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Equations for strings and traces of strings of y matrices are summarized. 

1. Introduction 

In most  calculations in high energy physics a certain amount of "t matrix 
manipulat ion is unavoidable. The necessary equations were developed long ago by 

Fubini  and Caianiello [1], Chisholm [2], and Kahane [3]. Most of the necessary work 
is straightforward and trivial but tedious, and is often done by machine. With the 

advent  of dimensional regularization a new dimension has been added to the 

subject, and not everything is totally trivial or straightforward. In this note we 
describe the equations and procedures that have been used in a mechanical 
implementation.  The actual application of these methods has been the subject of 
discussion for some time [4], and will not be considered here. 

2. Generalities 

Consider a Lorentz-like group in n dimensions. Dimension 4 is timelike, the 
others ( 1 - 3 , 5 - n )  are spacelike. One may construct n matrices y~ (# = 1 . . . . .  n) in 
some space (spinor space) satisfying anticommutation rules* 

(y~, y~) -- 28~,~I. 

Here  I is the unit matrix. Neither the dimensionality of the spinors nor the precise 
form of the matrices is needed for our purposes. Furthermore, the Lorentz group in 

* No particular choice of metric is needed for the purposes of this paper. 
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n-dimensional space has a representation in spinor space such that 

U- ~`/"U--- L~;/", 

where L ~  is a Lorentz transformation and U is the corresponding transformation in 
spinor space. 

A "string" is a product of `/matrices. The special matrix ,15 is defined by 

yS= 71`/2`/3`/4 . 

Since the danger of confusion with `/5, i.e., the matrix corresponding to dimension 5, 
is minimal we will drop the bar in the rest of this note. 

Another matrix that one might consider as the generalization of the usual ,/5 is 
the matrix `/N defined as 

`/N =`/t`/2`/3... ̀/n. 

This matrix satisfies the rule 

`/N`/N_~_ + I  

with + for n = 1,4,5,8,9 . . . . .  The alternating sign as a function of n makes this 
matrix somewhat unattractive as a generalization of the usual `/5. Also, consider for 
example the trace of four 7 and `/N: 

Tr(`/~`//~V~`/~`/N ) . 

In terms of the dimension n this expression is quite singular, as it is non-zero for 
n = 4 a n d  n = 2 o n l y .  

The trace of the unit matrix is irrelevant in actual applications; the only necessary 
property is that it is 4 if n = 4. It might well be that there is some advantage in using 
a particular function of n for this quantity, but so far none is evident. In the 
following this factor is called ~,. 

Consider now the trace of any string. That trace is manifestly Lorentz invariant: 

Tr( `/"'7 " : . - -  ./-m) = Tr( U-l`/a'uu- 1`/a2"'" U- l`/amU ) 

= L ~ L ~ 2 . . .  L~,,~, T r ( ` / ~ , . . .  `/~m). 

Thus the trace is an invariant tensor. It must therefore be a sum of products of 
Kronecker 8's and c tensors. The latter is denoted by %, . . . , ,  and is totally 
antisymmetric in its n indices. If n is even then any such invariant tensor has 
evidently an even number of indices. Hence, it follows that the trace of a string of 
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an odd  n u m b e r  of  y matrices is zero if n is even. In  the following we restrict 

ourselves to even n. 

Fo r  even n the trace of  any string can be determined using the ant icommutat ion 

rules. First some notations:  

(a, .-. a , ) =  xr(v°, . .- v"-), 

(a ,  . - .  : j  . . .  a ~ ) =  Zr(v", - . .  V°,-'V°,+' - .-  V"-). 

A n t i c o m m u t i n g  "r~ to the fight we find 

(y,,, . . .  y ~ m ) =  - ( - l ) " ( a  2 . . .  areal)+ 2 ~ ( - 1 ) J S ~ t ~ , ( a 2  . . . : j  . . .  am). 
j=2  

Using  the trace property ( a  2 • • • ama:) = (ax • • • % ) ,  we have for m even 

{a, . . - a m ) =  £ (-a)Jso,o,(a2 . . . a j  . . - a m ) -  
j=2  

This is the trace reduction equation. Repeated application gives the desired expres- 

sion. For  m = 2 for example: 

( a l a2)  = 3~,~2 T r ( / )  = 7~6~:~ 2. 

Let  there now be given a string S: 

S is called odd  or even depending on whether m is odd or even. The reversed string 

S ~ is defined by  

S R = S ~ . . .  ~ . ~  = y~ • • • y~. 

The relevance of  S R derives f rom the fact that the trace of  S R is equal to the trace 

o f  S. This m a y  be seen by  considering the trace of  S R and ant icommuting y~, to the 

left. 

We  now define for arbitrary n a set of  basis matrices constructed f rom the Y's: 

[j,] = ~ ,  

b,~] = ~ ( ~ -  ~ " ) ,  

1 [a,... ak] ~-. E ( - 1 ) s y  ~ ' . . -  "/~,, 
p 
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where the sum is over all permutations of o/1 " " " a k and S is 0 or 1 for even or odd 
permutations respectively. It is fairly evident that the trace of all of these quantities 
is zero. It is equally evident that any string can be written as a linear combination of 
these basic matrices and the unit matrix. For example: 

= 8 ~ , I + [ # v ] .  

In general: 

... = a o l  + a # [ f l ]  + afl&2[fllfl2 ] + " "  +afl~. . .Bm[fl l  " "  fl~]. Sa ¢t m 

Taking the trace of both sides gives a0: 

1 
a o = ~- Tr (S) .  

The other coefficients are totally antisymmetric: 

1 
a#~ '..tim = Am! Tr (S[ f l , , - - -  f i l l ) .  

Here we used 

T r ( [ f l , - - .  flm][/Zm " '"  g , ] ) =  XE( -1 )Pa&~,  " '"  8~,~,j, 
P 

where the sum is over all permutations of the gj. 
The correctness of this equation becomes fairly obvious if one first notes that the 

right-hand side must have the antisymmetric form given (it must be antisymmetric 
in all fl and also in all g). That leaves the question of an overall factor which may 
be obtained by counting the number of times that the first term occurs, i.e., once in 
every product. 

The right-hand side may conveniently be written as a determinant. Define 

Det(fll  " '"  tim; #1" ' "  # , . ) -  determinant / i 
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Then, 

T r ( [ B ~ - . .  /~m][gm' ' "  # X ] ) = k D e t ( f l l " ' "  Jim; g l " ' "  g , , )"  

For  example: 

Tr([ /u , ] ,  []~a]) = X Det(#v;  a]~) 

8~ / 

The coefficients of S R are easily obtained from those of S: 

a R = + a& 
O1 "'" Om = aBm"" O1 . . . .  Om 

with + for m = 0 , 1 , 4 , 5 , 8 , 9  . . . . .  

Since the coefficients a are completely antisymmetric, and since there are no 
more than n 7 ' s  it follows that the a with more than n indices are 0. 

A few more equations. For a given dimension n we have the totally antisymmetric 
tensor with n indices, 

Reversing the indices: 

% .. . .  . = ( -  1 ) " / 2 % . . . ~ , ,  

where n is taken to be even. Using the matrix yN defined above one has 

1 

l 
= ~ . , , o , . . . . ~ , , . . . , . [ ~ k  "" ~1]~  N 

with k = n - m. Using this we have 

T r ( [# l  . - .  gm][rm " ' "  , , ] )  

= X De t (#  1 . . .  #m; Vl " ' "  Vm) 

= ~ .  % .... , , , - . . ~ .% .... , ~ . . - ~ l T r ( [ ~ k " "  ~ d ~ [ ~ - - .  ~ 1 )  

(1/ 
=)k -~. (--1)n/2cal .... . g l " ' . m C r = ' " r l B k ' " B t  D e t ( ° t l  " ' "  ° t k ; f l l  " ' "  t i m ) -  
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Reversing the order of the indices in the second c gives another factor ( - 1 )  "/2. 
Every term of the determinant gives the same result, and we get finally the equation 

1 
Det(/~l " '" /~, , ;  1'1 " ' "  v,.) = ~.. %, . .. , ,  ,1.. . ,.,%, .... , , ,  .... m' 

which equation can easily be derived directly as well. 

3. Index pairs 

If  all indices in a given string are different then in general, in n dimensions, the 
trace is just what obtains by repeated application of the trace reduction equation. 

The number  of terms grows rapidly with the number of 7 's in the string. For m 7 's 
the number  of terms is (m - 1)(m - 3 ) . . -  (1), and for example for 14 -/ 's this is 
about  135 000. However, the indices are really never all different and pairs to be 
summed over occur. The problem is now to eliminate such pairs. It  can be done 
quite satisfactory in 4 dimensions (to be discussed later), but in n dimensions the 
situation remains somewhat cumbersome. 

Let us start with some simple cases. Trivially: 

Also: 

and 

y~y~ = n I .  

"/"y~7 ~ = - 7"'r~y ~ + 2 8,~y" = (2 - n ) 7  ~ 

"/ '7"Tay ~ = (n - 4)y"7/~ + 4 6,~,1. 

The general case (m >/3): 

7~y ~ ' - ' -  7 " ' y  ~= ( n - 4 ) ( - 1 ) m y  ~ ' - - "  7 "m 

"4- 2 (  --  1 )  m~3"~a2"~Otl'~ a4 "°"  -~m 

+2 ~ (-l)m-Jy"JT" ... y"J-'7~J ÷'... y~. 
j=4 

This appears to be the most useful and compact form. The equation is obtained 
simply by anticommuting the last 7 ~ to the left followed by some work on the last 
three terms. For this equation to be true it is essential that the summation over/~ 
extends over all values that the in-between indices a l . . . a , ,  , may have. The 
equation is in general not true if the summation range is 1-4. 
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To give an idea of the effect of this equation consider a trace of 14 7 's, where the 
index of the first and seventh are the same. Using this equation the trace reduces to 
a sum of 5 terms of 12 7 's, which is about 50 000 terms. That is really a worst case; 
if the first and fourth (or less) index are the same the number is 20 000 (10 000). 

In principle it ought to be possible to reduce such a trace to as many terms as 
would be obtained from a trace without the pair. However, it is quite cumbersome 
to figure the coefficients of the terms as depending on the location of the pair, and if 
more than one pair occurs it becomes impractical. The problem is further aggra- 
vated by the fact that in practical situations the summation range may not be the 
full range n; furthermore the occurrence of ~,5 effectively renders such a technique 
useless. As it turns out, using the methods to be described below, the above equation 
is very effective in practice, as it is then needed mostly in cases where all or nearly 
all indices occur in pairs. 

4. 4 dimensions 

In the case that n = 4 many simplifications occur. Algorithms due to Caianiello 
and Fubini [1], Chisholm [2], and Kahane [3] solve the index pair problem satisfac- 
torily. Additional algorithms simplifying further can be established. Here is how. 

If n = 4 then one has 

as before, but 

[~]  = y~, 

[ . . ]  =½(v"v"-7"v .) 

[#pa] = %~,x3,53, x , 

[ ~ a B  ] = %,,,,,,v5. 

The resulting expansion for any string S in 4 dimensions is 

S = aoI  + aa7 ~ + a~,[/tl,] + asp3,53, a + as-/5 

with 

a o ~  
1 1 

Tr(S) ,  a a =  ~ ( S y a ) ,  

1 1 
a~ ,=  ~ Tr(S[p/x]), asp= ~ Tr(Sy~ys) ,  

a5~-- 
1 
~- Tr(S~/5). 
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The expression for the reversed string is 

SR = aoI  + a~'y ~ - a~[l~v] - as~'/~7 5 + as"r 5 . 

If S is odd (even) then a0, a~,, and a 5 (a B and a5~ ) are zero. A useful equation is 

S +  S R= 2 ( a 0 I +  al37 ~ +  asyS),  

which reduces for even respectively odd S to 

S + S R =  2( aoI  + a syS ) ,  S ev en ,  

S + S R = 2a~7 ~ S odd.  

The right-hand side of the first equation is minus the brace' of S 1 to be introduced 
below. Following Chisholm [2] the least equation can be rewritten as 

"y/] Tr(3,/~S) = 1•(S + SR), S odd.  

This equation can be used to unify a string and a trace. With S t and S 2 arbitrary 
strings: 

S,vt~S2 • Tr(y/~S) = l XS , (  S + S "  ) S  2 . 

Concerning y5 note the following. Since .y5 = ~1~2. , /3 .y4  it follows that the reversed 

~,5 equals 7 3. Thus, if 

S = y~ysy~ 

then 

S R = yVySy~, 

i.e., y5 can be treated like any other y in reversing a string. On the other hand, 
however, ~/5 is a product of four -/'s and is thus even. In the count for odd or even 
strings y5 must not be counted. Thus the last mentioned string here is even. 

Consider now a string in-between an index pair: 

~'S,~, .. ,~S'" 

To work this out we first evaluate 

~'~[al " '"  ak]y  ~ 

for any dimension n. The result must again be antisymmetrical in ot I - . .  a k. Apart 
from a factor it must therefore again be [a 1 - . .  a~]. The factor is readily estab- 
lished: 

" / " [ a , . . .  ak]3, ~= ( - 1 ) k ( n -  2 k ) [ a l - ' -  ak] .  
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For  example: 

etc. 
It follows that  

7~y~7 ~ =  - ( n -  2) 7~, 

~,~[a/317 ~ = (n - 4)[a/3] ,  

7~'S,,1 ... ~, 7 J' = n a o I -  ( n  - 2) ap[/3] 

+ (n - 4) aa~2[/3x/321 - (n - 6) aa~¢2O, [/31/32/33 ] . . . .  

This is still general. Now specialize to four dimensions, n = 4. All a with more than 
4 indices are 0, and for an odd string 

7~S,1 .... f f ~ =  - 2 a 0 [ / 3 ]  + 2aova2#3[/31/32/33 ] . 

Apar t  from a factor - 2  the right-hand side is precisely the expression for the 
reversed string S R. We so obtain the Caianie l lo-Fubini -Chisholm equation for odd 
strings: 

7~S7 " =  - 2 S  R, odd S.  

For  even S tile following obtains: 

7~$7 ~ = 4 a o I -  4a¢~ ...~4[/31 • • • /34]. 

Unfor tuna te ly  this is not S R. However, using 7 s instead of [/31 " '"/34] we have 

7~S,/~ = 4 a o I  - 4as7 5 

with 

1 
a o = ~- T r ( S ) ,  

1 
a 5 = ~- T r (SyS) .  

With  Kahane  [3] we will call the expressions 

2 2 
( S }  = - ~  T r ( S ) I +  ~ T r ( S T S ) 7  s, 

2 2 
{ S }' - - ~- T r ( S ) I  - ~ Tr(S75)~, 5 
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the brace and brace' of the string S, and thus 

7~$7 ~= - 2 { S } ,  even S. 

One more equation is needed. Let S be an odd string. Then 

1 1 
S =  ~ Tr(ST")7" + ~ Tr(SY~7S)757 ~, 

or in terms of the brace 

- 2 7 " { s 7 . }  = -2{s7"}'7" 

= -27~{ SR7"}' = S, even S, 

where we used ($7 ") = (SR7 ") and ($7"7 ~) = --(sRy"Ts).  These equations are 
sufficient to eliminate all index pairs in a string. The general result is a rather 
elegant algorithm, the Kahane algorithm. It can best be described in graphic terms, 
and the proof (by induction) is simple. 

Let there be given a string with any number of index pairs separated by strings 
St, $2, etc. For clarity we will describe the procedure for the case of 2 index pairs. 

To begin with anticommute all 75 to the left, so that they are out of the way. Now 
start counting from the left. An index is called odd or even depending on whether it 
occurs at an odd or even position. 

Consider now an index pair. The combinations odd-odd,  odd-even, etc. may 
occur. At the location of any index draw one line up and one line down. If an odd 
index then the up line is left from the down line, else the other way around (fig. 1). 
Now connect for an index pair the upper and the lower lines. For example, if both 
indices are odd (fig. 2). Next read out the 7 matrices following the lines starting 
with the very first 7 (fig. 3). The expression 

S1S~S3 

is obtained. With the prescription of a factor of - 2  for every index pair this is 

I I 
I I 

odd index even index 

Fig. 1. 
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$ $ 

Fig. 2. 

263 

> 

> I i <  R / I >  
f 

Fig. 3. 

precisely what corresponds to 

s,v~s2v% 

for odd S 2. 
If S 2 had been even then fig. 4 results. There is a remaining piece, no more part of 

the loop. Such a piece is a brace. It may be anticommuted to the very beginning 
using 

v~{s} = (s}'r ~ 

One thus may collect the braces to the beginning and use brace or brace' depending 
on whether the first index was at an odd or even place. Again, there is a factor - 2 .  
The expression is 

- 2 S I (  S } S  3 

as corresponding to 

$1~$2Y~$3, S2even. 

If there are several index pairs connect them as described above, read from the 
beginning, collect all remaining pieces and the correct equation results. 

> 

> I 1 I > 
Fig. 4. 
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) j) 
1 2 ( [ 3 [ ) (  4 [ ) 5 

Fig. 5. 

Fig. 5 shows an example with 2 pairs, all indices at odd locations. The result is 

(- 2)5{ s=s," }'Sl#S,, 

where all S are odd. Note brace'; this is because the first index of S 2 is at an even 
location. The result is obtained from 

= 4S1S3R( $2RS4 } $5 

= 4( $2RS4 } S 1 s 3 R s 4  . 

Note  that for odd S one has { $2RS4 } = ($2S~ }'. The proof by induction becomes 
obvious if we depict the equation 

- 2S1( Sy ~ }'y~S2 = S1SSz 

in graphic form (S 1 taken to be odd as is S), see fig. 6, showing the validity of the 
Kahane algorithm for such a case. Note that this algorithm applies also even if the 
starting expression is not a trace but just a string with index pairs. 

After this one is left with strings without index pairs. Often one will have that the 
3, 's are contracted with some momentum, and in a string the same momentum may 
occur more than once. Further simplification is possible using the equations 

t ysIy5 SR~, I"Sp=--P2SR+ P(I'SR)+ I" t P ) Soad ,  

pSp= -p2Sa  + ½y¢p(pv~Sa),  Seven ,  

Fig. 6. 
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where 

p=.rXp~,, p2=(pp)=pxpx, 

with summation over ~ understood. 
The final step is to reduce any string to a string containing at most two 3,'s (and 

possibly a ~,5). This may be done using the equation (easily verified by inspection) 

Products of c tensors may be reduced to products of 8 's: 

c~,~a%x~v = Det(vail;  hry), 

In all of this work, heavy use is being made of the fact that n = 4. It is important to 
obtain expressions that have the minimal amount in terms, not only for that fact by 
itself, but also because of the uniqueness problem. Consider, for example, the 
expression 

Antisymmetrizing this in flivver gives obviously zero because in four dimensions 
one cannot have antisymmetry in five indices. This results in the equation 

Adding this (and other similar expressions) to any expression will not change it but 
the result may look very different. There is really no foolproof way to get a unique 
expression; using the techniques described above the problem all but disappears. 

5. Sum splitting 

In practice one must deal with situations where in a string simultaneously index 
pairs occur with a range of n as well as four, and where in addition y5 may occur. 
Furthermore, one may have products of strings, with contractions between indices 
in different strings. For example a product of two traces: 

( a l - - .  ~ . . .  v . . .  a m ) ' ( # l " " ~ " "  v - - - 5 . . .  #k) 
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with # = 1 . . . . .  4 and ~, = 1 . . . . .  n. Another example, involving spinors u: 

(~v~... y~v,vxv,.., v~mu).(~vB.., v,v,vxv~.., v~mu) 

with/~, v, )~ and K = 1 . . . . .  n. Here there is a difficulty. In n dimensions one cannot 
reduce a product  of "t's to the product of only a few ~/'s. If  the spinors u represent 
particles in 4 dimensions, i.e., if they are subset of u that are possible in the general 
case, then one can still go ahead using the expansion technique. One again may 
write a string as a linear combination of the basic antisymmetric quantities [a I • • • 

am]; in the limit n = 4 all [a 1 • • • am] with m > 4 are zero. This shows in fact that 
the u corresponding to a particle in 4-space must be such that 

U [ a  1 " ' "  am]U = 0 if m > 4. 

In 4-dimensional space one uses equations for the product u~ summed over spins, 
such as 

~ u ~ =  - i p + m .  

Strictly speaking this equation is not true if n ~ 4, even if p is a vector in 4-space. 

The correct expression obtains by multiplying the above by the appropriate projec- 
tion operator, i.e. 

and 

~_,ufi = P ( - i y p  + m ) P  

P [ a  1 . . .  a , , ] P =  0, if m > 4. 

In practice it is not necessary to introduce this P explicitly as will become clear 
later. Terms as shown above and combined with other factors as appearing in 
practical situations always vanish as n -  4 in the limit n = 4. That could still be 
dangerous if poles 1 / ( n  - 4) appear, but again that appears not to be the case for 
this kind of term. 

To deal with the complications described above we introduce the sum splitting 
technique. Consider a trace of the form 

T = ( . . . ~ . . . ~ . . . ) ,  

where the index # runs from 1 to n, and where 7 5 and other 4-dimensional objects 
may occur anywhere in the string. We write 

r = ( . . .  . . .  ) + ( . . .  /2 . . .  /2 . . .  ) .  

The index ~ takes the values 1 . . . . .  4, and /2 runs from 4 to n. Assuming for 
definiteness that /x  is the only n-index in the string it follows that the first term is a 
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pure ly  4-dimensional  trace. The second term is also easily worked out. The  matr ices 
7 ~ a n t i c o m m u t e  with all other y ' s ,  and c o m m u t e  with ys. They  can be commuted  to 

the very left. One  easily convinces oneself  that  the second trace can be writ ten as a 

p roduc t  of  two traces: 

= 

^ 
where  we define the n - 4 type trace ( ) 

1 1 
(/~/~)^ = ~ ( / x a y ~ ) =  ; T r ( y a T a )  • 

T h e  o ther  fac tor  is again a purely 4-dimensional  trace. 
I f  there are more  n-range indices, they can be split likewise. I t  can also be  done  if 

such indices are paired but  occur  in different strings: 

(.. .  a . . . ) ( . . ,  a . . . ) .  

In  pract ical  cases all n-range indices occur in pairs, and the above technique applies. 
This  perfect ly  obvious technique also makes  another  fact obvious.  In reducing the 

( n -  4) - type  traces using the trace reduct ion equation,  one will in the end always 
f ind an expression of the form ( i t#)  ^. The  assumpt ion  here is that  all n- type indices 

are paired.  This  last trace is of  course just  equal to n - 4: 

1 
Tr(yaya~.. = n - 4. 

One  might  think that  the number  of  factors n - 4 is equal  to the number  of  n-range 
index pairs.  This  is not  so, for example:  

(/~v/~p) ̂  = (6 - n ) ( v p )  ^ = (6 - n ) ( n  - 4) .  

A final example:  

( 0/10/20t 30/40/5 ~t6 a 70~8~t 90/10 ~10/20t3~t 40/5 0/6 O/7 ~80t 90t10 ) ^ , 

where  the range  of all indices is f rom 4 to n. One finds: 

(n  - 4) (  - n  9 4- 126n 8 - 6456n 7 + 178 416n 6 - 2963 856n 5 + 31010 784n 4 

- 206139 904n 3 + 845 320 704n 2 - 1950 961664n + 1 938 948 096),  
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which is, as should be, equal to 

(n-4)(n-6)[(n- 5)(n  7 + 115n 6 -  5161n 5 + 118195n 4 -  1508 881n 3 

+ 10 867 243n 2 - 4133 801n + 64631 603) - 1] .  

6 .  A n o m a l o u s  t r a c e s  

Traces containing `/5 and evaluated according to the rules described above are 
quite unsymmetr ical  objects. For  example: 

1 

This is the cause of many difficulties in practical applications; among others gauge 
breaking terms result in case of gauge theories. Such terms must then be explicitly 
cancelled by  counter  terms, and the proof  that that can be done consistently is not  
easy. For  this reason many authors have tried to define a more suitable y5, in 
part icular  , /u mentioned before. These at tempts must be considered unsuccessful 
for the reasons mentioned. 

It should be noted that there is no real need for an alternative definit ion of  ./5. It 
is equally adequate  and much more satisfactory from a mathematical  point  of view 
to define a new trace with more pleasant properties. 

Let  us start with a trace containing two n-range indices a and /3  and two ./5 in 
addi t ion to any number  of ./ 's with four-dimensional indices: 

Tr(  • . . . / 5 . . . . / . . . . . / 5 . . . . / / ~ . . .  ) .  

Using sum splitting this becomes 

Tr(  - - -  . / 5 . . . . / ~  . . .  y s . . .  y ~ . . .  ) + T r ( - . -  ./5 . . .  ./s . . .  ./5 . . .  . / 9 . . .  ) 

= T r (  - .  • . / 5 . . . . / ~  . . . . / 5 . . . . / ~  . . .  ) 

+ ( _ l ) k T r (  . . .  `/5 . . .  `/5 . . .  )Tr(y,`/ /~)^ , 

where the number  k is determined by the number  of `/'s (but not the `/5) between 
`/a and ./t~. 

The  "anomalous  trace" for a trace containing an even number  of ./5 matrices is 
def ined by [5]: 

Tr ' (  . .  • . / 5 . . . . /  . . . .  . / 5 . . . . / t ~ . . .  ) 

= T r (  . . . . / 5 . . . . / ~  . . . . / 5 . . . . / 9  . . . ) 

+ ( _ l ) k ( _ l ) m T r (  . . . . / 5  . . . . / 5  . . .  )Tr( . /~. /a)^ , 

where m is the number  of ./5 in between ./~ and ./~, in this case one. 
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The anomalous trace differs from the normal one by terms proportional to n - 4. 
If a trace contains an odd number of 7 5 matrices then the anomalous trace is 
defined to be equal to the normal one. 

The anomalous trace defined in this manner still has the necessary properties of a 
trace. In particular, it is invariant for a cyclic permutation of the 3,'s. This is where 
the number of 3, 5 (odd or even) is essential. For an odd number of 3,5 the number 
of 3,5 in-between is not cyclic invariant, as can be seen on the following example: 

For  this reason the anomalous trace is defined to he the same as the normal one for 
traces with an odd number of 3' 5. 

The definition can he extended easily to the case that there are more n-range 
indices. After sum splitting the factor in front of each term is ( -  1) s with 

S = S 1 2 - ' [ -  $ 3 4 q - S 5 6 - ' { -  • • • . 

In here Sig is the number of 3,5 between index i and index j.  An example showing 
only three from the five terms: 

( . . . o q . . . a 2 . . . a 3 . . . a 4 ) "  

= ( " "  a l " ' "  a 2 " ' "  a 3 " ' "  a4) + ( - 1 ) k ( - 1 ) a (  " '"  a 3 " ' "  ~a)(S,S2) 

+ - - -  - . .  ) ( a , a 2 a , a 4 ) .  

In here k and l are the normal 3, counts, while a is the number of 3,5 between 3,", 
and 3,"= and b is the number of 3,5 between 3,"* and 3,~= plus the same between 3,~3 
and 3,% In graphic form, the relevant number of 3,5 for such a count is in the 
underlined regions: 

( . . . a ,  . . .  a 2 . . .  % . . .  a , . . .  ) .  

If the total number of 3,5 is even then this definition is invariant for cyclic rotation. 
Formally this definition of an anomalous trace amounts to the prescription of an 

anticommuting 3,5 and 3,~ also if a > 4. Note, however, that here such a 3,5 is not 
supposed to exist, and in fact it is clear that there are difficulties for trace with an 
odd number of 3, 5. 

It should be emphasized that this recipe for an anomalous trace supposes that 
there are no hidden 3, 5. A hidden 3'5 is simply one that is written a s  3 ' 1 3 ' 2 3 ' 3 . y 4 .  Such 
factors can be recognized on the basis of behaviour under space reflection, and it is 
clear from this that a consistent definition of an anomalous trace is only possible 
within the context of a theory. This will not be discussed further here. 

The author is indebted to Drs. R. Akhoury, G. Passarino and F. Yndurfiin for 
constructive discussions. 
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