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Change detection plays a very important role in many vision applications. Most change 
detection algorithms assume that the illumination on a scene will remain constant. Unfortu- 
nately, this assumption is not necessarily valid outside a well-controlled laboratory setting. The 
accuracy of existing algorithms diminishes significantly when confronted with image sequences 
in which the illumination is allowed to vary. In this note, we present two techniques for change 
detection that have been developed to deal with the more general scenario where illuination is 
not assumed to be constant. A detailed description of both new methods, the derivative model 
method and the shading model method, is provided. Results are presented for applying each of 
the techniques discussed to various image pairs. e 19x9 Academic press. hc. 

Detecting changes is fundamental to one’s perception of the world. After all, the 
world we live in is dynamic, and the inputs to our senses are constantly changing. 
Many models have been proposed for detection of motion in the human visual 
system [13-171. In this note our concern is only change detection; motion detection 
may use change detection, but it is considered beyond the scope of this discussion. 
It is our aim is to develop robust change detection techniques for machine vision 
systems. 

It is not surprising that the process of change detection is fundamental to many 
machine vision applications. Systems that track moving objects [18], analyze cloud 
motion, mointor the growth of crops, or analyze traffic flow [2-41, are just a few 
examples of machine vision systems that use change detection algorithms. These 
algorithms provide the low level information that can be used by higher level 
algorithms to determine the information desired (the trajectory of an object, the 
growth of a tree, etc.). Therefore, for these systems to operate successfully, it is 
extremely important that change detection algorithms to accurate and robust. 

Change detection may take place either at the pixel level or at a higher level-by 
comparing features. We will address change detection at the pixel level. Our 
motivation in developing robust techniques for change detection at the pixel level is 
the possibility of very fast change detection for robotic applications. 

In this note, we present two new methods for change detection: the derivative 
model method and the shading model method. The derivative model method uses 
partial derivatives with respect to the pixel coordinates of a second order gray level 
surface model to compare regions and determine if a change has taken place. This 
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technique is a logical extension of an existing change detection algorithm [6] and 
performs significantly better than the original when confronted with changes in 
illumination. The shading model method uses a shading model used for computer 
graphics applications to help determine if there has been a structural change in the 
scene. It is shown that the shading model method is superior to any known 
technique when the illumination is allowed to vary. A detailed discussion is 
provided for both of the new techniques. 

1. CHANGE DETECTION ALGORITHMS 

Change detection algorithms take two digitized images as input and return the 
locations in the field of view where differences between the images are identified. 
These differences may be caused by the motion of an object in the field of view, the 
addition or removal of an object from the scene, changes in illumination, or noise 
from the digitization process. The goal of such an algorithm is to locate only the 
changes that are due to structural changes in the scene, i.e., an object moving or the 
introduction or removal of an object in the scene. 

Many different types of techniques for change detection exist in the literature. 
Changes may be detected either at the iconic or pixel intensity level or after 
identifying features such as lines, corners, or some other interesting entities [16, 171. 
At the pixel level many diverse techniques exist for detecting changes. These range 
from simple differencing methods [5] to complex modeling processes [6]. Some look 
at individual pixels, others look at blocks of adjacent pixels [5, 61. But, besides the 
specific technique used for measuring changes, this change detection process is 
generally the same. The input images are first divided up into defined regions. A 
metric f, is then computed for a region in the field of view for both input images. By 
comparing the measurements computed for the two images, one determines a 
quantity corresponding to the difference (or similarity) between the two locations. A 
simple equation for this metric may appear as follows: 

D(x, Y) = h(X? v) - f*(x, Y) (1) 
where D(x, y) is the difference metric, and f, is the metric computed for the 
particular region in question in image i. One then compares this “difference metric” 
to a threshold to determine if a change is to be indicated at that location. 

1 .I. Simple Diferencing 

Of all the change detection algorithms, simple differencing is probably the least 
complex and most intuitively appealing. The philosophy behind this technique is 
simple: if a physical change occurs at a particular location in an image, then the 
recorded gray level at that location will also change. The change detection involves 
comparing the difference in gray levels recorded at individual pixel locations in the 
two images to a preset threshold. We can define a binary difference picture as 
follows: 

B(x, Y) = 1 if D(x, y) > T 
(2) = 0 otherwise, 

where B(x, y) is the binary difference image value at pixel location (x, JJ), D(x, y) 
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FIG. 1. Test sequence 1. Two frames of a sequence taken in the lab of a toy car rolling by some 
wooden blocks as a simulated cloud rolls overhead. 

is the difference in intensity between frames at that same location, and T is some 
arbitrary threshold. 

As would be expected, the simple differencing technique is not at all appropriate 
for applications where the illumination may vary. A change in illumination directly 
affects the gray levels recorded in the scene, which would be incorrectly interpreted 
as structural changes by this algorithm. 

This technique is very fast and may be useful for applications where there is little 
variation in the gray levels in the scene, or where there is tolerance for error. 
However, considering one pixel at a time makes this approach very susceptible to 
noise and, thus, inappropriate for many real world applications, where high preci- 
sion is required. 

1.2. Geo-Pixel Technique 

To avoid the problems associated with sensitivity to noise, several techniques have 
been developed that look at a block of adjacent pixels. One such method, which, for 
our purposes, we call the geo-pixel technique [7] looks at n x n pixel regions in the 
images and computes a difference metric based on second order statistics. This 
difference metric is based on a likelihood ratio used by Yakimovsky [8] to determine 
if two neighboring test areas can be thought of as being compatible. The likelihood 
ratio L can be computed using the mean and variance of the two regions. It is 
expressed as: 

L = [(G + ?3/2 + ((l-5 - Pm2]* 
u:lJ; 7 

where pi and uf are the mean and variance of region i. If the likelihood ratio 
exceeds a given threshold, the two regions are assumed to come from different 
gray-level distributions and thus should not be merged. Nagel generalized this 
concept to compare regions from the same area of two consecutive frames in an 
image sequence (instead of neighboring regions in the same frame) [7]. 
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FIG. 2. The results of applying the geo-pixel algorithm to the toy car sequence. (T = 1.) 

As would be expected, the geo-pixel technique works well on sequences with no 
change in illumination. It is much less susceptible to noise than the differencing 
technique and is fairly accurate. When confronted with sequences in which the 
illumination is allowed to change, however, it locates the places that have changed, 
but portions of the background are often also incorrectly indicated. 

The image pair shown in Fig. 1 was staged in the laboratory and shows a toy car 
as it rolls by some wooden blocks. A simulated “cloud” is rolling between the light 
source and the scene, thus changing the illumination in a portion of the field of 
view. 

Figure 2 shows the results of applying the geo-pixel technique to this sequence. As 
can be seen, this technique fails to distinguish between changes due to the car 
moving and changes due only to variation in illumination. The moving car is located 
quite accurately, however, a significant portion of the background which did not 
change is also indicated. 

1.3. The Quadratic Picture Function Model Approach 

Hsu, Nagel, and Rekers [6] tried modeling the gray level distributions in a given 
region to obtain more accurate results. These techniques compared models of gray 
level surface to create the difference metric on which change detection is deter- 
mined. 

Zero order, first order, and second order surface models have all been used for 
this application. Hsu, Nagel, and Rekers [6] show that a second order bivariate 
polynomial in the pixel coordinates models the gray value variation in a region of 
the image with such an accuracy that any remaining variation in gray level is 
assumed to be attributable to noise related to the sensing and digitizing devices. 

It is shown in [6] that, under constant illumination, this technique is superior to 
any previously mentioned methods. However, as can be seen in Fig. 3, the QPF 
technique is quite sensitive to changes in illumination and fails to properly identify 



REAL WORLD IMAGE SEQUENCES 391 

FIG. 3. The results of applying the QPF algorithm to the toy car sequence. (T = 65.) 

the object that moves. This is expected however, because, at best, a change in 
illumination introduces a constant displacement term from one model to the next. 

1.4. Gray Scale Normalization Techniques 

Recent change detection algorithms designed for gray scale images have not 
addressed the problem of varying illumination. However, there do exist change 
detection techniques addressing this problem which were originally developed for 
side looking radar (SLR) image analysis [9, lo]. These techniques look at corre- 
sponding regions in two images and normalize one with respect to the other in such 
a manner that the gray level distribution in both regions are of the same mean and 
variance. That is, given region i in image A and region i in image B, the pixel values 
in the corresponding region of the new normalized image N are given by: 

for (x, y) E region i 44x7 Y) = g (43(x, Y) - PLtWl + b(4 (4) 

where IR(x, y) is the intensity recorded in image R at location (x, y) and pLR(i) and 
u,(i) are the mean and standard deviation of the intensity values recorded in region 
i in image R. After the normalization is performed, simple differencing is used to 
detect changes. 

As with the geo-pixel technique, second-order statistics do not prove to be robust 
enough. Consider the second test pair, shown in Fig. 4. This shows two images 
digitized in a laboratory setting containing two blocks sitting on a wooden table 
with a new object (the screwdriver) added to the scene in the second frame. As can 
be seen, there is a significant change in the illumination on the scene. Figure 5 shows 
the results of applying this technique to this image pair. As can be seen, this 
technique is unable to locate the screwdriver and incorrectly indicates a large 
portion of the scene as changing. 
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FIG. 4. Test sequence 2. Two frames of a sequence taken in the lab showing two blocks sitting on a 
wooden table with a new object (the screwdriver) introduced into the scene in the second rame. (This 
sequence contains a profound change in illumination.) 

2. NEW TECHNIQUES 

Since, in the most general case it is not necessarily reasonable to assume constant 
illumination, it would be desirable for a change detection algorithm be insensitive to 
changes in illumination. Two new techniques are presented in this paper which have 
been developed with the following goal: we want a technique that is both accurate 
and insensitive to changes in illumination. Our first attempt at such a technique, the 
derivative model method (D-method), is a logical extension of the QPF techique 
described above and performs significantly better than the original when confronted 
with changes in illumination. The D-method, however, does not prove to be 
adequate for image pairs with a profound change in illumination. 

FIG. 5. The results of applying the gray scale normalization technique to the screwdriver sequence 
(T = 5.) 
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The second technique developed (the shading model method) uses a shading 
model used for computer graphics applications to determine if there has been a 
structural change in the scene. It is shown that the shading model method is 
relatively insensitive to variations in the illumination levels in a scene and is 
superior to any known technique when the illumination is allowed to vary. 

2.1. The Derivative Model Method 

The success of the QPF method on image sequences with constant illumination 
indicates that looking at the gray level surface model is a good place to begin when 
looking for a technique that is accurate and insensitive to changes in illumination. 
The problem, however, is to find a surface model that does not change (significantly) 
as illumination changes. The D-method uses the x and y partial derivatives of the 
second-order surface model from [6]. 

The difference metric is defined for a region A as 

D = c fib, Y> -f*k Y) (5) 
x, ysA 

with f being defined as 

fib, Y) = 
~gi(x~ Y) + hLb7 Y) 

ax 
JY ’ 

where gi(x, y) is the model for the gray level surface in the given region in the i th 
frame [6], 

giCxY Y) = am + alOx + a,,y + f.z,,xy + UNIX* + a,,y*. (7) 

Figure 6 shows the results of applying the D-method to the toy car sequence. One 
can see that this technique is able to quite effectively isolate the moving object with 
a relatively small portion of the background also indicated. 

FIG. 6. T~F results of applying the derivative model method to the toy car sequence. (T = 87.) 
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FIG. 7. The results of applying the derivative model method to the screwdriver sequence. (T = 40.) 

The results of applying this technique to the second block sequence are shown in 
Fig. 7. As can be seen, this technique is able to isolate the screwdriver; however, a 
large portion of the background is also indicated. 

2.2. The Shading Model Method 
Shading models for computer graphics model the intensity at a given point (I,) as 

the product of the illumination (I,) and a shading coefficient (S,) which is 
calculated for each point, 

Phong’s shading model [ll], is typical of the shading models used and is defined as 
(see also Fig. 8) 

Sp = C,[cos(i)(l - d) + d] + W(i)[cos(s)]“, 

where 

5 is the reflection coefficient of the object at point P for a certain wave- 
length. 

i is the incident angle. 
d is the environmental diffuse reflection coefficient. 
W(i) is a function which gives the ratio of the specular reflected light and the 

incident light as a function of the incident angle. 
s is the angle between the direction of the reflected light and the line of 

sight. 
n is a power which models the specular reflected light for each material. 
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FIG. 8. Light striking the surface of an object 

As can be seen, the shading coefficient is defined uniquely by the physical surface 
structure of the object and the reflectance of the surface material. Thus, if the 
physical surface structure at a given location in an image changed (i.e., an object 
moved), the shading coefficient for that location would also change. 

Since the shading coefficient is dependent on the physical surface of the object, it 
seems likely that a change detection algorithm based on this concept would be quite 
accurate, and, since the shading coefficient is independent of illumination, such an 
algorithm would also have the desirable property of being insensitive to changes in 
illumination. Unfortunately, it is not possible to calculate the shading coefficient for 
a given point without a priori knowledge of the surface structure. However, the 
exact value of the shading coefficient need not be known; one need only detect a 
change in the shading coefficient to be able to indicate a change between the frames 
of the sequence. The shading model change detection algorithm uses the ratio of 
intensities recorded in a region of the two frames to detect this change. 

The ratio of intensities at a given location over two frames is simply the ratio of 
the intensities of the illuminations on the two frames times the ratio of the two 
shading coefficients, 

I Pl Ii1 ‘pl 
----c--x-. 

I I,* sp2 P2 
(10) 

If there is no change in the physical structure, 

S,l = sp23 01) 
so 

I Pl I;1 -=- 
I P2 Ii2 . 

(12) 
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And if the physical structure does change, 

Spl + sp2; 

therefore, 

(13) 

Thus, for any region Ai, if there were no changes in the physical surface in that 
region, all the intensity ratios in that region would be equal: 

1 ml InI I,, 
-=-=- 

I In2 ‘i2 m2 

for all points n , m E A,. (15) 

Since the ratios are all equal, the variance of this ratio is zero in a region where no 
changes take place; 

where E { } is the expectation operator and us2 is the second central moment 
(variance). Since pi is the average value of the ratio of intensities, 

And if there were changes in the physical surface in that region (and all the shading 
coefficients do not change in exactly the same manner), 

(19) 

To determine if a change has taken place in a given region, one simply calculates 
the variance of the intensity ratios in that region. If it is close to zero, no change is 
perceived to have taken place; otherwise one may assume a change has occurred. As 
for the size of the region, it should contain a large enough sample so that the 
statistics will be indicative of the nature of the region. For our experiments, we used 
5 X 5 regions. 

When using this technique, one must keep in mind that it detects changes in 
physical surface structure and is (roughly) independent of illumination. This implies 
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FIG. 9. Test Sequence 3. Two frames of a sequence showing action on a sidewalk. 

that this technique would indicate no change if a light gray ball was replaced by a 
dark gray ball of the exact same size and shape under conditions with constant 
illumination. Whereas a simpler intensity-based approach would have no problem 
locating the change. 

An image pair obtained with no change in illumination between frames is shown 
in Fig. 9. Results from applying the shading model method to this sequence are 
shown in Fig. 10. As can be seen, this technique identifies the object which moved 
quite accurately. Note that this technique is also rather insensitive to noise. 

Figure 11 shows the results of applying the shading model method to the toy car 
sequence. As can be seen the moving car is isolated quite accurately from the 
background. Very little of the background is indicated as having changed. 

FIG. 10. The results of applying the shading model method to the sidewalk sequence.( T = 0.10.) 
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FIG. 11. The results of applying the shading model method to the toy car sequence. ( T = 0.008. I 

The results of applying this method to the blocks sequence are shown in Fig. 12. 
This technique isolates the screwdriver quite well, with little of the background 
being shown as changing. 

The performance of the shading model method on sequences with no change in 
illumination is quite good. Our results have shown it to be comparable to any of the 
other techniques presented. When confronted with a change in illumination, this 
technique performs better than the D-method and the gray scale equalization 

FIG. 12. The results of applying the shading model method to the screwdriver sequence. CT = 0.25.) 
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technique and, certainly, significantly better than any of the other techniques. On 
the sequence where the change in illumination is profound, it performs remarkably 
well and markedly better than any of the other techniques. 

3. CONCLUSION 

When designing a dynamic vision system, there are a significant number of 
change detection algorithms to choose from. Certainly, in the most general of 
applications where illumination cannot be controlled, the shading model method- 
should be considered. However, it may be the case that a simplistic quick approach, 
such as simple differencing may suffice in many applications. It may also be the case 
that information from several different change detection algorithms may be inte- 
grated to accurately detect changes. 
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