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A technique to compute fractal dimension as defined by the Kolmogorov capacity is discussed. The method is used to compute
fractal dimension for several standard curves and the boundary of the Mandelbrot set. This estimate of fractal dimension, al-
though very rough, refutes Milnor’s conjecture that the Hausdorff dimension of the Mandelbrot boundary is 2.

1. Introduction

The fractal dimension of an object is currently
being utilized to explore a variety of physical phe-
nomena [1]. Measurements of fractal dimension
have been made to gain insights into molecular ag-
gregation, galaxies, protein behaviour, and geologi-
cal formations [2,3]. The need to estimate dimen-
sion numerically has also arisen in several problems
connected with turbulence theory, the analysis of
stochasticity in dynamical systems, and in combus-
tion theory [4]. One definition of fractal dimension
is given by the Kolmogorov capacity [5]. The ca-
pacity is an upper bound to the Hausdorff dimen-
sion for all objects and identical to the Hausdorff di-
mension for a wide class of objects [6].

One important and highly complex theoretical
fractal set is the boundary of the Mandelbrot set. The
Mandelbrot set classifies chaotic behaviour for all
complex quadratic functions [7]. Unfortunately, it
is not a strange attractor and thus not amenable to
more efficient methods of determining fractal di-
mension [8]. Further, at present, the Hausdorff di-
mension of the Mandelbrot boundary (dM) has
eluded analytical determination. This paper inves-
tigates a method of numerically estimating fractal di-
mension which is used to give a weak upper bound
for the Hausdorff dimension of the Mandelbrot
boundary.

2. The method

We begin by stating the definition of Kolmogorov
capacity d. as given in ref. [5],

d.=lim log N(¢)/log(1/€),
e 0

where if the set in question is a bounded subset of a
p-dimensional Euclidean space R”, then N(e) is the
minimum number of p-dimensional cubes of side ¢
needed to cover the set.

The numerical methods used in the literature to
estimate capacity require covering of the object of
interest with balls of various radii. The dimension is
then computed by measuring the slope of the log-log
graph of number of cover elements versus the radius
of the cover elements.

The main difference in these methods lies in the
method of determining the cover. A standard ap-
proach to forming a cover of a closed curve is to
“walk” along the curve with uniformly sized steps.
This has been used to find the fractal dimension of
coastlines and particles in nature [9-11]. By walk-
ing the curve with uniform covers, the number of
cover elements needed to complete the cover is close
to the minimum number. An initial attempt to uti-
lize this method in investigation of the Mandelbrot
boundary has shown to be impractical. The branch-
ing and complexity of dM is such that computer al-
gorithms attempting to traverse this curve with no
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memory of past steps turn back on themselves and
wander forever. Adding memory of all past steps in-
volves the building of a data file of boundary points,
which, again due to the complexity of the Mandel-
brot boundary, would prove to be uninformative on
large scales of length and unreasonably time-con-
suming on small scales of length.

Another method of estimating capacity is to use a
box-counting method. The object of study is placed
on a grid of just-touching square boxes of side length
27" Let N(n) denote the number of boxes of side
length 2" which intersect the object. It can be shown
{6] that the capacity d_ is also given by

d.= lim log N(n)/log 2" .

n oo

Chorin has used this method for the estimation of
zeros of Brownian motion [4], and Clarke has ap-
plied this method to surfaces {3]. In contrast to their
studies, however, the Mandelbrot boundary is much
more difficult to locate. Consequently, the inaccu-
racy in determination of the set allows some boxes
(cover elements) to escape detection. Using Chorin
and Clarke’s method of cover construction, smaller
cover elements embedded in inaccurate larger cover
elements are also lost from consideration. The
method utilized in this study is a modification of their
technique.

The difference between Chorin’s method and the
method discussed in this paper lies in the manner of
generating cover sets. Rather than beginning with a
largest initial cover, we begin with the cover of finest
resolution. From this cover, larger covers are more
easily formed. Further, subsequent covers are at least
as accurate as their predecessors. Potential cover ele-
ments are formed by dividing the plane into a uni-
form grid of squares. A cover consists of a set of all
squares which contain both interior and exterior
points of the object of study.

The connectedness of an object’s boundary is used
to reduce the number of points that need to be eval-
uated for membership in the object. Douady [12]
showed that the Mandelbrot set is connected, and
hence is appropriate for this method of analysis. The
connectedness of a boundary implies that cover
membership can be determined solely by checking
the perimeter of a square cover element for bound-
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ary points. This reduces the number of computations
from order #n? to order .

The method begins with a list of sides of squares
known to contain boundary points. Each element of
the list is sequentially examined to determine if any
of the six surrounding square segments intersects the
boundary. Sides of squares that contain boundary
points are added to the list. Segments in the list that
fail 1o contain boundary points are removed from
further consideration. In this manner a minimum
number of points are analyzed. From this list of
square sides, it is easy to obtain a list of square cover
elements and generate the double-log plot whose slope
estimates the fractal dimension.

3. Results

The method was applied to a segment of the line
y=x, the unit circle, the Koch snowflake [10], a
space-filling curve similar to the Peano curve, and
the boundary of the Mandelbrot set. All figures were
restricted to lie in the rectangle -—-2<x<2,
—2<y<2, with the reflective symmetry of the fig-
ures with respect to the x-axis (real axis) exploited
to ignore points below the x-axis. Experiments were
performed with the length of a square’s side at 278,
2-9, 2719 and 2~''. The use of lengths that are re-
ciprocals of powers of two allowed the use of cover
elements that are represented by integers. This made
computations simpler and more accurate, and al-
lowed the use of Richardson extrapolation [13]. The
side of cover square was considered not to contain
a boundary point if after checking 17 equally spaced
points on that segment, no two points were found on
different sides of the boundary. Subsequent covers
had sides that ranged in length from twice to eigh-
teen times the length of the original cover size. Least
squares analysis was used to determine lower bounds
for the dimension as the absolute value of the slope
of the log-log plot of cover number versus cover size.
This sequence of values was then accelerated using
Richardson extrapolation to compute a best estimate
for the fractal dimension.

Although determination of the boundary of line
segments and circles is straightforward, the Koch
snowflake, the space-filling curve, and the Mandel-
brot set require iterative schemes. A point is consid-
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ered outside the boundary of the snowflake if it is
exterior to the original triangle defining the zeroth
iteration of the snowflake and is exterior to that tri-
angle after 32 appropriate translations and rotations.
The computed Koch snowflake is shown in fig. 1. The
space-filling curve is approximated by a grid of 3%
lines in both the x and y directions restricted to the
unit square (see fig. 2). A point x is considered out-
side the boundary of the Mandelbrot set if the for-
ward orbit of 0 has complex modulus greater than 2
after 256 iterations of the map f,(z)=z>—u. The

(0, 0)

represents the exterior

Fig. 2. Enlargement of space-filling curve.
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Fig. 3. Approximation to Mandelbrot boundary.

computed approximation to the Mandelbrot Bound-
ary is shown in fig. 3.

4. Analysis and error

In order to verify the method, the program was
tested on several curves whose capacities equal their
Hausdorff dimensions and are known exactly. The
estimates for the capacity of these curves are pre-
sented in table 1, along with an estimate for the ca-
pacity for the Mandelbrot boundary.

The program used was run on a 6 mips Vax in dou-
ble precision FORTRAN. The finest cover of ¢M re-
quired approximately 10 hours of cpu time and 800
kilobytes of main memory. The double-log plots of
data with finest resolution appears in fig. 4.

In general, smaller cover sizes produce better es-
timates of capacity. Hence, estimates for each curve
are monotonically increasing with n. As #n is in-
creased, the estimates of d. approach the true value
from below. Computer roundoff error enters the
computation only in the determination of the seg-
ments that intersect an object’s boundary. Once
boundary segments are determined, the remainder
of the calculation involve only integers and are exact.

Further, due to the inherent drawbacks in the
computational method, the results obtained for the
Mandelbrot boundary should be taken as a lower
bound, and not as estimates of the capacity itself. We
make this assertion for three reasons: first, a com-
puter cannot check all points on the perimeter of a
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Table 1
Curve Capacity Capacity Capacity Capacity Estimated Theoretical
fore=2"% fore=2""° fore=2"1 fore=2-" capacity capacity
line segment 0.99 0.99 0.997 0.999 1.000+0.0003 1
unit circle 0.95 0.965 0.995 0.997 0.997+0.01 1
Koch snowflake 1.24 1.25 1.27 1.26 1.26 +0.02 1.2619
Peano curve 2.0 NA NA NA 2.0 *0.01 2
M 1.29 1.42 1.52 1.61 1.64 +0.1 unknown
} L Suve Numerical errors were introduced into the com-
- L e tiake putation from two sources: the determination of the
10’ 2 SV angebrot boundary and determination of slope of the curve.
The error due to determination of the boundary was
. assumed to be normally distributed, so that a least
T . F squares determination of the slope provided the best
E 0 - estimate. However, the statistical error bounds do
5;5 ' ' . Ea, not take into account that the slopes are part of a limit
2 o . process. It was therefore decided to use the error
= J . o bounds predicted by the Richardson extrapolation
10’—‘ method. This error proved to be accurate for all base
curves examined.
10 e 5. Conclusions
10° 10 10

in radius of cover

Fig. 4. Double-log plot of cover data at finest resolution.

cover element for membership in the Mandelbrot set,
and hence very fine features of dM will be over-
looked. In fact, at the resolution of 2~ !!, many of the
finer filaments of M were not found. This would
tend to decrease the number of smaller covers, while
scarcely affecting the number of larger covers. This
disproportional change in the number of cover ele-
ments decreases the absolute slope of the log-log
graph of cover elements to cover size, and thus low-
ers the estimate of the capacity. Second, the iteration
process used to determine membership in the Man-
delbrot set allows nearby exterior points to be con-
sidered part of the set. This tends to thicken the set
and obscure some of the more delicate features, which
would result in lowering the estimate for the capac-
ity. Lastly, the definition of Kolmogorov capacity
applies in the limit as cover size tends to zero. The
detail of the Mandelbrot boundary becomes more
complex and intricate as one examines it on smaller
and smaller scales.

It appears that the method yields a weak estimate
of the fractal dimension of objects in a reasonable
amount of time. The simplicity of the method allows
it to be used to measure the fractal dimensions of ob-
jects that are not strange attractors. As finer covers
are used, the results for the fractal dimensions
monotonically approach the true value from below.
Our estimate for the fractal dimension of the Man-
delbrot boundary is d.(dM) =1.64+0.1. This result
lends evidence that refutes Milnor’s conjecture that
the Hausdorff dimension of dM is 2 [14].

This method for computation of fractal dimension
can also be applied to the boundaries of any sets that
have connected exteriors and interiors with non-zero
measure. This extension can include application to
high dimensions such as fractal surfaces as investi-
gated by Clarke [3]. However, such an extension
would be increasingly time-consuming with higher
dimensions and may prove impractical. The method
can also be modified to test the sensitivity of the es-
timate to the shape of cover elements.
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