
322 European Journal of Operational Research 40 (1989) 322-328
North-Holland

Theory and Methodology

Computational behavior of a feasible direction
method for linear programming

Y a h y a F A T H I
Department of Industrial Engineering and Graduate Program in Operations Research,
North Carolina State University, Raleigh, NC 27695, USA

K a t t a G. M U R T Y *
Department of Industrial and Operations Engineering, The University of Michigan,
Ann Arbor, M I 48109, USA

Abstract: We discuss a finite method of feasible directions for linear programs. The method begins with a
BFS (basic feasible solution) and constructs a profitable direction by combining the updated columns of
several nonbasic variables eligible to enter. Moving in this direction as far as possible, while retaining
feasibility, leads to a point which is not in general a basic solution of the original problem, but corresponds
to a BFS of an augmented problem with a new column. So this is called an interior move or a column
adding move. Next we can either carry another interior move, or a reduction process which starts with the
present feasible solution and leads to a BFS of the original problem with the same or better objective
value. We show that interior moves and reduction processes can be mixed in many ways leading to
different methods, all of which can be implemented by maintaining the basis inverse or a factorization of
it. Results of a computational experiment are presented.

Keywords: Linear programming, feasible direction methods, interior moves, basic feasible solution,
reduction process

1. Introduction

We consider the linear program (LP):

Minimize z (x) = cx

subject to Ax = b,

x>~0,

where A is an m by n matrix, b is a column vector
of size m, c is a row vector of size n, and
rank(A) = m. Let K denote the s e t of feasible

Received January 1987; revised May 1988
* Partially supported by NSF grant ECS-8521183.

solutions of (1). I f E is any matrix, we let E.j
denote its j - th column.

Let x s be a basic vector, associated with the
basis matrix B for (1). Denoting the vector of
nonbasic variables by xD, and the matrix of col-
umns associated with them in (1) by D, we can
rearrange the variables in (1) and write the equality
constraints in (1) as Bx s + Dx D = b; and the ob-
jective function z (x) as csxB + CDXD. The basic
solution of (1) corresponding to the basic vector
x 8 is ff = (~ , xD) = (B- lb , 0), and it is a BFS of
(1) if B - l b >t 0, and an opt imum solution if cD =
cD - cBB-1D >10. ?D is the row vector of nonbasic

0377-2217/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)

Y. Fathi and K.G. Murty /Computational behavior for linear programming 323

relative cost coefficients in (1) with respect to the
basic vector xB.

If ~ is a BFS and ~9 ~ 0, rearrange the non-
basic variables in the vector x D into two parts,
XD, ~ and XD, 2, where Xoa consists of all the varia-
bles in x o with relative cost coefficients ?j < 0,
and xo, a are all the other nonbasic variables in
x D. Let (D 1, D2), (C'D,1, CD,2) and (CDa, C0,2) be
the partitions of D, ?D and c D, respectively, corre-
sponding to the partition (XD, 1, XD,2) of X D.
Rather than considering one variable from XD, 1 as
the entering variable, as in the primal simplex
algorithm, the feasible direction methods dis-
cussed in this paper consider a subset or all Of the
variables in DD,1, and construct a profitable direc-
tion to move by taking a nonnegative combination
of their updated columns. Let ~0 >t 0 be a column
vector of nonnegative weights of the same dimen-
sion as XD:. The direction of movement chosen is

Y = (Y B , YD,1, Y D , z) = (- B - 1 D , °~, ¢o,0).

The next point obtained is

.2 + • y = (-~B + XYB, xD,~ + XYD,1, XD,2 "1"- ~kYD,2),

where the step length X is given the largest possi-
ble value, 0, that keeps the next point nonnega-
tive. In general, when 0 > 0, this move from ~ to
the new point ~ + Oy takes us through the relative
interior of a face of K.

If the new solution 2 = Y + Oy is again a BFS
of (1), we proceed as before, but in general it will
not be a BFS. When 2 is not a BFS of (1), extend
the original tableau for (1) by adding a new varia-
ble x , +1 associated with the original column vec-
tor D~o~ and the original cost coefficient cz~,a~,
and use the convention that any feasible solution
(xB, xo,1, XD,2, X,+a) for the extended problem
corresponds to the solut ion (£ B, 2 D,X +
X,+l ¢°, YD,2) for the original problem. The move
in the original problem from ~ to 2 amounts to
bringing x ,+l into the basic vector xB in the
extended tableau by means of an ordinary primal
simplex pivot step, so that a BFS for the extended
tableau is obtained (this BFS corresponds to the
feasible solution 2 for the original problem, under
the correspondence discussed above) and we can
proceed again as before using the extended tableau.
Before this pivot step, the relative cost coefficient
of x~+l in the extended tableau with respect to
the basic vector x B is of course equal to ?D:W, and

it becomes zero after this pivot step is completed.
Since the original column and the original cost
coefficient of x ,+ l in the extended tableau are
D1¢0 and CDA~0, respectively, it easily follows that
in any basic vector for the extended tableau in
which xn+ 1 is a basic variable, the relative cost
coefficient of at least one of the original variables
in Xoa corresponding to a positive weight in ~0,
must be nonnegative.

We will call this move from ~ to 2 an interior
move, or a column adding move when it is carried
out by extending the tableau with a new variable
as discussed above.

When the method is continued in the same
manner, new variables will be added, and the
tableau will continue to be extended. As soon as
one of these new variables leaves the basic vector,
it is deleted from the tableau altogether. Because
of this, all nonbasic variables at every stage of this
process will always be original problem variables
in (1).

The above arguement implies that each of these
new variables in the current basic vector at any
stage of the method corresponds to a positive
combination of a different subset of original varia-
bles. Also, since any existing new variable in the
tableau has to be a basic variable at that stage, the
total number of new variables at any stage never
exceeds m.

The process of extending the tableau with new
variables continues until at some stage either the
optimality criterion or the objective unbounded-
ness condition is satisfied for the current aug-
mented problem. If the optimality criterion is
satisfied, an optimum solution of the original
problem is the one corresponding to the present
solution of the current augmented problem. If the
objective unboundedness condition is satisfied for
the current augmented problem, the objective
function in the original problem is unbounded
below too. In either case the procedure terminates.

Finite termination of this algorithm has been
proved for any choice of values for the weights ~0j
as long as the same set of values are used for
identical sets of eligible variables throughout the
algorithm [7].

The current solution of the extended tableau
will always be a BFS of the extended problem at
each stage in this algorithm. However, the corre-
sponding solution of the original problem (1) may
not be a BFS of (1). If x ÷ is the solution of the

324 Yahya Fathi and Katta G. Murty / Computational behavior for linear programming

original problem (1) corresponding to the current
solution at some stage, it is possible to apply a
reduction process, beginning with x +, and obtain
a BFS of the original problem (1), Y, say, satisfy-
ing z(£) ~< z(x+), together with a basic vector for
(1) associated with it, and start the whole proce-
dure afresh with this basic vector.

In this paper we discuss several possible
strategies for mixing the column addition moves
and the reduction processes to obtain a variety of
methods. We show that each of these methods can
be implemented by maintaining the inverse of a
basis of order m, or a factorization of it, as in the
usual simplex algorithm. In these methods, as long
as column adding moves are being carried out, the
present basis will always be a basis for the ex-
tended tableau at that time, some of its columns
being the new columns associated with the new
variables at that stage. Whenever the reduction
process is carried out, a BFS, say ~, of the original
problem will be obtained from the present feasible
solution.of the original problem, the present basis
in the extended problem at that stage will be
converted into a basis for the original problem (1)
associated with Y, and all new variables and col-
umns associated with them in the extended tableau
will be eliminated.

We also present the results of a computational
experiment.

2. The reduction process

At some stage of the algorithm suppose we
have an extended tableau with r new variables
x n + l , . . . , x , + ~ . Let X = (X l ,x , , x , + l , . . . ,
x,+~) T be the vector of variables in this extended
tableau. Let XB denote the present basic vector
and B the corresponding basis in the present
extended tableau. Let -~=(Ya x~, x~+~,. . . ,
Yn+~)Tdenote the associated BFS of the present
extended problem and let ff = (~a ~.)v be the
feasible solution of the original problem corre-
sponding to .~. All the new variables
x~ + 1 x , + ~ are basic variables in X~.

Let

F = (A.j: 1 ~<j~< n, and A. s is either a column of
B or appears with a positive weight in one or
more of the columns of new variables in Xn },

and

J (;) = (J: > 0}.

Clearly for each j ~ J(.~) , A .g E !". The reduction
process goes through several steps. In each step at
least one column is eliminated from F, and changes
are made in the present feasible solution for (1)
and the present basis, and the basis inverse is
updated. The reduction process terminates by
either detecting the unboundedness of the objec-
tive function in (1), or when the present extended
columns are eliminated and the basis consists of
original columns in (1) only. We will now describe
the first step in this process.

Look for a column A .j for some j ~ J (~) that
appears with a positive weight in the weighted
sum corresponding to a column of B associated
with a new variable. If no such column exists, X B
must be a degenerate feasible basic vector for the
current extended tableau, and in the associated
BFS X the values of all new variables, namely
-~n+l "~n+r, are zero. This implies that the pre-
sent feasible solution ~ is a degenerate BFS of the
original problem (1). To convert the present basis
B into a basis of the original problem (1) associ-
ated with ~, replace each of the new variables in
the present basic vector Xs by an original prob-
lem variable in (1) that can replace it, one after
another. This takes exactly r degenerate pivot
steps, at the end of which we will have a basic
vector for the original problem (1) associated with
the BFS Y, and the associated basis inverse;
terminate the reduction process.

On the other hand, if one or more such col-
umns exist, select one of them, say A. j . Let
(/31 fire) T = B-aA.A. Then A. A - B(/31, . . . ,
13,,)T = 0 is a linear dependence relation for the set
of vectors F. Suppose this relation is Ej ~ rajA. j =
0, where a = (aj: A.j ~ F) 4: 0. Define x(?~) =
(xj(X): j = 1 n), where

(.~j + ~aj for j ~ F,

xj (X) = 0 otherwise.

Find 01 and 02 , the minimum and the maximum
values of ?~ that keep x(~)>~0. So 0 1 ~ 0 and
02>/0.

Define z(a) = Z(cjaj: j ~ F). Since z (x (~)) =
z (£) + ~z(a) , if either 01 = - oo and z (a) > 0, or
02 = + oo and z (a) < 0, then z (x) is unbounded

Yahya Fathi and Katta G. Murty / Computational behavior for linear programming 325

below on K and we terminate. If this unbounded-
ness criterion is not satisfied, choose

steps and updating the basis inverse as in the
usual revised simplex algorithm.

(minimum (I 01 I, 1 02 1 }
1

O= t01
0~

if z (a) = O,

if z (a) > O,

if z(a) < O.

It can be verified that x(O) = (x/(O)) is a feasi-
ble solution of (1) satisfying z(x(O))<~ z(.~). 01
and 0 2 are the minimum and maximum values of
X that keep x(X) >/0, so they are obtained by the
usual minimum or maximum ratio computation as
in the simplex algorithm. Let L c / " be the subset
of A j ~ F such that j ties in the definition of 01
or 0 2, whichever is equal to 0. It can be verified
that x/(O)= 0 for each j such that A. i ~ L. We
will now drop each of the vectors A.j in L from
F, one at a time, each time updating B -~ ap-
propriately. To drop A. , ~ L do the following:

(i) If A. , lies in the weighted sum correspond-
ing to a column in B then let that column be B. v
and suppose B.~ = E:~A@A.j, where ~0j > 0 for
each j ~ A. Let B.'v = F.~j ~ a , / , ~)~o~A ./. If B~ = 0,
z(x) is unbounded below on K then terminate.
Otherwise, replace B. v by B.'~ and update B -1
corresponding to this change, as in the revised
simplex method, by an appropriate pivot oper-
ation. Repeat the same for each column of B
corresponding to a new variable that contains A.~
with a positive weight.

(ii) If A. , appears as a column of B by itself,
there must be a column B. ~ of B corresponding to
a new variable, for which /3~ 4: 0. Suppose B. ~, =
Ej ~ a~o'A./. Replace A. , in B by A., for some
s ~ A, say, and then replace B. v by B.'~ =
E(/~a,/ ,s)o~A./ , and update B -1 accordingly by
the appropriate pivot steps.

When this work is completed, drop A. , from Y.
If all the columns in the current matrix B are
individual columns of A in (1), B is a basis for
(1), and the present feasible solution x(O) must be
a BFS of (1) corresponding to it, and it satisfies
z(x(O)) <~ z(Y) then terminate the reduction pro-
cess. Otherwise, with the current F, B, its inverse,
and the feasible solution of (1) corresponding to
them, x(O), go back to another step in the reduc-
tion process.

So, this whole reduction process of moving
from Y to a BFS of (1) with the same or better
objective value can be carried out using pivot

3. The choice of weights in a column adding move

At some stage of this algorithm, let B be the
present feasible basis associated with the basic
vector X 8 for the current extended tableau. So,
some of the basic variables in X B may be new
variables introduced in earlier stages. Let Xv be
the vector of nonbasic variables at this stage. We
know that all these nonbasic variables are original
problem variables in (1). Let ?D be the vector of
nonbasic relative cost coefficients in the present
tableau. ~" = (~'B = B-lb , -~0 = 0) is the present
BFS of the extended tableau, and let ff be the
feasible solution of the original problem (1) corre-
sponding to it. If ~v >/0, let (XD, 1, XD,2) be the
partition of the nonbasic vector X D with the corre-
sponding partition (?oa, go,2) of ?D such that
?z~,2 < 0 and ?D,2 >/0. Our feasible direction
method requires the weight vector ~ov, ~ >1 0 corre-
sponding to XD.~, to determine the new column to
be introduced into the tableau at this stage. The
overall computational requirements of the meth-
ods depend on the choice of weights used in each
iteration of the algorithm. In determining the value
for the weights o~j we have the freedom to select
any subset of the eligible variables (those in XD.a)
at this stage and set their weights at positive levels.
We call these variables the entering variables, and
denote their set of subscripts by S. The rest of the
variables in XDa are ignored during this particular
movement, i.e., their weights are set equal to zero.
A particular strategy that we have used in our
computational experiments is to limit the number
of entering variables in an iteration to some pre-
selected positive integer p. In this strategy,
whenever the number of eligible variables exceeds
p, we simply pick the p among them with the
most negative relative cost coefficients to be the
entering variables. In our experiments we used the
following choice rules to obtain the weights ~0j, for
the entering variables. Here, for each j ~ S, ?j
denotes the present relative cost coefficient of xj
and A--/=(d~j: i = 1 m) = B - 1 A ~, the pre-
sent updated column of x~.

R u l e l : % = 1 for all j ~ S .
Rule 2: % = - ? j for all j ~ S .
Rule 3: % = - ? j (minimum{bi/~i/: i such that

~,j > 0}) for all j ~ S.

326 Yahya Fathi and Katta G. Murty / Computational behavior for linear programming

Rule 2 is similar to the weights chosen in the
reduced gradient method [8]. Rule 3 is computa-
tionally expensive but could lead to better direc-
tions of movement.

We will use the notation p / q to define the
strategy employed in an implementation, p denot-
ing the maximum number of eligible variables
allowed to enter in each iteration, and q indicates
the rule used to determine the weights ~0j, for the
selected entering variables (q = 1, 2 or 3). Notice
that the 1 /1 startegy is the one used by the well
known simplex algorithm.

4. The feasible direction methods

4.1. The pure interior strategy: The column adding
method

In the implementation using this strategy, in
each iteration the tableau is extended by adding a
new variable whose column is the weighted combi-
nation of the columns of the entering variables
selected in that iteration, until at some stage one
of the two termination conditions, optimality or
unboundedness, is satisfied.

4.2. Mixed strategies

This implementation begins with a BFS of the
original problem (1), and starts in the same manner
as the column adding method. After some selected
number of iterations of this process, or after a
certain prespecified condition is satisfied (we will
call this condition G; several possible choices for
this are discussed later), we stop the column ad-
ding process and identify the feasible solution
of the original problem (1) corresponding to the
present BFS of the current augmented problem.
We then carry out the reduction process discussed
in Section 2, beginning with Y. This process
terminates with either discovering that z (x) in
unbounded below on K, or with a BFS 2 for (1),
and the inverse of an associated basis B for (1),
satisfying z(~)~< z(Y). We resume the column
adding process with the feasible basis B and the
associated BFS ~. Finite termination of this imple-
mentation can also be guaranteed [7].

Condition G, which determines the time to stop
the interior movements and start a reduction pro-
cess, has a major impact on the overall computa-

tional requirements (measured by the total num-
ber of pivot steps before termination) of this
method. We now present the alternative strategies
for condition G used in our computational experi-
ments (these are denoted by G a, G 2 and G3).

G1-Pure interior strategy. This is the strategy
discussed above. This strategy never uses the re-
duction process and proceeds with the column
adding method until termination.

G2-Persistent reduction strategy. Every interior
movement is followed by a reduction process. In
this strategy each iteration begins with a BFS of
(1), goes through an interior move and a reduction
process and ends with a BFS of (1) if the un-
boundedness condition is not satisfied.

G3-Strategy based on objective reduction. This
strategy consists of consecutive interior moves un-
til an interior move is made during which the
value of the objective function does not make a
'substantial improvement'. At this time the al-
gorithm stops the interior moves and starts a
reduction process to obtain a BFS of the original
problem (or determine that the problem is un-
bounded). The term 'substantial improvement' is
open to interpretation and could be defined in a
number of ways. A definition we used in our
experiments is the following: Let z a be the value
of the objective function before an interior move
and z 2 be its value after the move. We define the
result of the move a 'substantial improvement' if

IZl -z21 > t l z l] .
In our experiments we used three different val-

ues for t, which are 0.1, 0.01 and 0.001, respec-
tively. In any future reference to this strategy we
use the notation G3(t) to emphasize the depen-
dence of this strategy on the parameter t. This
definition and these particular values of t happen
to be appropriate for the models under considera-
tion in our experiments. The problem solver can
provide any other appropriate definition of 'sub-
stantial improvement' for the specific problem
under consideration.

5. Computational experiments

From the discussions in the previous sections it
is clear that certain algorithmic strategies and
parameter values must be specified prior to using
the feasible direction method to solve a linear
programming problem. We have conducted a

Yahya Fathi and Katta G. Murty / Computational behaoior for linear programming 327

limited series of computational experiments to
study the impact of different strategies and
parameter values on the overall computational
requirements of the algorithm. This section con-
tains the results of these experiments. All the
programs were written by the authors in FOR-
TRAN (version 4.3) and ran on a VAX 11/750
computer in the Department of Industrial En-
gineering at North Carolina State University.

In the context of our discussions, an algorithm
is completely defined by specifying its interior-re-
duction movement strategy (G 1 through G 3 as
discussed in Section 4.2) and its choice of weights
(p /q as discussed in Section 3). We combine
these notations to specify a particular algorithm as
G/p/q. For instance, G2/5/3 represents an al-
gorithm that performs a reduction operation after
every interior movement, uses no more than 5
columns of the matrix A to generate a new col-
umn, and uses Rule 3 to determine the weights ~0j.
Notice that G1/1/1 represents the standard sim-
plex method.

5.1. Test problems

We have used two different linear program-
ruing models in these experiments. We refer to
these models as Test Problem 1 and Test Problem
2, respectively. Following is a brief description of
each of these models.

Test Problem 1. Following Cirina [2], we have
adopted the LP model used by Khun and Quandt
[5] and by Avis and Chvatal [1] as our Test
Problem 1. We have considered the following
problem:

Maximize

subject to

Z = ~ Xj
j = l

~ aijxj <~ lO 4, i = l , . . . , m,
j = l

x j > 0 , j = l , . . . , n ,

with m taken from {10, 20, 30} and n taken from
{10, 20, 30, 40} with m ~< n and a~j taken at ran-
dom from the set {1, 2 ,1000}.

Test Problem 2. This model is a variation of the
generalized transportation problem as follows:

Maximize ~ x U
i=1 j = l

subject to ~ aijxij <~ bj, j = 1 n,
i= l

~xi j<.r i , i = 1 m,
j = l

x,j>~0, i = 1 ,m , j = l n,

with m and n taken from {4, 6, 8}, and aij, bj
and r~ taken at random from the sets {1, 2 20},
{10m, l l m 100m } and {2n, 3n 10n }, re-
spectively.

5.2. Experiments and the results

For each test problem, and for each selected
combination of m and n (9 combinations for each
test problem), we generated 10 to 20 different
problems at random; each problem was then
solved by the standard simplex method (G1/1/1)
as well as by a variety of other strategies.

During the course of these experiments it be-
came clear that the overall computational require-
ments of the algorithm strongly depends on the
choice of the parameter values and algorithmic
strategies used. Certain strategies proved to be
quite inefficient for all instances of a particular
model (notably G1/n/2 and Ga/n/3 for Test
Problem 1), while certain other strategies showed
promise of being more efficient than the standard
simplex method. During these experiments we also
discovered considerable fluctuations in the overall
computational requirements of each strategy on
different problems of the same size and similar
structure in our test series. Some strategies, al-
though very efficient on some instances, were quite
inefficient on others. Gz/p/2 and Gz/p/3 with
the values of p between 2 and 5 were in this
category.

For each of the two models, however, we dis-
covered certain strategies that showed relatively
consistent behavior across the entire set of prob-
lems of that model in the test series. For Test
Problem 1, strategies G3/p/2 and G3/p/3 with
2 ~<p ~< 5 were consistent performers, with their
average number of pivot operations about 15%

328 Yahya Fathi and Katta G. Murty / Computational behavior for linear programming

Table 1
Average number of pivot operations required by different algorithms on 20 randomly generated problems in each size. (Test Problem
1)

Size m 10 10 10 10 20 20 20 30 30
Strategy n 10 20 30 40 20 30 40 30 40

G1/1/1 (simplex) 9.8 18.0 25.5 26.2 32.1 30.1 39.6 58.2 62.5
G3(0.01)/2/3 10.8 16.2 20.3 32.8 29.0 27.0 35.2 47.1 54.1
G3(0.01)/3/3 11.2 14.7 23.4 25.0 33.0 32.2 34.1 50.4 56.6

Table 2
Average number of pivot operations required by different algorithms on 10 randomly generated problems in each size. (Test Problem
2)

Size m 4 4 4 6 6 6 8 8 8
Strategy n 4 6 8 4 6 8 4 6 8

G 1/1/1 (simplex) 9.5 11.2 12.5 11.5 12.4 13.6 14.3 14.0 18.0
G 1/4/3 4.3 6.7 9.0 8.0 7.4 8.2 8.7 8.0 8.3
G1/6/3 5.8 5.3 11.3 9.8 6.0 8.0 9.3 8.0 8.4

less than that of the s tandard simplex method on
the problems in the test series. For Test Problem
2, strategies G 1 / p / 3 for the values of p between 4
and 6 were the consistent performers, with their
average number of pivot operations about 40%
less than that of the s tandard simplex method on
the problems in the test series. I t should be noted
that, due to the special structure of the latter
model, most of the problems in this group that we
generated had multiple optimal solutions. In all
these cases the interior algorithm terminated with
a nonbasic optimal solution of the problem.

Table 1 shows the average number of pivot
operations for a few selected strategies (including
the G : / 1 / 1 , of course) on 20 different problems
in each of the 9 sizes under considerat ion for Test
Problem 1. Table 2 contains similar informat ion
for Test Problem 2.

We expect the savings to be more pronounced
on larger problems.

5.3. Other experiments

The diversity of the strategies that can be used
in the feasible direction method makes a compre-
hensive experimental s tudy of this algorithm quite
extensive, specially since the computa t ional re-
quirements of different strategies seem to depend
on the structure of the problem under investiga-
tion. As of now, aside f rom our own experiments,
we are aware of two other experimental studies. In
[6] Mitra et al. report on a variety of G 2 type
strategies, a l though they use a different reduct ion

technique. The results of their investigations indi-
cate that for the problems in their experiments,
especially for the larger problems, certain strate-
gies of the feasible direction method are superior
to the s tandard simplex method. In [4] Eislet et al.
report similar results. The strategies they use,
however, involve a return to the s tandard simplex
method after a certain amoun t of interior move-
ments. For details see [3].

References

[1] Avis, D., and Chvfital, V., "Notes on Bland's pivoting
rule", Mathematical Programming Study 8 (1978) 24-30.

[2] Cirina, M., "Remarks on a recent simplex pivoting rule",
Rapporto 7/4(1), Dipartimento di Informatica, University
di Torino, Torino, Italy, 1984.

[3] Eislet, H.A., and Sandblom, C.L., "External pivoting in
the primal simplex algorithm", Technical Report, Depart-
ment of Quantitative Methods, Faculty of Commerce and
Administration, Concordia University, 1984.

[4] Eislet, H.A., Sandblom, C.L., and DeMarr, R., "Compu-
tational experience with external pivoting", COAL News-
letter 12 (1985) 16-20.

[5] Kuhn, H.W., and Quandt, R.E., "An experimental study
of the simplex method", Proceedings of Symposia in Ap-
plied Mathematics 15 (1962) 107-124.

[6] Mitra, G., Tamiz, M., and Yadegar, J., "Experimental
investigation of an interior search method within a sim-
plex framework", Technical Report 6/86, Department of
Mathematics and Statistics, Brunel University, 1986.

[7] Murty, K.G., and Fathi, Y., "A feasible direction method
for linear programming", Operations Research Letters 3/3
(1984) 121-127.

[8] Wolfe, P., "Methods of nonlinear programming", in: R.L.
Graves and P. Wolfe (eds.), Recent Advances in Mathe-
matical Programming, McGraw-Hill, New York, 1963.

