Target designs are presented for production of 11C, 13N, 15O and 18F by proton and deuteron reactions. Seven targets of two basic configurations (gas and water) and their respective manifold and control systems are detailed with design specifications and operational characteristics for the production of 11C-CO_2, 13C-HCN, 15N-NH_3, 15O-O_2, 18F-$^-$ and 18F-F_2 precursors. Short irradiation times (5–20 min) and high current (30 µA) are used to produce near theoretical quantities of labeled PET precursors.

1. Introduction

Positron emission tomography is a diagnostic imaging technique that is used to noninvasively measure physiological and biochemical function of the human body. Short-lived positron emitting nuclides produced by compact cyclotrons are incorporated into specific biochemicals identical to or compatible with naturally occurring biomolecules within the body. The need to supply radionuclidic precursors on demand for clinical studies, radiopharmaceutical research and animal biodistribution studies taxes the production capabilities of many existing accelerator/target systems.

Early production of medically important positron emitters employed nuclear physics cyclotrons with limited beam output. Present compact cyclotrons (negative and positive ion) are designed to deliver up to 100 µA or more of current with a beam diameter of ≤ 10 mm. Cross sectional intensity of the beam is more uniform and approaches a step function in shape. Particles are extracted at fixed energies. Optimization of the cyclotron design contributes to its simplicity and, therefore, to its higher performance (higher extracted current).

Greater production yields are achieved by further optimizing the targetry for maximum utilization of cross-section and minimal loss of activity from incident particle scatter. Contamination of target materials (gases, tubes, target body, valves, etc.) can lead to competitive labeling of specific chemical sites with non-radioactive isotopes (12C for 13C) which reduces overall specific activity and diminishes the effectiveness of the particular radiopharmaceutical.

Target design criteria include: 1) simple, uncomplicated scheme; 2) a minimum number of joints and seals; 3) no welded joints or flanges; 4) a single thick target foil to be used as a degrader and window made from the same material as the target body; 5) all window and target seals to be metal-to-metal, i.e. C-rings or crush metal joints; 6) standard target mounting hardware to permit interchangeability between locations on a multiple position target gantry or ladder; 7) quick disconnect fittings for easy, rapid attachment of cooling lines (air and water), 8) standard valves and fittings for easy replacement, 9) optimized target length, pressure and diameter for highest yield with lowest target volume; 10) sufficient target body mass to minimize temperature excursions during irradiation, and 11) computer as well as manual remote control of target sequencing, manifold operation and pressure and current readouts.

2. 11C targets

The primary mechanisms for producing 11C ($t_{1/2} = 20.38$ min) is from the 14N(p, α)11C reaction with a threshold energy of 4.5 MeV. Nuclidic contamination occurs from the competing reactions of 14N(p, pn)13N and 14N(p, n)14O with half-lives of 11N and 14O being 9.96 min and 70.6 s respectively. Nearly all radiochemical syntheses of carbon compounds eliminate these radioisotopic impurities.

High and low pressure target designs are common [1,2]. The one shown in fig. 1 represents a high pressure, cylindrical target with a single window/degrader that drops the incident energy to 17.2 MeV from 26 MeV. Table 1 provides design details. The length of the target exceeds the proton range by 110% to account for density reduction or rarification of the target gas by localized heat transfer to nitrogen molecules. Scatter from the foil/degrader is the primary cause of beam divergence. Scatter from the target gas at these pressures contributes only a few percent to beam widening. Dry, particulate free, air cooling rather than helium cooling is used to greatly simplify overall target operations. The
Table 1
Target design specifications

<table>
<thead>
<tr>
<th>Target system</th>
<th>Shape</th>
<th>Length (cm)</th>
<th>Diameter (cm)</th>
<th>Volume (cm³)</th>
<th>Target body material</th>
<th>Entrance window material</th>
<th>Window thickness (mm)</th>
<th>Window seal</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹¹C</td>
<td>Cylindrical</td>
<td>30.5</td>
<td>2.9</td>
<td>201</td>
<td>Al(6061)</td>
<td>Al(2024)</td>
<td>1.59</td>
<td>Al C-ring</td>
</tr>
<tr>
<td>¹³N</td>
<td>Hemispherical</td>
<td>1.3</td>
<td>1.9</td>
<td>2.7</td>
<td>Al(6061)</td>
<td>Al(2024)</td>
<td>1.59</td>
<td>Crushed Al foil</td>
</tr>
<tr>
<td>¹⁴O(¹⁵N)</td>
<td>Cylindrical</td>
<td>15.2</td>
<td>2.2</td>
<td>58</td>
<td>Al(2024)</td>
<td>Al(2024)</td>
<td>2.29</td>
<td>Al C-ring</td>
</tr>
<tr>
<td>¹⁵O(¹⁴N)</td>
<td>Cylindrical</td>
<td>15.2</td>
<td>2.9</td>
<td>100</td>
<td>Al(6061)</td>
<td>Al(2024)</td>
<td>0.51</td>
<td>Al C-ring</td>
</tr>
<tr>
<td>¹⁸F(¹⁸O)</td>
<td>Hemispherical</td>
<td>0.5</td>
<td>1.8</td>
<td>0.9</td>
<td>Ag(99.999%)</td>
<td>Ag(99.999%)</td>
<td>0.64</td>
<td>Crushed Ag foil</td>
</tr>
<tr>
<td>¹⁸F(¹⁸Ne)</td>
<td>Cylindrical</td>
<td>14.9</td>
<td>3.2</td>
<td>120</td>
<td>Ni(200)</td>
<td>Ni(200)</td>
<td>0.13</td>
<td>Ni C-ring</td>
</tr>
</tbody>
</table>

The difference between the thermal conductivities of He and air is not as critical to the heat transfer as is the overall convective interface to remove the 244 W of dissipated energy within the degrader. Conical target shapes conform to the average Coulomb scattering angle but are more difficult to machine. A cylindrical target was chosen for its overall simplicity. The target manifold shown in fig. 2 is versatile. Standard valves [3,4] are used for easy replacement. Stainless steel regulators and manifold tubes help to minimize stable carbon contamination.

High current (30 µA) runs produce > 3 Ci of activity within 20 min. Two targets are employed for ¹³C precursors, one target for ¹¹C-CO₂ and a second one for ¹¹C-HCN. Use of one target for both precursors leads to reduced specific activity of the ¹¹C-CO₂ molecule after runs with 5% H₂ target gas. Labeled ¹³C carbon dioxide yields return to normal only after many target irradiations that alternate between zero grade N₂ and O₂ for the target gas.

Target sequencing operations include: 1) pressurization, 2) irradiation of a static system, and 3) release to the desired chemical processing location. A mass flow controller [5] is used to meter the target gas to the hot cell through small bore stainless steel tubes (1.6 mm o.d.). Minimal gas dilution occurs with this process while permitting the user maximum control of gas delivery to the synthesis apparatus.
Table 2

Operational target characteristics a)

<table>
<thead>
<tr>
<th>Target Reaction</th>
<th>Target material</th>
<th>Degrader ΔE (MeV)</th>
<th>Incident energy (MeV)</th>
<th>Current (µA)</th>
<th>Irradiation time (min)</th>
<th>Initial pressure (atm)</th>
<th>Beam on pressure (atm)</th>
<th>Yield (mCi EOB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C 14N(p, o)11C</td>
<td>99.9% N$_2$ or 5% H$_2$; 95% N$_2$ deionized, degassed H$_2$O</td>
<td>8.1</td>
<td>17.2</td>
<td>30</td>
<td>20</td>
<td>20</td>
<td>-40</td>
<td>>3100</td>
</tr>
<tr>
<td>13N 16O(p, o)13N</td>
<td>99%15N$_2$</td>
<td>8.1</td>
<td>17.2</td>
<td>20</td>
<td>5</td>
<td>6.8 b</td>
<td>-10</td>
<td>>200</td>
</tr>
<tr>
<td>15O 15N(p, n)15O</td>
<td>99%15N$_2$, 1% O$_2$</td>
<td>12.7</td>
<td>12.7</td>
<td>30</td>
<td>6</td>
<td>17</td>
<td>-33</td>
<td>>2800</td>
</tr>
<tr>
<td>14N(d, n)15O</td>
<td>99%14N$_2$, 1% O$_2$</td>
<td>5.6</td>
<td>7.8</td>
<td>20</td>
<td>6</td>
<td>6.8</td>
<td>-11</td>
<td>>1800</td>
</tr>
<tr>
<td>18F 18O(p, n)18F</td>
<td>95%18O-H$_2$O, 5%16O-H$_2$O</td>
<td>9.0</td>
<td>16.4</td>
<td>20</td>
<td>25</td>
<td>6.8 b</td>
<td>-10</td>
<td>>525</td>
</tr>
<tr>
<td>2Ne(d, o)18F</td>
<td>99% Ne, 0.1%19F$_2$</td>
<td>5.4</td>
<td>8.1</td>
<td>15</td>
<td>50</td>
<td>10</td>
<td>-15</td>
<td>>190</td>
</tr>
</tbody>
</table>

a) Cyclotron energy for protons is 26 MeV and for deuterons it is 15 MeV.
b) He overpressure.

ethylenes tubing detect the presence of water and govern the control sequence. The hemispherical volume provides only two surfaces to be wetted by the target water. Visual observations of the filling/emptying procedure demonstrate that less than 2% residual water is held up in a target of this shape. A motorized rotary valve [7] permits filling, bombardment, and emptying to appropriate synthesis location with minimal dead volume. An absolute shutoff slider valve [8] is used to isolate the target from the manifold during irradiation and operation of the rotary valve. The target is vented immediately after bombardment. All wetted parts of the manifold are polyethylene or Teflon.

4. 15O targets

Two reactions are employed to produce 15O namely 15N(p, n)15O and 14N(d, n)15O. Higher energies than those used in table 2 will produce nuclidic contaminants of 11C and 13N. Appropriate scrubbers are used to insure removal of any residual impurities. The incident energy is kept below the appropriate threshold of the competing nuclidic cross sections. Design for both target systems are very similar to the 11C system as given in table 1. Fig. 5 shows the differences employed for the 15O(14N) target manifold. The 15O(14N) manifold is almost identical to the 11C manifold shown in fig. 2 with the exception that the CO furnace and bypass are included on the output side of the manifold.

Operation of the 15O(14N) target is as follows: 1) pressurization through a small bore restrictor to 17 atm (250 psia); 2) irradiation of a static target; 3) tightly controlled release of <10% (48 cc STP) target gas into the manifold through another restrictor by cycling the output solenoid valve; and 4) delivery of either 15O-O$_2$ or 15O-CO to the desired location by following the target gas with a push gas (14N$_2$). Transport to the clinical PET scanners is by high speed bolus flow rather than steady state delivery. Recovery approaches 50–75% of EOB activity.

![Fig. 4. 14N manifold. A representative manifold design for filling and releasing water targets for 13N and 18F(15N) nuclides.](image)

![Fig. 5. 15O(15N) manifold. A low volume manifold designed for pressurizing a statically operated gas target. A fraction (7.7%) of the target gas is released into the manifold and pushed as a bolus (~200 mCi) to the PET camera by stable 14N$_2$ gas.](image)
Operation of the 15O(14N) target is identical to the standard 13C system.

5. 18F targets

Two reactions are used for production of 18F ($t_{1/2} = 109.8$ min): 18O(p, n)18F and 20Ne(d, α)18F. No competing reactions exist at the operational energies employed. Two systems are required for 18F production based on electrophilic (F_2 from the 20Ne(d, α) reaction) and nucleophilic (F^- from the 18O(p, n) reaction) syntheses.

The target/manifold system for the 18F(18O) target is similar to the 13N target. Silver is used instead of Al for the target body and window [9,10]. This reduces fluoride–metal complexes. The target volume is reduced by 200% from the 13N volume to minimize use of enriched 18O water. Operation of the target is identical to the 13N target. A solenoid metering pump [11] delivers enriched water to the target. If failure of this pump occurs only one load of water will be lost which holds costs of a catastrophic 18O–H$_2$O loss to a minimum.

The 18F(20Ne) target is similar to the 13C design. The target body and window are constructed from nickel. The target is filled to the correct pressure (0.3–2.0 atm) with a 1% 18F$_2$ + 99% Ne mixture and then topped off with pure Ne to 10.2 atm. The target is irradiated statically and ported through a mass flow controller and small bore nickel tubing to the appropriate radiosynthesis site.

6. Results

Table 2 shows the operational characteristics for seven individual targets routinely used for labeled PET precursor production. Note the reaction and target configuration for the two 13C targets are identical and therefore only one entry appears in table 2. The H$_2$ admixture distinguishes 13C–CO$_2$ from 13C–HCN production. At least 15 μA and more commonly 30 μA are used to irradiate each target. With the exception of the 20Ne(d, α) reaction, short bombardment times (5–25 min) are employed.

7. Conclusions

Target systems for PET nuclide production should be simple, reliable and easy to maintain. Standard fittings, flanges, valves and seals contribute to these design criteria. Only two distinctly different target designs are necessary. For most major PET research facilities with proton and deuteron capability at least seven individualized targets are necessary. One target should be used for only one reaction or precursor type. Multiuse systems are possible but contaminants reduce specific activity. Clean fittings, and use of all metal seals and C-rings [12] further help to reduce contamination while maintaining high specific activity. Costs for enriched isotopes (13N$_2$) govern 15O production between the proton and deuteron reaction. Lastly, to maintain a viable multipurpose PET center, short, high current target irradiations better utilize overall facility resources and will lead to higher center productivity.

References

[3] Skinner Valve Division, Honeywell Inc., 92 Edgewood Ave., New Britain, CT 06051, USA.
[4] Spangler Valve Co., 505 South Vermont Ave., Glendora, CA 91740, USA.
[6] Pulnix America, Inc. 770 Lucerne Dr., Sunnyvale, CA 94086, USA.
[7] Hamilton, Co., P.O. Box 10030, Reno, NV 89520, USA.