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Abstract. Polynomial systems of equations frequently arise in solid modelling, robotics, computer vision, 
chemistry, chemical engineering, and mechanical engineering. Locally convergent iterative methods such as 
quasi-Newton methods may diverge or fail to find all meaningful solutions of a polynomial system. Recently a 
homotopy algorithm has been proposed for polynomial systems that is guaranteed globally convergent (always 
converges from an arbitrary starting point) with probability one, finds all solutions to the polynomial system, 
and has a large amount of inherent parallelism. For this homotopy algorithm and a given decomposition 
strategy, the communication overhead for several possible communication strategies is explored empirically in 
this paper. The experiments were conducted on an iPSC-32 hypercube. 

Keywords. Polynomial systems of equations, globally convergent homotopy algorithm, parallel implementation 
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1. Introduction 

Solving nonlinear systems of equations is a central problem in numerical analysis, with 
enormous significance for science and engineering. A very special case, namely small poly- 
nomial systems of equations, occurs frequently enough in solid modelling, robotics, computer 
vision, chemical equilibrium computations, chemical process design, mechanical engineering, 
and other areas to justify special algorithms. To put polynomial systems in perspective and for 
the purpose of discussion here, there are three classes of nonlinear systems of equations: 

(1) large systems with sparse Jacobian matrices, 
(2) small transcendental (nonpolynomial) systems with dense Jacobian matrices, and 
(3) small polynomial systems with dense Jacobian matrices. 

Sparsity for small problems is not significant, and large systems with dense Jacobian matrices 
are intractable, so these two classes are not counted. Of course medium-sized problems are also 
of practical interest, but the boundaries between small, medium, and large change with 
computer hardware technology and algorithmic development. Depending on algorithmic ef- 
ficiency, hardware capability, and the significance of sparsity, a medium-sized problem is 
treated like it belongs to one of the above three classes anyway, so there is no need for a 
'medium' class. 

Large sparse nonlinear systems of equations, such as equilibrium equations in structural 
mechanics, have two aspects: highly nonlinear and recursive scalar computations, and large 
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matrix, vector operations. There is a great amount of parallehsm in both aspects, but the nature 
of the parallelism is very different (or so it seems). Small dense transcendental systems of 
equations pose a major challenge, since they involve recursive, scalar intensive computation 
with a small amount of linear algebra. It has been argued that the communication overhead of 
hypercube machines makes them unsuited for such problems, but the issue is still open and 
algorithmic breakthroughs are yet possible. Polynomial systems are unique in that they have 
many solutions, of which several may be physically meaningful, and that there exist homotopy 
algorithms guaranteed to find all these meaningful solutions. The very special nature of 
polynomial systems and the power of homotopy algorithms are often not fully appreciated, 
perhaps because globally convergent probability-one homotopy methods are not widely known. 

Algorithms for solving nonlinear systems of equations can be broadly classified as 
(1) locally convergent or 
(2) globally convergent. 

The former includes Newton's method, various quasi-Newton methods, and inexact Newton 
methods. The latter includes continuation, simplicial methods, and probability-one homotopy 
methods. These algorithms are qualitatively significantly different, and their performance on 
parallel systems may very well be the reverse of their performance on serial processors. The 
overall purpose of this research is to study how nonlinear systems of equations might be solved 
on a hypercube; this paper addresses a small part of that issue, namely probability-one 
homotopy methods for polynomial systems. 

Much work has been done on solving linear systems of equations on parallel computers, 
mostly on vector machines [4,5,7,8,10-12,14-16,18,22,23]. Some work has been done on 
nonlinear equations and Newton's method [26,29,34,35], and on finding the roots of a single 
polynomial equation [9,25]. Parallel algorithms for polynomial systems have not been studied, 
nor have parallel homotopy algorithms for nonlinear systems of equations. 

A hypercube computer consists of 2 n processors (nodes), each with memory, floating-point 
hardware, and (possibly) communication hardware. The nodes are independent and asynchro- 
nous, and connected to each other like the comers of an n-dimensional cube. At first glance it 
appears that the time needed to solve a problem on one processor is reduced by a factor of 2 n 
for a hypercube with that number of processors. Of course this reduction is only theoretical 
since it assumes that the computations are equally divided among the nodes and it ignores the 
time associated with communication among nodes. Typically the overhead for this communica- 
tion is considered to be small relative to the time used for computational purposes. For a given 
decomposition of a globally convergent probability-one homotopy algorithm for polynomial 
systems of equations, the present article explores empirically the magnitude of the communica- 
tion overhead for several possible communication strategies. The test problems were real 
engineering problems obtained from General Motors Research Laboratories. 

Section 2 summarizes the mathematics behind the homotopy algorithm, and sketches a 
computer implementation based on ODE techniques. Section 3 briefly describes the 'hyper- 
cube' computer architecture. Section 4 discusses the special case of polynomial systems in some 
detail, giving the theoretical justification for the claim that the homotopy algorithm is 
guaranteed to be global ly  convergen t  and to find al l  solutions. Computational results on an 
Intel iPSC-32 hypercube are presented and discussed in Section 5. 

2. Homotopy algorithm 

Let E e denote p-dimensional real Euclidean space, and let F: E p ---, E p be a C 2 (twice 
continuously differentiable) function. The general problem is to solve the nonlinear system of 
equations 

r(x) = o .  
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The fundamental mathematical result behind the homotopy algorithm (see [6,19-21,30-33]) is 

Proposition 2.1. Let F: E p ~ E p be a C 2 map and p : E m x [0,1) x E p ~ E p a C 2 map such that 
(1) the Jacobian matrix Dp has full rank on p-l(0) ;  

and for fixed a ~ E m, 
(2) p(a, O, x)  = 0 has a unique solution W ~  EP; 

(3) p(a,  1, x ) =  F(x) ;  
(4) the set of zeros of Oo (X, x )  = p (a, X, x )  is bounded. 

Then for almost all a ~ E m there is a zero curve T of 

po(X, x)  = p ( a ,  X, x ) ,  

along, which the Jacobian matrix Dpa(~, x )  has full rank, emanating, from (O,W) and reaching, a 
zero ~ of F at X = 1. Furthermore, Y has finite arc length if DF(~)  is nonsing,ular. 

The general idea of the algorithm is apparent from the proposition: just follow the zero 
curve T of 06 emanating from (0,W) until a zero ~ of F ( x )  is reached (at X = 1). Of course it is 
nontrivial to develop a viable numerical algorithm based on that idea, but at least conceptually, 
the algorithm for solving the nonlinear system of equations F ( x ) =  0 is clear and simple. A 
typical form for the homotopy map is 

pw (X ,  x)  = X r ( x )  + (1 - X ) ( x -  W) ,  (1) 

which has the same form as a standard continuation or embedding mapping. However, there 
are two crucial differences. In standard continuation, the embedding parameter X increases 
monotonically from 0 to 1 as the trivial problem x -  W = 0 is continuously deformed to the 
problem F ( x ) =  0. The present homotopy method permits X to both increase and decrease 
along y with no adverse effect; that is, turning points present no special difficulty. The second 
important difference is that there are never any 'singular points' which afflict standard 
continuation methods. The way in which the zero curve y of O~ is followed and the full rank of 
DO~ along T guarantee this. Observe that Proposition 2.1 guarantees that T cannot just 'stop' at 
an interior point of [0,1) × E p. 

The zero curve T of the homotopy map O~(X, x) (of which pw(~ ,  x )  in (1) is a special case) 
can be tracked by many different techniques; refer to the excellent survey [1] and recent work 
[32,33]. The numerical results here were obtained with preliminary versions of HOMPACK 
[32], a software package currently under development at Sandia National Laboratories, General 
Motors Research Laboratories, Virginia Polytechnic Institute and State University, and The 
University of Michigan. There are three primary algorithmic approaches to tracking T: 

(1) an ODE-based algorithm, 
(2) a predictor-corrector algorithm whose corrector follows the flow normal to the Davidenko 

flow (a 'normal flow' algorithm); 
(3) a version of Rheinboldt's linear predictor, quasi-Newton corrector algorithm [24] (an 

'augmented Jacobian matrix' method). 
Only the ODE-based algorithm will be discussed here. Alternatives (2) and (3) are described 

in detail in [33] and [2], respectively. Assuming that F ( x )  is C 2 and a is such that Proposition 
2.1. holds, the zero curve T is C a and can be parametrized by arc length s. Thus ~ = X(s), x = 
x ( s )  along T, and 

po(X(s ) ,  x ( s ) )  = 0 (2) 
identically in s. Therefore 

= 0, (3) ~-~po(~(s),  x ( s ) ) = D p ~ ( X ( s ) ,  x ( s ) )  d x  

(dX d x )  2 
ds ' ds = 1. (4) 



164 14~ Pelz, L T. Watson /Message length effects solving polynomial systems 

With the initial conditions 

X(0) -- 0, x(0) = W, (5) 

the zero curve ~, is the trajectory of the initial value problem (3)-(5). When X(g)=  1, the 
corresponding x(g) is a zero of F(x). Thus all the sophisticated ODE techniques currently 
available can be brought to bear on the problem of tracking "y [28,31]. 

Typical ODE software requires (d)~/ds, d x / d s )  explicitly, and (3), (4) only implicitly define 
the derivative (d)~/ds, dx/ds) .  (It might be possible to use an implicit ODE technique for 
(3)-(4), but that seems less efficient than the method proposed here.) The derivative 
(d~,/ds,  dx/ds) ,  which is a unit tangent vector to the zero curve y, can be calculated by 
finding the one-dimensional kernel of the p × (p  + 1) Jacobian matrix 

Dpa(X(s) ,  x(s) ) ,  

which has full rank by Proposition 2.1. It is here that a substantial amount of computation is 
incurred, and it is imperative that the number of derivative evaluations be kept small. Once the 
kernel has been calculated, the derivative (dX/ds ,  d x / d s )  is uniquely determined by (4) and 
continuity. Complete details for solving the initial value problem (3)-(5) and obtaining x(g) 
are in [30] and [31]. A discussion of the kernel computation follows. 

The Jacobian matrix Dpo is p X (p  + 1) with (theoretical) rank p. The crucial observation is 
that the last p columns of Dpa, corresponding to Dxp ~, may not have rank p, and even if they 
do, some other p columns may be better conditioned. The objective is to avoid choosing p 
'distinguished' columns, rather to treat all columns the same (not possible for sparse matrices). 
There are kernel finding algorithms based on Gaussian elimination and p distinguished 
columns [17]. Choosing and switching these p columns is tricky, and based on ad hoc 
parameters. Also, computational experience has shown that accurate tangent vectors 
(dX/ds ,  d x / d s )  are essential, and the accuracy of Gaussian elimination may not be good 
enough. A conceptually elegant, as well as accurate, algorithm is to compute the QR factoriza- 
tion with column interchanges [3] of Dp,, 

* . . .  * * 

QDo~pTpz = " ) Pz = 0, 

0 * * 

where Q is a product of Householder reflections and P is a permutation matrix, and then 
obtain a vector z ~ ker Dpa by back substitution. Setting (PZ)p+a = 1 is a convenient choice. 
This scheme provides high accuracy, numerical stability, and a uniform treatment of all p + 1 
columns. Finally, 

z 

d s '  -- + II z II-----~' 

where the sign is chosen to maintain an acute angle with the previous tangent vector on y. 
There is a rigorous mathematical criterion, based on a (p  + 1 ) x  ( p -  1) determinant, for 
choosing the sign, but there is no reason to believe that would be more robust than the angle 
criterion. 

Several features which are a combination of common sense and computational experience 
should be incorporated into the algorithm. Since most ordinary differential equation solvers 
only control the local error, the longer the arc length of the zero curve 3' gets, the farther away 
the computed points may be  from the true curve y. Therefore when the arc length gets too long, 
the last computed point (X, Y) is used to calculate a new parameter vector ff such that 

O,(~, x)  --- 0 (6) 
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exactly, and the zero curve of pa(A, x)  is followed starting from (~, ~). A rigorous justification 
for this strategy was given in [31]. If  Pa has the special form in (1), then trivially 

5 =  (~.F(.2) + (1 - X ) Y ) / ( 1  - X ) .  

For  more general homotopy  maps Pa, this computat ion of 5 may be complicated. 
Remember  that tracking ~, was merely a means to an end, namely a zero Y of F ( x ) .  Since 7 

itself is of no interest (usually), one should not waste computational  effort following it too 
closely. However, since 7 is the only sure way to £, losing ~, can be disastrous. The tradeoff 
between computational  efficiency and reliability is very delicate, and a fool-proof strategy 
appears difficult to achieve. None  of the three pr imary algorithms alone is superior overall, and 
each of the three beats the other two (sometimes by an order of magnitude) on particular 
problems. Since the algorithms' philosophies are significantly different, a hybrid will be hard to 
develop. 

In summary, the algorithm is: 

1. Set s := 0, y := (0,W), y p o l d : = y p  .'= (1, 0 . . . . .  0), restart := false, error := initial error toler- 
ance for the ODE solver. 

2. If Yl < 0, then go to 23. 
3. If s > some constant, then 

4. s : = 0 .  
5. Compute  a new vector a satisfying (6). If  

Ilnew a - old a 11 > 1 + constant * Ilold a II, 
then go to 23. 

6. ode error := error. 

7. If  II YP -ypold II ~ > (last arc length step) * constant, then ode error := tolerance << error. 

8. y p o M  := yp .  

9. Take a step along the trajectory of (3)-(5) with the O D E  solver, y p  = y ' ( s )  is computed for 
the ODE solver by 10 - 12: 
10. Find a vector z in the kernel of D P a ( y  ) using Householder reflections. 
11. If z T y p o M < O ,  then z : =  - z .  

12. yp  := z / l l  z II. 
13. If  the O D E  solver returns an error code, then go to 23. 
14. If  Ya < 0.99, then go to 2. 
15. If  restart = true, then go to 20. 
16. restart := true. 
17. error .'= final accuracy desired. 
18. If  Yl >1 1, then set (s, y )  back to the previous point (where Yl < 1). 
19. Go  to 4. 
20. If  Yl < 1, then go to 2. 
21. Obtain the zero (at Yl = 1) by interpolating mesh points used by the O D E  solver. 
22. Normal  return. 
23. Error return. 

3. The hypercube 

The word 'hypercube '  refers to an n-dimensional cube. Think of a cube in n dimensions as 
sitting in the positive orthant, with vertices at the points 

( v ,  . . . .  , on ) ,  v i~{O,1} ,  i = 1  . . . . .  n .  
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Fig. 1.4-cube structure and node labelling. 

There are thus 2 n vertices, and two vertices v and w are 'adjacent ' ,  i.e., connected by an edge, 
if and only if o /=  w i for all i except one. The associated graph, also sometimes referred to as 
an 'n-cube',  has 2" vertices (which can be labelled as above with binary n-tuples) and edges 
between vertices whose labels differ in exactly one coordinate (see Fig. 1). 

A 'hypercube computer architecture' is a computer  system with 2" (node) processors, 
corresponding to the 2" vertices (nodes), and a communication link corresponding to each edge 
of the n-cube. Thus each processor has a direct communicat ion link to exactly n other 
processors. The distance between any two of the P = 2 n processors is at most n = log2P = 
log2(2" ), considered an ideal compromise between total connectivity (distance = 1) and ring 
connectivity (distance = P/2) .  Figure 1 shows how a 4-cube is built up from two 3-cubes. 

Typically the node label ( v l , . . . ,  v,) is viewed as a binary number  VaV2... v,, and in this view 
two nodes are adjacent if and only if their binary representations differ in exactly one bit. 
Typically node addresses are computed in programs by a gray code, a bijective function 

g : { 0  . . . .  , 2 " - 1 }  ~ (0 . . . . .  2 " - 1 }  

such that the binary representations of g(k  (mod 2")) and g ( k  + 1 (mod 2")) differ in exactly 
one bit for all k (cf. [13]). 

Realizations of this abstract architecture have one additional feature: a 'hos t '  processor with 
communication links to a// the node processors. This host typically loads programs into the 
nodes, starts and stops processes executing in the nodes, and interchanges data with the nodes. 
In current hardware implementations only the host has external I / O  and peripheral storage; 
the nodes consist of memory, a CPU, and possibly communicat ion and floating-point hard- 
ware. 

The Intel iPSC has 32, 64, or 128 nodes. Each node is an 80286/80287 with 512 kbytes of 
memory. The host is also an 80286/80287, but with 4 Mbyte  of memory,  a f loppy disk drive, a 
hard disk, an Ethernet connection, and Xenix. The nodes have only a minimal monitor for 
communication and process management.  

The NCUBE has up to 1024 nodes in multiples of 64, each with 128k of memory and 
communication and floating-point hardware. The host is an 80286, running NCUBE ' s  operat- 
ing system, a primitive version of UNIX.  The node chip is NCUBE ' s  own design, with a unique 
feature being communication hardware. 

4. Polynomial systems 

Section 2 described a homotopy algorithm for finding a single solution to a general 
nonlinear system of equations F ( x ) =  0. Proposition 2.1 provided the theoretical guarantee of 
convergence. The rich structure and multiple solutions of polynomial systems dictate that the 
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general theory in Section 2 must be sharpened. This section develops a globally convergent 
(with probability one) homotopy algorithm that finds all solutions to a polynomial system, and 
provides the theoretical justification for that algorithm. 

Suppose that the components of the nonlinear function F(x )  have the form 
" '  

F~(x) = ~ aik xy 'jk, i=  1 . . . .  ,n .  (7) 
k = l  j = l  

The ith component F,(x) has n~ terms, the a~k are the (real) coefficients, and the degrees d~j k 
are nonnegative integers. The total degree of F,. is 

n 

d, = max ~1= d~jk. 

For technical reasons it is necessary to consider F ( x )  as a map F:  C n ~  C n, where C n is 
n-dimensional complex Euclidean space. A system of n polynomial equations in n unknowns, 
F(x )  = 0, may have many solutions. It is possible to define a homotopy so that all geometri- 
cally isolated solutions of (7) have at least one associated homotopy path. Generally, (7) will 
have solutions at infinity, which forces some of the homotopy paths to diverge to infinity as ~, 
approaches 1. However, (7) can be transformed into a new system which, under reasonable 
hypotheses, can be proven to have no solutions at infinity and thus bounded homotopy paths. 
Because scaling can be critical to the success of the method, a general scaling algorithm [32] is 
applied to scale the coefficients and variables in (7) before anything else is done. 

Since the homotopy map defined below is complex analytic, the homotopy parameter ~ is 
monotonically increasing as a function of arc length [20]. The existence of an infinite number of 
solutions or an infinite number of solutions at infinity does not destabilize the method. Some 
paths will converge to the higher dimensional solution components, and these paths will behave 
the way paths converging to any singular solution behave. Practical applications usually seek a 
subset of the solutions, rather than all solutions [19,20]. However, the sort of generic homotopy 
algorithm considered here must find all solutions and cannot be limited without, in essence, 
changing it into a heuristic. 

Define G : C n --, C n by 

G j ( x ) = b y x  d , - a j ,  j =  l . . . . .  n, (8) 

where aj and bj are nonzero complex numbers and dj is the (total) degree of ~ (x ) ,  for 
j = 1 . . . . .  n. Define the homotopy map 

pc(X, x)  = (1 - X ) G ( x )  + X r ( x ) ,  (9) 

where c = ( a ,  b), a = ( a  1 . . . . .  a n ) ~ C  n and b = ( b  a . . . .  , b , ) ~ C " .  Let d = d  I . . . d n  be the 
total degree of the system. The fundamental homotopy result, proved and discussed at length in 
[19]-[21], is: 

Theorem 4.1. For almost all choices of a and b in C n, p~-l(O ) consists of d smooth paths emanating 
from {0} × C n, which either diverge to infinity as ~ approaches 1 or converge to solutions to 
F( x ) = 0 as ~ approaches 1. Each geometrically isolated solution of F( x ) = 0 has a path 
converging to it. 

A number of distinct homotopies have been proposed for solving polynomial systems. The 
homotopy map in (9) is from [20]. As with all such homotopies, there will be paths diverging to 
infinity if F ( x ) =  0 has solutions at infinity. These divergent paths are (at least) a nuisance, 
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X 

Fig. 2. The  set Pa  1(0) for a t r ans fo rmed  po lynomia l  system. 

The import of the above theory is that the nature of the zero curves of the projective 
transformation F"(y) of F(x) is as shown in Fig. 2. There are exactly d (the total degree of F )  
zero curves, they are monotone in h, and have finite arc length. The homotopy algorithm is to 
track these d curves, which contain all isolated (transformed) zeros of F. 

5. Computational results 

Polynomial systems of equations arise frequently in such diverse areas as computational 
geometry, robotics, chemical engineering, mechanical engineering, and computer vision. A 
small problem has total degree d < 100 and a large problem has d > 1000. An example of a 
chemical equilibrium problem (403 in Table 1) is 

Fj(x)=ajlx 2 +aj2 xz +aj3xlx z +aj4x l +ajSx 2 +aj6=O f o r j = l , 2 ,  

where 

all = -0 .00098,  a14 = - 2 3 5 ,  a21 = - 0 . 0 1  a24 = 0.00987, 

alz = 978000, aa5 = 88900, a22 = -0 .984 ,  az5 = -0 .124 ,  

a13 = - 9 . 8 ,  a16 = - 1 . 0 ,  a23  = - 2 9 . 7 ,  a26  = - 0 . 2 5 .  

The exact solutions (to four significant figures) are 

(x  1, x 2) = (0.09089, - 0.09115), 

(2342, - 0.7883), 

(0.01615 + 1.685i, 0.0002680 + 0.004428i), 

(0.01615 - 1.685i, 0.0002680 - 0.004428i). 

Given that d homotopy paths are to be tracked, one method of solution is to assign one 
path to each node processor, with the host controlling the assignment of paths to the nodes, 
keeping as many nodes busy as possible, and post-processing the answers computed by the 
nodes. The actual path tracking is done with subroutines F IXPNF (on the nodes) and POLSYS 
(on the host) of HOMPACK [32], ideally modified only by the insertion of SEND's and 
RECEIVE's. The information passing between the host and the nodes using SEND's and 
RECEIVE's is a subset of the information that would ordinarily be passed using subroutine 
CALL's. F IXPNF and POLSYS are complicated production codes, and a detailed discussion of 
exactly which data must be sent and received, and which data can be inferred or need not be 
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transmitted, would be a lengthy digression. We therefore precisely describe the parallel 
algorithm in terms of message passing, without getting mired in the details of what information 
is being transferred (such details are best left to the code itself, where they are thoroughly 
documented). Omitting the tracking and initialization details of F IXPNF and POLSYS, the 
parallel algorithm is 

For the host: 
(1) Initialize the data space and calculate a starting point for each path. 
(2) SEND initializations and a starting point to a node. 
(3) If the message in (2) is incomplete, go to (2). 
(4) If another path needs to be assigned and a node is available, go to (2). 
(5) Now wait for a message from a node. 
(6) RECEIVE a ' ready to transmit solution' message from a node (call it the 'current '  node). 
(7) SEND an acknowledgement ( ' ready to receive' message) to the current node. 
(8) If a ' ready to transmit' message is received from another node, put the node identification 

into a queue until the current node completes transmitting a solution. 
(9) RECEIVE a 'solution' message from the current node. 

(10) If the 'solution' message is incomplete, go to (8). 
(11) Process the solution sent by the current node and print it. 
(12) If another path needs to be assigned, SEND initializations and a starting point to the 

current node. 
(13) If the message in (12) is incomplete, go to (12). 
(14) If any nodes are in the queue (see (8)), remove the first node from the queue, call it the 

current node and go to (7). 
(15) If awaiting messages from any other nodes, go to (5). 
(16) All paths have been assigned and all nodes have reported back, so STOP. 

For each node: 
(1) RECEIVE initializations and a starting point from the host. 
(2) If the message in (1) is incomplete, go to (1). 
(3) Track the path associated with the starting point. 
(4) SEND a ' ready to transmit solution' message to the host. 
(5) RECEIVE a ' ready to receive' message from the host. 
(6) SEND the 'solution' message to the host. 
(7) If the message in (6) is incomplete, go to (6). 
(8) Go to (1). 

Note 1. The initialization and solution messages may be longer than permitted by the message 
buffer. The information must therefore be passed in multiple messages. 

Note 2. Each node program is in an infinite 

RECEIVE initializations ~ track homotopy zero curve ~ SEND solution 

loop. 

When using subroutines to solve a polynomial system on a serial machine, a large amount of 
information must be passed back and forth between the calling and the called routines. 
However, using the message passing mechanism available on the hypercube, it is possible to 
limit the quantity of data by transmitting it only in the required direction. For  example, in the 
parallel algorithm described above, the initializations need only be passed from the host to the 
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Table 1 
Comparison of runs for full and reduced arrays 

171 

Problem Total Number Number of Execution ~0 Number Number of Execution 
number degree of bytes messages time (s) of bytes messages time (s) 

102 256 7536 1536 645 0.76 1080 1536 400 1.23 
103 625 7536 3750 1616 0.65 1080 3750 867 1.21 
402 4 5232 24 54 0.94 888 24 54 0.94 
403 4 5232 24 19 0.88 888 24 19 0.88 
405 64 5232 384 335 0.33 888 384 329 0.34 

601 60 12144 360 257 1.11 1400 360 247 1.16 
602 60 13152 360 2795 0.31 1472 360 2788 0.31 
603 12 4704 72 243 0.38 848 72 244 0.38 
803 256 105648 2560 11527 - 7256 1536 11436 - 

1702 16 12432 96 163 0.60 1416 96 151 0.64 
1703 16 12432 96 162 0.60 1416 96 151 0.65 
1704 16 14064 96 108 0.89 1528 96 101 0.95 
1705 81 14064 486 378 1.15 1528 486 349 1.24 
5001 576 61104 4608 11786 - 4440 3456 11610 - 

nodes; passing this information in the reverse direction is unnecessary. Similarly, the solution 
data must be passed only from the nodes to the host. 

By reducing the amount of information that is to be transmitted to an absolute minimum 
(and still be able to solve the problem!), the number of messages a n d / o r  the lengths of these 
messages can be reduced. Thus the time spent on waiting for permission to transmit as well as 
the time actually spent on transmission can be reduced. In addition the host may not have to 
wait as long for a solution to be received from a node before continuing processing. The 
penalty for reducing the information transmitted is that the very complicated data structures of 
POLSYS must be modified, and the new minimal data structures must be assembled and 
disassembled for each transmission. Since POLSYS is a sophisticated production code, it is 
very important to determine whether substantial changes to its data structures are justified; i.e., 
how deleterious is transmitting some unnecessary data? 

Table 1 contains the results of a study designed to examine these effects on an Intel iPSC-32. 
The problems are all real engineering problems in solid modelling, chemistry, and robotics that 
have arisen at General Motors and elsewhere. The problem number refers to an internal 
numbering scheme used at General Motors Research Laboratories; complete problem data is 
available on request. Total degree refers to the number of paths d to be followed. The next four 
columns show the number of bytes transmitted (per path), the total number of messages, the 
execution time, and the efficiency to for each problem when the full data arrays (unmodified 
data structures of FIXPNF and POLSYS) are transmitted. The last four columns give the same 
information for the case in which only the essential information (minimal data structures) is 
transmitted. The serial times and speedups are not shown, but can be easily calculated from the 
given data. (Speedup is the serial elapsed time using only the host divided by the parallel 
elapsed time using the hypercube. Efficiency is speedup divided by the number of processors 
actually used.) 

The efficiencies to range from 0.31 to 1.24; an efficiency to > 1 is theoretically impossible. 
This is a good illustration of the difficulty of using statistics such as speedup and efficiency to 
measure performance. The host is memory poor compared to the aggregate memory of 32 
nodes, and for larger polynomial systems memory does make a difference. The point is that it is 
unfair to compare a memory starved serial time (on the host or on one node) to a memory 
abundant parallel time. Another contributing factor to this to > 1 paradox is the significant 
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difference between the node and host operating systems. Note also that the total degree d 
(which is a direct measure of the potential parallelism) is not a particularly predictive statistic, 
because Problems 601 and 602 both have d = 60 but have efficiencies ~ = 1.11 and ~ = 0.31 
respectively. 

The change in efficiencies between full array and reduced array runs for Problems 102 and 
103 also deserves some discussion. The number of paths (total degree) divided into the parallel 
execution time gives a rough measure of how much time is spent on the 'average' path for each 
of the problems. Problems 102 and 103 have the lowest ratios of any of the problems indicating 
that they are less computationally intensive than the others. Another way of saying the same 
thing is to say that the proportion of time spent by the host on message passing, rather than 
waiting for the nodes to respond, is higher for these two problems than for the others. Thus any 
reduction in time spent passing information has a larger effect on overall time. This relatively 
low time per path for Problems 102 and 103 is consistent with the fact that their paths are 
innocuous and they have fewer singular solutions at infinity compared to the Problems 602, 
803, and 5001, which have the largest times per path. Comparing the two efficiency columns, a 
reasonable conclusion is that using the minimal data structures is worthwhile only for 'easy' 
problems, with well-behaved paths and few singular solutions. 

The problems given in Table 1 require different times for the computations needed to obtain 
the solutions irrespective of any message passing time, so direct comparisons among problems 
are meaningless. However, a comparison of execution times within a particular problem is 
meaningful since the difference in times is independent of the calculation times and is a 
function of the difference in the number of messages, the difference in the number of bytes 
transmitted, and the total degree (the number of paths) in the problem. A model was 
constructed using multiple regression, resulting in the equation 

y = - 2 1 . 0  + 2.28x 1 - 0.11x 2 + 1.89x 3 (12) 

where y = difference in execution times, x 1 = difference in number of messages, x 2 = difference 
in total number of kilobytes transmitted, and x 3 = total degree. The value of the multiple 
correlation coefficient for this model is R 2= 0.98, indicating that 98% of the variation in the 
data is explainable by the above model. Note that this interpretation only gives an indication of 
the appropriateness of the model; it does not speak to the question of the true physical model 
which causes the observed effects. Furthermore, since the independent variables are serially 
correlated, the regression equation (12) should not be used to predict changes in execution 
times for changes in one of the variables while keeping the other variables fixed. Figure 3 is the 
scatter diagram with the variable y on the vertical axis and the variable x 3 on the horizontal 
axis. 

The fit is not perfect for a number of reasons related to the hardware and software of the 
system in addition to the possibility that the wrong model is being fit. The messages are 
transmitted asynchronously in real time, and the temporal order of events may depend on such 
things as buffer status, free space list size, timer interrupts, and even random (corrected) 
hardware errors. The state of the node operating systems and disk file fragmentation on the 
host can affect durations and the temporal order of events, sometimes by as much as 10%. Thus 
the execution time is a random variable, and statistical analysis is appropriate. 

Another study using only the problem set 402 addressed the issue of the effect on execution 
times as the number of messages increased while keeping both calculation times and the 
number of transmitted bytes constant. The Intel Hypercube allows a maximum of 16 kbytes to 
be transmitted in any single message. By artificially restricting the channel bandwidth to values 
smaller than 16k, the resulting execution times can be related to the number of messages since a 
decrease in bandwidth per message forces an increase in the number of messages. Figure 4 
shows that execution time (vertical axis) is a function of reciprocal bandwidth (horizontal axis). 
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Fig. 3. Difference in execution times versus total degree. 

Figure 5 shows that execution time (vertical axis) increases nonlinearly as the number of 
messages (horizontal axis) increases. 

The scatter diagrams show that the execution time is inversely proportional to bandwidth 
and a function of the number of messages raised to the 3 / 2  power. A number of models were 
examined with the most reasonable model  being 

y = 66.12 + 0 .00222(x l )  3/2 (13) 

where y = execution time and x 1 = number of messages. The resultant R 2 is 0 . 9 9 + ,  indicating 
an excellent fit to the data. Since the number of messages and the bandwidth are highly 
correlated, no additional benefit (i.e., gain in information) is obtained by including the latter in 
the model. The equation (13) is valid within the range of the data, but should not be used to 
make predictions outside the region of the data. 

o~ 
v 

E 

o = 
..s 

x 
I.U 

250 

190 

130 

70 

o 

J J i c 
BO 3 2 0  5 6 0  80 (  

Bandwi dth  ( b y t e s )  

Fig. 4. Execution time versus bandwidth. 
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Fig. 5. Execution time versus number of messages. 

6. Conclusions 

The models in equations (12) and (13) give strong indications as to the form of the 
underlying physical system. Considering equation (12) and the data in Table 1 first, we may 
conclude that in general it is unnecessary to minimize the amount of transmitted data. Only for 
Problems 102 and 103 were large decreases in execution times evident. Although the model (12) 
showed a good fit overall, predictions for individual cases may not be of much value. Two 
examples highlight the variability of individual predictions. Problem 103 has an actual 
difference in execution time of 749 seconds, whereas the model predicts 725 seconds, an error 
of 24 seconds (3%). However, Problem 601 with an actual difference of 10 seconds has a 
predicted value of 23 seconds, an error of 13 seconds (130%). Because of the nature of least 
squares regression fitting, it is entirely possible that the model may predict increases in 
execution times for cases in which the acutal difference is near zero. 

The model given in equation (13) quantifies the relationship seen in Fig. 5. The variation 
between actual and predicted times is small enough over the range of the data to allow 
meaningful predictions for cases in which the number of meassages lies between 24 and 2000. 

Both statistical studies indicate that in general it is unnecessary to minimize the amount of 
information being transmitted. Only in those situations where the nodes spend relatively little 
time on calculations (i.e., the host spends relatively little time waiting for results compared to 
message passing) is the benefit of time savings on message passing worth the additional effort 
to redesign the data structures. 

In summary: The total degree d, a direct measure of potential parallelism, is not a useful 
predictive statistic. There are efficiencies ~0 > 1, illustrating the difficulty of using simple 
statistics such as speedup and efficiency to measure performance. The regression models (12) 
and (13) are useful for indicating overall trends. Modifying the mathematical subroutines 
POLSYS and FIXPNF to get parallel versions f o r  the hypercube that use minimal data 
structures is worthwhile only for 'easy' problems of moderate to large total degree with 
well-behaved paths 'and few singular solutions. 
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