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We present an effective circuit model of a chain of mesoscopic tunnel junctions. We show that the system possesses a soliton 
solution. The propagation of the soliton corresponds to the tunneling of a single charge along the system. We study the properties 
of this charged soliton and calculate the resulting 1-V characteristics. We discuss possible experimental realizations of the model 
and its relevance to other systems. 

The electrostatic charging energy is now recog- 
nized as playing a crucial role in the dynamics ofme-  
soscopic tunnel junctions, both in theory [ l -  15 ] and 
experiment [16-24].  Given a normal (i.e. non-su- 
perconducting), current driven junction with a ca- 
pacitance C, it is energetically unfavorable for an 
electron to tunnel when the voltage across the junc- 
tion is smaller than e/2C provided that the capaci- 
tance is sufficiently small so that e2/2C> kaT, where 
T is the temperature, and that the junction has a re- 
sistance R > h/4e 2, so that the electrons are localized 
on either side of the barrier. Various model predict 
that the application of a current source of magnitude 
Idc to such a junction will produce an "inverse Jo- 
sephson effect": oscillations in the voltage with an 
amplitude of e/2C, and a frequency Idc/e for Id¢< 
e/RC. At large currents (Ioc>e/RC) the average 
voltage will be shifted above the ohmic result by e/  
2C. In addition, related effects such as the "Cou- 
lomb staircase" (steps in the I -  V characteristic) have 
been predicted [ 10 ] and observed in experiments on 
two mesoscopic junctions connected in series [20-  
22 ]. Similar oscillations are predicted in ultrasmall 
capacitance Josephson junctions, but with an am- 
plitude of e/C and a frequency I/2e. 

From their inception, it was realized that the above 
oscillations are reminiscent of  the ac Josephson ef- 
fect. As has been pointed out elsewhere [ 13,15,24 ], 

there is a strong analogy between the dynamics due 
to charging in mesoscopic normal tunnel junctions 
and those in ordinary Josephson junctions [25 ]~1. In 
this Letter we pursue this analogy to develop an ef- 
fective equation [25,26] to describe the dynamics of  
a single normal mesoscopic tunnel junction. Using 
this effective equation we study the soliton dynamics 
of a chain of  serially coupled junctions. These charge 
effect solitons are associated with the propagation of 
a charge along the chain. One realization of such a 
chain is a narrow strip of conducting grains capa- 
citively coupled through the supporting substrate. 
The propagation of the soliton is associated with the 
tunneling of a single electron at a time between two 
grains. Below we calculate some of the properties of 
such solitons and make predictions about possible 
experiments. We also extend our analysis to the su- 
perconducting case and discuss the possibility of dis- 
sipationless transport among the grains arising from 
the motion of the solitons. 

We start by discussing an effective circuit descrip- 
tion for a mesoscopic normal tunnel junction driven 
by an external current source. At zero temperature 
the tunneling rate of electrons as a function of the 

~ An effective equation for the case of ultrasmall capacitance Jo- 
sephson junctions, derived from a different starting point, can 
be found in ref. [26]. 
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voltage on the junction is zero up to a voltage e/2C, 
and then increases linearly thereafter [4,5,10,13]. 
(This implicitly assumes that R > h/4e 2 so that the 
electron is localized on one half of  the junction or the 
other.) At low values of the driving force (Idc~0) 
the junction repeatedly charges up to a voltage e/2C 
and an electron then tunnels. This cycle produces a 
sawtooth oscillation in the voltage with an average 
of zero. Such a process can be expressed as a non- 
linear capacitance, f (Q),  which expresses the volt- 
age on the junction as a function of  Q, the amount 
of charge brought in from the external source, 

f ( Q ) =  [ (Q+½e) mode-½e]/C, 

a(t)= i I(t ') dt' (1) 

d 

(see fig. I a). Note that Q is the total charge delivered 
by the external source, not the actual charge on the 
junction. For finite values of the current the junction 
will charge up to a voltage V> e/2C before an elec- 
tron will tunnel. The voltage as a function of time 
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Fig. 1. The mesoscopic tunnel junction is represented by a non- 
linear capacitancef(Q) and a non-linear dissipation D({2). (a) 
A plot of Cf(Q/e)/e, as given in eq. ( 1 ). (b) A plot of D(RCQ.! 
e), whose asymptotic behavior is given by eq. (2). 

will oscillate (with some noise) about an average 
value determined by a competition between the con- 
tinuous charging due to the external source and the 
stochastic discharging of the tunneling current. Once 
the tunneling rate is known it is possible to calculate 
the average voltage on the junction as a function of 
the current [ 5,12 ], which we denote by the function 
D(Q: ), plotted in fig. lb. The asymptotic behavior of 
D(Q) is given by ~2 

D( O ) ~.sgn( O )\/neR I O[ /2C, 
~ sgn(O) (RI0[  +e/2C), 

for 101 <e/2RC, 

for [ 0I > e/2RC. 
(2) 

We can then view the voltage drop across the me- 
soscopic tunnel junction as arising from a series 
combination of three voltage drops, across a non-lin- 
ear capacitor f ( Q ) ,  a non-linear resistor, D ( 0 ) ,  and 
a noise source a ( 0 )  reflecting the stochastic fluc- 
tuations of  the voltage about D ( 0 ) .  This serially re- 
sistive junction [ 25,26 ] (SPJ)  model is an analog of 
the resistively shunted junction (RSJ) model [ 27 ] 
used to describe a Josephson junction (for a review 
of the RSJ model in Josephson junctions see, e.g., 
ref. [28]) .  

Since the device is modelled in terms of voltage 
drops it is more natural to consider a voltage source 
rather than a current source. The equation of motion 
for the SRJ model is then derived by equating the 
sum of  the voltage drops across each element to an 
applied voltage V (fig. 2a). Although the charge on 
the junction changes discontinuously as electrons 
tunnel, Q must be a continuous function due to the 
finite response time of the source. We express this 
delay time by a phenomenological inductance L. We 
assume that this delay time is longer than the time 
it takes an electron to tunnel [29]. 

L~+D(O) +f(a) = v,  (3) 

where we have neglected the noise term a(Q)  and 
have neglected a phase shift in f (Q)  that depends 
upon Q. Rigorous derivations of the precise form of 

~2 The asymptotic expansions in eq. (2) are not equal at Q=e/  
2RC. Calculations were done using an interpolating formula 
between the two expressions. The interpolation was chosen to 
be in agreement with the results of stochastic simulations of a 
single junction driven by a current source. These comments 
also apply to similar, subsequent expressions for the dissipation. 
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Fig. 2. (a) The effective circuit diagram of a mesoscopic tunnel 
junction. The junction is represented as a series combination of 
a non-linear resistor and a non-linear capacitor (dashed box). 
The external circuit must be represented by the appropriate stan- 
dard electrical elements. Here we have included an inductor to 
represent the finite rearrangement time of the charges. (b) A 
schematic showing a chain of coupled mesoscopic tunnel junc- 
tions. Each junction is also capacitively coupled to a common 
underlying substrate through a capacitor Cs and is driven by a 
potential difference 1/o. (c) One possible realization of such a 
system is a chain of small conducting grains, each separated by 
an insulating layer that serves as a tunneling barrier. A voltage 
can be applied across the substrate to enforce the potential dif- 
ference 1/o. 

f (Q)  and D((2) can be obtained from a master 
equation analysis of the stochastic process that de- 
scribes the junction dynamics. However, we do not 
expect any qualitative difference in the results of our 
approximation and those of the exact expressions. 
Simulations have shown that eq. (3) is in good 
agreement with the stochastic process that it models. 

In employing eq. (3) we have to properly account 
for the character of the driving circuit (i.e. voltage 
source, current source, etc.) by introducing addi- 
tional terms that depend upon Q or its derivatives. 
For example, to calculate the response of the junc- 
tion to an external current source, it is necessary to 
add a term corresponding to a large external resis- 
tance, R~x(2. Alternatively, if the junction is made 
from superconducting materials then we would ex- 
pect the form o f f ( Q )  and D((2) to be modified. A 
superconducting junction will have a dissipation 
D ((~) that reflects the gap in the quasiparticle states. 

In this case f (Q)  will still be a sawtooth for Ej/ 
Ec << 1 where Ej is the Josephson coupling energy, 
but will become more rounded for Ej/Ec << 1. A more 
detailed discussion of the SRJ model and its varia- 
tions will be given in refs. [25,26]. 

The advantage of such a lumped circuit model is 
that complicated configurations of junctions can be 
broken down into a set of simple elements. It is now 
straightforward to apply all the studies of coupled 
Josephson junctions. For example, we consider two 
identical mesoscopic junctions in series with a ca- 
pacitor Cs connected between the interjunction re- 
gion and ground, in analogy to the inductively cou- 
pled Josephson junctions in a dc SQUID. The 
extension of eq. ( 1 ) to two identical junctions is: 

LQ~ +D(a~)+f(Qt)=½v- Q~ - a 2  +Qo 
G ' 

LQ2 + D (Q2) +f(Q2) = ½ v +  Q' - Q2 + Qo C~ ' (4) 

where Q~ and Q2 are the charges transferred to the 
first and second junctions respectively, Qo is the ini- 
tial charge imbalance between the two junctions. The 
quantity Q z - Q 2 +  Qo is charge stored between the 
two junctions on the coupling capacitor C~. This cou- 
pling capacitor introduces coherence to the dynam- 
ics of the tow junctions. Analysis of eq. (4) dem- 
onstrates both a running solution, in which the two 
junctions transfer charge simultaneously, and a beat- 
ing solution, in which the junctions alternately trans- 
fer charge. Such solutions have been studied in great 
detail in Josephson junctions [ 30 ]. 

Using this SRJ model we can generalize eq. (4) to 
an effective equation of motion for a chain of serially 
coupled junctions, in analogy with the sine-Gordon 
equation for a long Josephson junction [ 31,32 ]. In 
fig. 2b we show a schematic of such a system, and in 
fig. 2c one possible realization. The equation of mo- 
tion for Qt, the charge brought to the ith junction is 

Qi+l +Qi-l-2Qi 
L(~, + D(Qi) +riO,) = Vi + 

G 
(5) 

where I7,. is the externally imposed voltage difference 
between the two capacitors, and C~ is the capacitive 
coupling to the substrate. This is obtained by equat- 
ing the sum of the voltage drops between the upper 
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and lower halves of the ith current loop. This is very 
similar to the discrete version of  the sine-Gordon 
equation with the linear "mod"  function f (Q) re- 
placing the sine function, and can be referred to as 
a "line-Gordon" equation. In the strong coupling 
limit where C~ ~ C (the number of  junctions within 
a stationary soliton scales as ~ )  we can ap- 
proximate the difference in eq. (5) by a derivative 
to obtain 

Ax2 °2Q (6) 
LO+D(O) +f(Q) = V(x) + ~ Ox-----y, 

where Ax is the distance between junctions (i.e. the 
size of the~__gins in fig. 2c). If  we measure time in 
units of  x/LC (the delay time within a grain), volt- 
age in units of e/C, energy in e2/C, current in units 
of e/RC, distance in units of A x e ,  velocity in 
units o f A x / L x / ~  (which plays the role of the "speed 
of light" for the system), we obtain the following di- 
mensionless equation of motion for the variable 
q-Q/e, 

ij-qx,: +d(?l) +f(q) = V(x) , (7) 

where 

d(4)=sgn(O)x/½nXlill, for 141 < 1/2x, (8) 

=sgn(~)(x l41+½) ,  f o r l ~ l > l / 2 x ,  

and 

f(q)=(q+½) rood I-½ (9) 

and x=RC/x/~-C. The parameter x plays the role of  
dissipation, and unlike the Josephson junction case 
the dissipation is proportional to the resistance. 

We are now in principle in a position to apply all 
the studies developed to understand soliton solu- 
tions for the sine-Gordon equation. Below we give a 
few results aimed at comparison with experiments. 
In order to look for travelling wave solutions we re- 
write eq. (6) in terms of t/= (x-vt)7 with 7= 1/ 
x/1 - v 2 to obtain 

qqn + d(~q,) =f (q )  - Vo, (10) 

where we have assumed V(x) to be a constant, Vo. 
Note that this equation is the same as the equation 
of a single junction with x replaced by g=  v),x, mov- 
ing in the inverted potential, F(q) = f  If(q)  - 1Io] dq. 
We first look or a single freely propagating soliton 

solution, in the absence of driving force and dissi- 
pation. This soliton solution is the trajectory con- 
necting the points q ( - o o )  =0  and q (oo)=  1, which 
is given by 

q(t/) = ½e ~ , for r /<0 ,  

= l - ½ e  -", f o r t / > 0 .  (11) 

In fig. 3 we show a plot of the charge effect soliton. 
The passage of the soliton front through a given 
junction in the chain corresponds to the transfer of 
exactly one electron across the junction. In other 
words the motion of the soliton corresponds to the 
propagation of a single charge along the chain. The 
center of the soliton corresponds to the grain at which 
the surplus electron resides. This charge effect soli- 
ton neatly complements solitons found in long Jo- 
sephson junctions, which correspond to the motion 
of quantized bundles of  magnetic flux. 

Although the electron is confined to one grain at 
each time its effect is spread out over the soliton 
width which can be much larger than a single grain. 
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Fig. 3. ( a ) A plot of the charge effect soliton q (t/), as given in cq. 
( l I ). (b) The voltage (q~) as a function of position. The peak 
corresponds to the location of the droplet carrying the single ex- 
cess charge. (c) The field (q~) as a function of position. 
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The dynamics of this "dressed" electron is the dy- 
namics of the soliton itself. It is therefore useful to 
define collective coordinates for the soliton position 
and conjugate momentum [ 33 ]. These will have the 
simple interpretation as the position and momen- 
tum of the "dressed" electron. Following ref. [ 33 ] 
we define 

X- i xqx dx , (12) 

P =  i q q ~ d x ,  
- - o o  

(13) 

where qx serves as the "weight function" of the so, 
liton. It is straightforward to show that the Poisson 
bracket {P, Q} = 1. For the freely propagating soliton 
with velocity v we have that 

J~=v, P=~v-mo~v. (14) 

This demonstrates that the "dressed" electron acts 
like a relativistic particle with a rest mass of ~ in di- 
mensionless units (or ~e2L~/~/C with the proper 
dimensions) and an energy of E=mo~=~e2~/ 
,~C-~. Up to this point we have neglected the dis- 
sipation and the driving force. In the presence of dis- 
sipation for each value of the driving force there will 
be a unique steady state velocity. To calculate the ve- 
locity it can be shown that P=  Vo-D(P) where D(P) 
i s  

D(P) =2 s g n ( P ) x / ~  PI /3 ,  

= sgn (P) (x[ PI - ½ ), 

f o r l e l < l / 2 x ,  

f o r l P l >  l / 2 x .  

(15) 

In steady state we have that D(P) = Vo, which allows 
us to express P as a function of Vo. To calculate the 
velocity in the underdamped limit (g<  1 or ),v< 1/ 
x, which yields v < 1/x/1 + x 2 ) we can use the freely 
propagating soliton approximation (P-.~¼YV), and 
find v(Vo), 

V~ 9V2 for Vo << ~x/-~ v =  

1, for Vo>> lv/-nx. 

(16) 

This result is valid in the underdamped limit x<  1 
and Vo < x / ~ -  We note that it is not possible to have 
a single soliton solution for V0> ½ since above this 
point the potential F(q) has no minima. 

Using the above we can directly calculate the I -V  
characteristic of the system as was done for Joseph- 
son junctions in ref. [34]. The current through the 
chain in units of e/RC is given by I=evx/N where 
N is the number of grains between two solitons in the 
chain that are spaced sufficiently far apart that they 
can be considered as independent. In fig. 4 we show 
the predicted single soliton branch of the I -V char- 
acteristic for different values of x. For the same Vo 
the two soliton solution carries twice the current but 
with a larger dissipation. The I -V  characteristic for 
x<  1 will therefore consist of a series of branches, 
unequally spaced due to the nonlinearity in D(Q),  
similar to those of fig. 4. This limit corresponds to 
the case where the charge relaxation time within the 
grain is longer than the RC time. Such a value of x 
might be achieved by making the grains from a semi- 
conductor with a long response time. 

The framework developed above may be adopted 
to describe many other systems. One example is that 
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Fig. 4. A plot of  the soliton velocity v versus the applied voltage 
Iio for ~¢=0.1 to x=0 .8  in steps of  0.10, as given by eq. (14).  
Each line represents the current carried by the single soliton 
branch in the 1- Vcharacteristic for a given value of x. For fixed 
r there will be multiple branches in the I -  V characteristic corre- 
sponding to the two, three, etc., soliton solutions. These branches 
will he spaced unequally due to the non-linearity of  the dissipation. 
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o f  charge densi ty  wave ( C D W )  propaga t ion  where 
a phenomenologica l  equat ion analogous to eq. (1 )  
has been proposed  [35,36] .  Our  picture may  pro-  
vide a l ink between this phenomenological  model  and 
the tunnel ing mode l  [37]  for CDW. Another  ex- 
ample  is a chain o f  serially connected  mesoscopic  Jo- 
sephson junct ions.  I t  has been pred ic ted  that  a single 
Josephson junc t ion  should show Bloch osci l lat ions 
[ 2 ,5-9,38 ] due to pa i r  tunnel ing s imi lar  to the single 
electron oscil lations.  An equat ion s imi lar  to the SRJ 
model  can be readi ly der ived  for the Josephson junc-  
t ion case. This  case differs from the normal  junc t ion  
case in that  as long as the mot ion  o f  the soli ton is 
slow, it can travel  wi thout  diss ipat ion.  By "s low" we 
mean  that  the current  carr ied by the soli ton is less 
than the "Zener  cur rent"  [ 38 ], which is given by the 
Josephson current  t imes the rat io  o f  the charging en- 
ergy of  a pair  to the Josephson coupling energy. Since 
the longi tudinal  coupling o f  the pairs  is through the 
substrate,  the la t ter  too must  be superconduct ing for 
the soli ton to move  without  diss ipat ion.  This  pro-  
vides a direct  test  o f  the existence o f  such dissipa-  
t ionless solitons. I f  they do exist they might  p rov ide  
a possible soli ton mechan i sm to descr ibe pa i r  con- 
densat ion  in two d imens ions  in systems where the 
pairs  are localized in space and  propagate  via  tun-  
neling between sites. 

Here we have discussed only a few of  the effects 
observable  from charge effect solitons. Many  others  
o f  the effects pred ic ted  for soli tons in long Josephson 
junct ions  have their  counterpart  in solitons in a chain 
of  mesoscopic  normal  tunnel  junct ions ,  as well as 
possible new effects. Their  future study is made  much 
s impler  by the use o f  the SRJ model  given here. 
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