = 1 . . . . .  n), where 

(.~j + ~aj for j ~ F, 

xj (X) = 0 otherwise. 

Find 01 and 02 , the minimum and the maximum 
values of ?~ that keep x(~)>~0. So 0 1 ~ 0  and 
02>/0. 

Define z(a)  = Z(cjaj:  j ~ F). Since z ( x ( ~ ) )  = 
z (£ )  + ~z(a) ,  if either 01 = - oo and z (a)  > 0, or 
02 = + oo and z ( a ) <  0, then z ( x )  is unbounded 
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below on K and we terminate. If this unbounded- 
ness criterion is not satisfied, choose 

steps and updating the basis inverse as in the 
usual revised simplex algorithm. 

( minimum ( I 01 I, 1 02 1 } 
1 

O= t01 
0~ 

if z (a )  = O, 

if z (a)  > O, 

if z(a)  < O. 

It can be verified that x(O) = (x/(O)) is a feasi- 
ble solution of (1) satisfying z(x(O))<~ z(.~). 01 
and 0 2 are the minimum and maximum values of 
X that keep x(X) >/0, so they are obtained by the 
usual minimum or maximum ratio computation as 
in the simplex algorithm. Let L c / "  be the subset 
of A j ~ F such that j ties in the definition of 01 
or 0 2, whichever is equal to 0. It can be verified 
that x/(O)= 0 for each j such that A. i ~ L. We 
will now drop each of the vectors A.j in L from 
F, one at a time, each time updating B -~ ap- 
propriately. To drop A. ,  ~ L do the following: 

(i) If A. ,  lies in the weighted sum correspond- 
ing to a column in B then let that column be B. v 
and suppose B.~ = E:~A@A.j, where ~0j > 0 for 
each j ~ A. Let B.'v = F.~j ~ a , / ,  ~)~o~A ./. If B~ = 0, 
z(x)  is unbounded below on K then terminate. 
Otherwise, replace B. v by B.'~ and update B -1 
corresponding to this change, as in the revised 
simplex method, by an appropriate pivot oper- 
ation. Repeat the same for each column of B 
corresponding to a new variable that contains A.~ 
with a positive weight. 

(ii) If A. ,  appears as a column of B by itself, 
there must be a column B. ~ of B corresponding to 
a new variable, for which /3~ 4: 0. Suppose B. ~, = 
Ej ~ a~o'A./. Replace A. ,  in B by A., for some 
s ~ A, say, and then replace B. v by B.'~ = 
E(/~a,/ ,s)o~A./ ,  and update B -1 accordingly by 
the appropriate pivot steps. 

When this work is completed, drop A. ,  from Y. 
If all the columns in the current matrix B are 
individual columns of A in (1), B is a basis for 
(1), and the present feasible solution x(O) must be 
a BFS of (1) corresponding to it, and it satisfies 
z(x(O)) <~ z(Y) then terminate the reduction pro- 
cess. Otherwise, with the current F, B, its inverse, 
and the feasible solution of (1) corresponding to 
them, x(O), go back to another step in the reduc- 
tion process. 

So, this whole reduction process of moving 
from Y to a BFS of (1) with the same or better 
objective value can be carried out using pivot 

3. The choice of  weights in a column adding move 

At some stage of this algorithm, let B be the 
present feasible basis associated with the basic 
vector X 8 for the current extended tableau. So, 
some of the basic variables in X B may be new 
variables introduced in earlier stages. Let Xv be 
the vector of nonbasic variables at this stage. We 
know that all these nonbasic variables are original 
problem variables in (1). Let ?D be the vector of 
nonbasic relative cost coefficients in the present 
tableau. ~" = (~'B = B-lb ,  -~0 = 0) is the present 
BFS of the extended tableau, and let ff be the 
feasible solution of the original problem (1) corre- 
sponding to it. If ~v >/0, let (XD, 1, XD,2) be the 
partition of the nonbasic vector X D with the corre- 
sponding partition (?oa, go,2) of ?D such that 
?z~,2 < 0 and ?D,2 >/0. Our feasible direction 
method requires the weight vector ~ov, ~ >1 0 corre- 
sponding to XD.~, to determine the new column to 
be introduced into the tableau at this stage. The 
overall computational requirements of the meth- 
ods depend on the choice of weights used in each 
iteration of the algorithm. In determining the value 
for the weights o~j we have the freedom to select 
any subset of the eligible variables (those in XD.a) 
at this stage and set their weights at positive levels. 
We call these variables the entering variables, and 
denote their set of subscripts by S. The rest of the 
variables in XDa are ignored during this particular 
movement, i.e., their weights are set equal to zero. 
A particular strategy that we have used in our 
computational experiments is to limit the number 
of entering variables in an iteration to some pre- 
selected positive integer p. In this strategy, 
whenever the number of eligible variables exceeds 
p, we simply pick the p among them with the 
most negative relative cost coefficients to be the 
entering variables. In our experiments we used the 
following choice rules to obtain the weights ~0j, for 
the entering variables. Here, for each j ~ S, ?j 
denotes the present relative cost coefficient of xj 
and A--/=(d~j: i = 1  . . . . .  m ) = B - 1 A  ~, the pre- 
sent updated column of x~. 

R u l e l :  % = 1  for all j ~ S .  
Rule 2: % = - ? j  for all j ~ S .  
Rule 3: % =  - ? j  (minimum{bi/~i/: i such that 

~,j > 0}) for all j ~ S. 
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Rule 2 is similar to the weights chosen in the 
reduced gradient method [8]. Rule 3 is computa- 
tionally expensive but could lead to better direc- 
tions of movement. 

We will use the notation p / q  to define the 
strategy employed in an implementation, p denot- 
ing the maximum number of eligible variables 
allowed to enter in each iteration, and q indicates 
the rule used to determine the weights ~0j, for the 
selected entering variables (q = 1, 2 or 3). Notice 
that the 1 /1  startegy is the one used by the well 
known simplex algorithm. 

4. The feasible direction methods 

4.1. The pure interior strategy: The column adding 
method 

In the implementation using this strategy, in 
each iteration the tableau is extended by adding a 
new variable whose column is the weighted combi- 
nation of the columns of the entering variables 
selected in that iteration, until at some stage one 
of the two termination conditions, optimality or 
unboundedness, is satisfied. 

4.2. Mixed strategies 

This implementation begins with a BFS of the 
original problem (1), and starts in the same manner 
as the column adding method. After some selected 
number of iterations of this process, or after a 
certain prespecified condition is satisfied (we will 
call this condition G; several possible choices for 
this are discussed later), we stop the column ad- 
ding process and identify the feasible solution 
of the original problem (1) corresponding to the 
present BFS of the current augmented problem. 
We then carry out the reduction process discussed 
in Section 2, beginning with Y. This process 
terminates with either discovering that z (x )  in 
unbounded below on K, or with a BFS 2 for (1), 
and the inverse of an associated basis B for (1), 
satisfying z(~)~< z(Y). We resume the column 
adding process with the feasible basis B and the 
associated BFS ~. Finite termination of this imple- 
mentation can also be guaranteed [7]. 

Condition G, which determines the time to stop 
the interior movements and start a reduction pro- 
cess, has a major impact on the overall computa- 

tional requirements (measured by the total num- 
ber of pivot steps before termination) of this 
method. We now present the alternative strategies 
for condition G used in our computational experi- 
ments (these are denoted by G a, G 2 and G3). 

G1-Pure interior strategy. This is the strategy 
discussed above. This strategy never uses the re- 
duction process and proceeds with the column 
adding method until termination. 

G2-Persistent reduction strategy. Every interior 
movement is followed by a reduction process. In 
this strategy each iteration begins with a BFS of 
(1), goes through an interior move and a reduction 
process and ends with a BFS of (1) if the un- 
boundedness condition is not satisfied. 

G3-Strategy based on objective reduction. This 
strategy consists of consecutive interior moves un- 
til an interior move is made during which the 
value of the objective function does not make a 
'substantial improvement'.  At this time the al- 
gorithm stops the interior moves and starts a 
reduction process to obtain a BFS of the original 
problem (or determine that the problem is un- 
bounded). The term 'substantial improvement'  is 
open to interpretation and could be defined in a 
number of ways. A definition we used in our 
experiments is the following: Let z a be the value 
of the objective function before an interior move 
and z 2 be its value after the move. We define the 
result of the move a 'substantial improvement'  if 

IZl -z21  > t l z l ] .  
In our experiments we used three different val- 

ues for t, which are 0.1, 0.01 and 0.001, respec- 
tively. In any future reference to this strategy we 
use the notation G3(t ) to emphasize the depen- 
dence of this strategy on the parameter t. This 
definition and these particular values of t happen 
to be appropriate for the models under considera- 
tion in our experiments. The problem solver can 
provide any other appropriate definition of 'sub- 
stantial improvement'  for the specific problem 
under consideration. 

5. Computational experiments 

From the discussions in the previous sections it 
is clear that certain algorithmic strategies and 
parameter values must be specified prior to using 
the feasible direction method to solve a linear 
programming problem. We have conducted a 
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limited series of computational experiments to 
study the impact of different strategies and 
parameter values on the overall computational 
requirements of the algorithm. This section con- 
tains the results of these experiments. All the 
programs were written by the authors in FOR- 
TRAN (version 4.3) and ran on a VAX 11/750 
computer in the Department of Industrial En- 
gineering at North Carolina State University. 

In the context of our discussions, an algorithm 
is completely defined by specifying its interior-re- 
duction movement strategy (G 1 through G 3 as 
discussed in Section 4.2) and its choice of weights 
(p /q  as discussed in Section 3). We combine 
these notations to specify a particular algorithm as 
G/p/q. For instance, G2/5/3 represents an al- 
gorithm that performs a reduction operation after 
every interior movement, uses no more than 5 
columns of the matrix A to generate a new col- 
umn, and uses Rule 3 to determine the weights ~0j. 
Notice that G1/1/1 represents the standard sim- 
plex method. 

5.1. Test problems 

We have used two different linear program- 
ruing models in these experiments. We refer to 
these models as Test Problem 1 and Test Problem 
2, respectively. Following is a brief description of 
each of these models. 

Test Problem 1. Following Cirina [2], we have 
adopted the LP model used by Khun and Quandt 
[5] and by Avis and Chvatal [1] as our Test 
Problem 1. We have considered the following 
problem: 

Maximize 

subject to 

Z = ~ Xj 
j = l  

~ aijxj <~ lO 4, i = l , . . . ,  m, 
j = l  

x j > 0 ,  j =  l , . . . , n ,  

with m taken from {10, 20, 30} and n taken from 
{10, 20, 30, 40} with m ~< n and a~j taken at ran- 
dom from the set {1, 2 . . . .  ,1000}. 

Test Problem 2. This model is a variation of the 
generalized transportation problem as follows: 

Maximize ~ x U 
i=1 j = l  

subject to ~ aijxij <~ bj, j = 1 .. . . .  n, 
i= l  

~xi j<.r i ,  i = 1  . . . . .  m, 
j = l  

x,j>~0, i = 1  . . . .  ,m ,  j = l  . . . . .  n, 

with m and n taken from {4, 6, 8}, and aij, bj 
and r~ taken at random from the sets {1, 2 . . . . .  20}, 
{10m, l l m  . . . . .  100m } and {2n, 3n . . . . .  10n }, re- 
spectively. 

5.2. Experiments and the results 

For each test problem, and for each selected 
combination of m and n (9 combinations for each 
test problem), we generated 10 to 20 different 
problems at random; each problem was then 
solved by the standard simplex method (G1/1/1) 
as well as by a variety of other strategies. 

During the course of these experiments it be- 
came clear that the overall computational require- 
ments of the algorithm strongly depends on the 
choice of the parameter values and algorithmic 
strategies used. Certain strategies proved to be 
quite inefficient for all instances of a particular 
model (notably G1/n/2 and Ga/n/3 for Test 
Problem 1), while certain other strategies showed 
promise of being more efficient than the standard 
simplex method. During these experiments we also 
discovered considerable fluctuations in the overall 
computational requirements of each strategy on 
different problems of the same size and similar 
structure in our test series. Some strategies, al- 
though very efficient on some instances, were quite 
inefficient on others. Gz/p/2 and Gz/p/3 with 
the values of p between 2 and 5 were in this 
category. 

For each of the two models, however, we dis- 
covered certain strategies that showed relatively 
consistent behavior across the entire set of prob- 
lems of that model in the test series. For Test 
Problem 1, strategies G3/p/2 and G3/p/3 with 
2 ~<p ~< 5 were consistent performers, with their 
average number of pivot operations about  15% 
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Table 1 
Average number of pivot operations required by different algorithms on 20 randomly generated problems in each size. (Test Problem 
1) 

Size m 10 10 10 10 20 20 20 30 30 
Strategy n 10 20 30 40 20 30 40 30 40 

G1/1/1 (simplex) 9.8 18.0 25.5 26.2 32.1 30.1 39.6 58.2 62.5 
G3(0.01)/2/3 10.8 16.2 20.3 32.8 29.0 27.0 35.2 47.1 54.1 
G3(0.01)/3/3 11.2 14.7 23.4 25.0 33.0 32.2 34.1 50.4 56.6 

Table 2 
Average number of pivot operations required by different algorithms on 10 randomly generated problems in each size. (Test Problem 
2) 

Size m 4 4 4 6 6 6 8 8 8 
Strategy n 4 6 8 4 6 8 4 6 8 

G 1/1/1 (simplex) 9.5 11.2 12.5 11.5 12.4 13.6 14.3 14.0 18.0 
G 1/4/3 4.3 6.7 9.0 8.0 7.4 8.2 8.7 8.0 8.3 
G1/6/3 5.8 5.3 11.3 9.8 6.0 8.0 9.3 8.0 8.4 

less than that of  the s tandard simplex method on 
the problems in the test series. For  Test Problem 
2, strategies G 1 / p / 3  for the values of  p between 4 
and 6 were the consistent performers, with their 
average number  of  pivot operations about  40% 
less than that of  the s tandard simplex method on 
the problems in the test series. I t  should be noted 
that, due to the special structure of  the latter 
model, most  of  the problems in this group that we 
generated had multiple optimal solutions. In  all 
these cases the interior algorithm terminated with 
a nonbasic optimal solution of  the problem. 

Table 1 shows the average number  of  pivot 
operations for a few selected strategies (including 
the G : / 1 / 1 ,  of course) on 20 different problems 
in each of the 9 sizes under  considerat ion for Test 
Problem 1. Table 2 contains similar informat ion 
for Test Problem 2. 

We expect the savings to be more pronounced  
on larger problems. 

5.3. Other experiments 

The diversity of  the strategies that  can be used 
in the feasible direction method makes a compre-  
hensive experimental s tudy of this algorithm quite 
extensive, specially since the computa t ional  re- 
quirements of  different strategies seem to depend 
on the structure of  the problem under  investiga- 
tion. As of  now, aside f rom our  own experiments, 
we are aware of  two other  experimental studies. In  
[6] Mitra et al. report  on a variety of G 2 type 
strategies, a l though they use a different reduct ion 

technique. The results of  their investigations indi- 
cate that for the problems in their experiments, 
especially for the larger problems, certain strate- 
gies of  the feasible direction method are superior 
to the s tandard  simplex method.  In  [4] Eislet et al. 
report  similar results. The strategies they use, 
however, involve a return to the s tandard simplex 
method  after a certain amoun t  of  interior move- 
ments. For  details see [3]. 
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