Strongly Regular Graphs with Strongly Regular Decomposition

W. H. Haemers
Tilburg University
Tilburg, The Netherlands
and
D. G. Higman
University of Michigan
Ann Arbor, Michigan 48109

Dedicated to Alan J. Hoffman on the occasion of his 65th birthday.

Submitted by Alexander Schrijver

1. INTRODUCTION AND PRELIMINARY RESULTS

The title refers to strongly regular graphs Γ_{0} which admit a partition $\left\{X_{1}, X_{2}\right\}$ of the vertex set such that each of the induced subgraphs Γ_{1} and Γ_{2} on X_{1} and X_{2} respectively is strongly regular, a clique, or a coclique. A central role is played by the design D having point set X_{1}, block set X_{2}, and incidence given by adjacency in Γ_{0}. If Γ_{1} is a clique or a coclique and Γ_{0} is primitive, D must be a quasisymmetric design. If Γ_{1} and Γ_{2} are both strongly regular, D is a strongly regular design in the sense of D. G. Higman [14], except possibly when Γ_{0} is the graph of a regular conference matrix. Conversely, a quasisymmetric or strongly regular design with suitable parameters gives rise to a strongly regular graph with strongly regular decomposition. Moreover, if Γ_{0} and Γ_{1} are strongly regular with suitable parameters, then Γ_{2} must be strongly regular too. We give several examples and some nonexistence results. We include a table of all feasible parameter sets up to 300 vertices. For most of the cases in the table existence or nonexistence is settled. Some of the results in this paper are old, due to M. S. Shrikhande [17], W. G. Bridges and M. S. Shrikhande [3], and W. H. Haemers [13].

We mainly use eigenvalue techniques. We need results on interlacing eigenvalues (see [13]). Two sequences $\rho_{1} \geqslant \cdots \geqslant \rho_{n}$ and $\sigma_{1} \geqslant \cdots \geqslant \sigma_{m}$
($n>m$) are said to interlace whenever

$$
\rho_{i} \geqslant \sigma_{i} \geqslant \rho_{n-m+i} \quad \text { for } \quad i=1, \ldots, m
$$

Interlacing is tight if there exists an integer k such that

$$
\begin{aligned}
\rho_{i}=\sigma_{i} & \text { for } \quad i=1, \ldots, k \\
\rho_{n-m+i}=\sigma_{i} & \text { for } \quad i=k+1, \ldots, m
\end{aligned}
$$

Result 1.1. Let A_{0} be a symmetric matrix partitioned as follows:

$$
A_{0}=\left(\begin{array}{ll}
A_{1} & C \\
C^{\mathrm{T}} & A_{2}
\end{array}\right)
$$

Let B be the 2×2 matrix whose entries are the average row sums of the blocks of A_{0}.
(i) Cauchy interlacing. The eigenvalues of A_{1} interlace the eigenvalues of A_{0}. If the interlacing is tight, then $C=0$.
(ii) The eigenvalues of B interlace the eigenvalues of A_{0}. If the interlacing is tight, then A_{1}, A_{2}, and C have constant row and column sums. Conversely, if A_{1}, A_{2}, and C have constant row and column sums, both eigenvalues of B are also eigenvalues of A_{0}.

Our main tool is the following lemma. It is a kind of mixture of Theorem 5.1 in [3] and Theorem 1.3.3 in [13] (J denotes the all-one matrix).

Lemma 1.2. For $i=0,1,2$ let A_{i} be a symmetric $v_{i} \times v_{i}$ matrix such that

$$
A_{0}=\left(\begin{array}{ll}
A_{1} & C \\
C^{\top} & A_{2}
\end{array}\right) \quad \text { and } \quad A_{1} C+C A_{2}=\alpha C+\beta J \quad \text { for some } \alpha, \beta \in \mathbb{R}
$$

Let A_{1}, A_{2}, C, and C^{\top} have constant row sums k_{1}, k_{2}, r, and k respectively.

For $i=0,1,2$ denote the eigenvalues of A_{i} by $\rho_{i, 1}, \ldots, \rho_{i, v_{i}}$. Denote the singular values of C by $\sqrt{\gamma_{1}}, \ldots, \sqrt{\gamma_{m}}$, where $m=\operatorname{rank} C$. Then we can order the $\rho_{i j}$'s and γ_{j} 's so that:
(i) $\rho_{1,1}=k_{1}, \rho_{2,1}=k_{2}$ with all-one eigenvector, $\gamma_{1}=r k, k_{1}+k_{2}=\alpha+$ $\beta v_{1} / k$, and $\rho_{0,1}, \rho_{0,2}$ are the roots of $\left(x-k_{1}\right)\left(x-k_{2}\right)=r k$.
(ii) $\rho_{1, j}+\rho_{2, j}=\alpha$ with eigenvectors in the range of C and C^{\top}, respectively, and $\rho_{0,2 j}, \rho_{0,2 j-1}$ are the roots of $\left(x-\rho_{1, j}\right)\left(x-\rho_{2, j}\right)=\gamma_{j}$ for $j=$ $2, \ldots, m$.
(iii) $\rho_{1, j}$ has an eigenvector in the kernel of $C^{\top}, \rho_{1, j}=\rho_{0, m!j}$, for $j=m+1, \ldots, v_{1} ; \rho_{2, j}$ has an eigenvector in the kernel of $C, \rho_{2, j}=\rho_{0, v_{1}+j}$, for $j=m+1, \ldots, v_{2}$.

Proof. We have

$$
A_{1} C C^{\top}=\alpha C C^{\top}+\beta r J-C A_{2} C^{\top}
$$

The right-hand side is a symmetric matrix; hence $A_{1} C C^{\top}=C C^{\top} A_{1}$. So A_{1} and $C C^{\top}$ commute, and therefore they have a common orthonormal bases of eigenvectors $u_{1}, \ldots, u_{v_{1}}$ (say), ordered so that $A_{1} u_{j}=\rho_{1, j} u_{j}$ for $j=1, \ldots, v_{1}$, $C C^{\top} u_{j}=\gamma_{j} u_{j}$ for $j=1, \ldots, m, C^{\top} u_{j}=0$ for $j=m+1, \ldots, v_{1}$, and u_{1} is the all-one vector. Now the first two equations of (i) are obvious. Furthermore

$$
A_{2} C^{\top} u_{j}=\alpha C^{\top} u_{j}+\beta J u_{j}-C^{\top} A_{1} u_{j}=\left(\alpha-\rho_{1, j}\right) C^{\top} u_{j} \quad \text { for } \quad j=2, \ldots, m
$$

proving the first equation of (ii). Define

$$
w_{j}=\binom{\gamma_{j} u_{j}}{\left(x-\rho_{1, j}\right) C^{\top} u_{j}} \quad \text { for } \quad j=1, \ldots, m
$$

Then it is easily verified that $A_{0} w_{j}=x w_{j}$ whenever $\left(x-\rho_{1, j}\right)\left(x-\rho_{2, j}\right)=\gamma_{j}$. Thus (i) and (ii) are proved. Next define

$$
w_{j}=\binom{u_{j}}{0} \quad \text { for } \quad j=m+1, \ldots, v_{1}
$$

Then $A_{0} w_{j}=\rho_{1, j} w_{j}$, proving the first part of (iii). The second part of (iii) follows by interchanging A_{1} and A_{2}.

We assume the reader to be familiar with the theory of designs and strongly regular graphs. Some references are Beth, Jungnickel, and Lenz [1], Cameron and Van Lint [9], and Seidel [16]. We recall some result about strongly regular designs (see Higman [14]).

Definition 1.3. A design D with v_{1} points and v_{2} blocks and incidence matrix C is strongly regular whenever there exist graphs Γ_{1} and Γ_{2} (not complete or void) with adjacency matrices A_{1} and A_{2} respectively, such that the following hold:
(i) $C C^{\top}=w_{1} I+y_{1} J+z_{1} A_{1}$ for integers w_{1}, y_{1}, and $z_{1}\left(z_{1} \neq 0\right)$,
(ii) $C^{\top} C=w_{2} I+y_{2} J+z_{2} A_{2}$ for integers w_{2}, y_{2}, and $z_{2}\left(z_{2} \neq 0\right)$,
(iii) $C C^{\top} C=\gamma C+\delta J$ for integers γ and δ.

It is easily seen that C has constant row sum $r=w_{1}+y_{1}$ and column sum $k=w_{2}+y_{2}$, and that $\delta=k(k r-\gamma) / v_{1}$. The graph Γ_{1} is the point graph of D, and Γ_{2} is the block graph of D. It is straightforward that Γ_{i} ($i=1,2$) is strongly regular with eigenvalues

$$
k_{i}=\frac{k r-y_{i} v_{i}-w_{i}}{z_{i}}, \quad \rho_{i}=\frac{\gamma-w_{i}}{z_{i}}, \quad \sigma_{i}=\frac{-w_{i}}{z_{i}}
$$

of multiplicity $1, m-1$, and $v_{i}-m$, respectively, where $m=\operatorname{rank} C$. The eigenspaces of the eigenvalues σ_{1} and σ_{2} are the kernels of C and C^{\top}, respectively. (The point and block graph are determined up to taking complements. To avoid this ambiguity one often requires that $z_{i}>0$. However, for our purposes it is not convenient to do so.) Bose, Bridges, and Shrikhande [2] proved that (iii) may be replaced by:
(iii') The singular values $\sqrt{\gamma_{1}}, \ldots, \sqrt{\gamma_{m}}$ of C satisfy

$$
\gamma_{1}=r k, \quad \gamma_{2}=\cdots=\gamma_{m}=\gamma
$$

In case $z_{1}=0, D$ is a quasisymmetric block design. A strongly regular design is the same as a quasisymmetric special partially balanced incomplete block design (see Shrikhande [18]).

We finish this section with some notation. For a graph Γ_{i}, v_{i} denotes the number of vertices, and the adjacency matrix is denoted by A_{i}. If A_{i} has eigenvalues $\rho_{1}, \ldots, \rho_{n}$ with respective multiplicities $\varphi_{1}, \ldots, \varphi_{n}$, we write

$$
\operatorname{spec} \Gamma_{i}=\left\{\rho_{1}^{\varphi_{1}}, \ldots, \rho_{n}^{\varphi_{n}}\right\}
$$

If Γ_{i} is regular, the degree is denoted by k_{i}, and if Γ_{i} is strongly regular, we write

$$
\operatorname{spec} \Gamma_{i}=\left\{k_{i}, r_{i}^{f_{i}}, s_{i}^{g_{i}}\right\} \quad \text { with } \quad r_{i} \geqslant 0>s_{i} .
$$

Throughout the paper Γ_{0} denotes a graph decomposed into subgraphs Γ_{1} and Γ_{2}, that is, the respective adjacency matrices A_{0}, A_{1}, and A_{2} satisfy

$$
A_{0}=\left(\begin{array}{ll}
A_{1} & C \\
C^{\top} & A_{2}
\end{array}\right)
$$

where C is the incidence matrix of some structure D (say). For regular Γ_{0} the decomposition is called regular if also Γ_{1} and Γ_{2} are regular. For strongly regular Γ_{0} the decomposition is strongly regular if Γ_{1} and Γ_{2} are strongly regular, a clique, or a coclique.

2. THEORY

If Γ_{0} or the complement is the disjoint union of two or more cliques of equal size, then Γ_{0} is a so-called imprimitive strongly regular graph. In this case the strongly regular decompositions are obvious. Therefore we restrict ourselves to a primitive Γ_{0}.

Lemma 2.1. If Γ_{0} is strongly regular with a regular decomposition, then

$$
\begin{gathered}
C J=\left(k_{0}-k_{1}\right) J, \quad C^{\top} J=\left(k_{0}-k_{2}\right) J, \\
A_{1}^{2}+C C^{\top}=\left(r_{0}+s_{0}\right) A_{1}-r_{0} s_{0} I+\left(k_{0}+r_{0} s_{0}\right) J, \\
A_{2}^{2}+C^{\top} C=\left(r_{0}+s_{0}\right) A_{2}-r_{0} s_{0} I+\left(k_{0}+r_{0} s_{0}\right) J, \\
A_{1} C+C A_{2}=\left(r_{0}+s_{0}\right) C+\left(k_{0}+r_{0} s_{0}\right) J .
\end{gathered}
$$

Proof. The first line reflects the fact that the decomposition is regular. If Γ_{0} is strongly regular, then $A_{0}^{2}-\left(r_{0}+s_{0}\right) A_{0}+r_{0} s_{0} I=\left(k_{0}+r_{0} s_{0}\right) J$. Thus the block structure of A_{0} gives the remaining formulas.

Theorem 2.2. Suppose Γ_{0} is strongly regular and Γ_{1} is regular. Then

$$
s_{0} \leqslant \frac{k_{1} v_{0}-k_{0} v_{1}}{v_{0}-v_{1}} \leqslant r_{0}
$$

The decomposition is regular if and only if equality holds on the left- or right-hand side. If the left-hand [right-hand] inequality is met, then

$$
k_{2}=k_{0}-k_{1}+s_{0} \quad\left[k_{2}=k_{0}-k_{1}+r_{0}\right] .
$$

Proof. We apply Result 1.I(ii). The matrix of the average row sums,

$$
B=\left(\begin{array}{cc}
k_{1} & k_{0}-k_{1} \\
\left(k_{0}-k_{1}\right) v_{1} / v_{2} & k_{0}-\left(k_{0}-k_{1}\right) v_{1} / v_{2}
\end{array}\right)
$$

has eigenvalues k_{0} (row sum) and ρ (say). From $k_{0}+\rho=$ trace B it follows that $\rho=\left(k_{1} v_{0}-k_{0} v_{1}\right) /\left(v_{0}-v_{1}\right)$, which gives the desired inequalities. Equality on either side means that the interlacing is tight, and hence the decomposition must be regular. If the decomposition is regular, the eigenvalues of B are k_{0} and $\rho=k_{1}+k_{2}-k_{0}$. These are also eigenvalues of A_{0}; hence $\rho=s_{0}$ or $\rho=r_{0}$.

It is easily verified that if equality holds on one side, then the corresponding decomposition of the complement of Γ_{0} satisfies equality on the other side. If Γ_{1} is a coclique (i.e. $k_{1}=0$) the above result gives

$$
v_{1} \leqslant \frac{-v_{0} s_{0}}{k_{0}-s_{0}} .
$$

This is Hoffman's coclique bound. Another bound is the following one.

Theorem 2.3. If Γ_{1} is a coclique and Γ_{0} is primitively strongly regular, then

$$
v_{1} \leqslant \min \left\{f_{0}, g_{0}\right\}
$$

Proof. Define $A=A_{0}-v_{0}^{-1}\left(k_{0}-s_{0}\right) J-s_{0} I$. Then rank $A=f_{0}$. Since $A_{1}=0, A$ has a submatrix $-v_{0}^{-1}\left(k_{0}-s_{0}\right) J-s_{0} I$ of size $v_{1} \times v_{1}$, which is nonsingular ($s_{0} \neq 0$, since Γ_{0} is primitive). Hence $v_{1} \leqslant f_{0}$. Similarly we get $v_{1} \leqslant g_{0}$.

Theorems 2.2 and 2.3 are special cases of theorems of Haemers [13] and Cvetcovic [10], respectively.

Theorem 2.4. Suppose Γ_{0} and Γ_{1} are strongly regular, let Γ_{0} be primitive, and suppose the decomposition is regular. Put ε equal to 0 or 1 , according to whether the left- or the right-hand side is tight in Theorem 2.2 (e.g. $k_{2}=k_{0}-k_{1}+\varepsilon r_{0}+(1-\varepsilon) s_{0}$). Then one of the following holds:
(i) $s_{1}>s_{0}, r_{1}<r_{0}, v_{1} \leqslant \min \left\{f_{0}+1-\varepsilon, g_{0}+\varepsilon\right\}$,
$\operatorname{spec} \Gamma_{2}=\left\{k_{2},\left(r_{0}+s_{0}-r_{1}\right)^{f_{1}},\left(r_{0}+s_{0}-s_{1}\right)^{g_{1}}, r_{0}^{f_{0}-v_{1}+1-\varepsilon}, s_{0}^{g_{0}-v_{1}+\varepsilon}\right\}$.
(ii) $s_{1}=s_{0}, r_{1}<r_{0}, v_{1} \leqslant g_{0}+\varepsilon$,

$$
\operatorname{spec} \Gamma_{2}=\left\{k_{2},\left(r_{0}+s_{0}-r_{1}\right)^{f_{1}}, r_{0}^{f_{0}-f_{1}-\varepsilon}, s_{0}^{\mathrm{g}_{0}-v_{1}+\varepsilon}\right\} .
$$

(iii) $s_{1}>s_{0}, r_{1}=r_{0}, v_{1} \leqslant f_{0}+1-\varepsilon$,

$$
\operatorname{spec} \Gamma_{2}=\left\{k_{2},\left(r_{0}+s_{0}-s_{1}\right)^{g_{1}}, r_{0}^{f_{0}-v_{1}+1-\varepsilon}, s_{0}^{g_{0}-g_{1}-1+\varepsilon}\right\} .
$$

Proof. By Lemmas 1.2 and 2.1 it follows that $k_{2}, r_{0}+s_{0}-r_{1}, r_{0}+s_{0}-s_{1}$, r_{0}, and s_{0} are the only possible eigenvalues of Γ_{2}, and that $r_{0}+s_{0}-r_{1}$ $\left[r_{0}+s_{0}-s_{1}\right]$ has multiplicity $f_{1}\left[g_{1}\right]$ whenever $r_{1} \neq r_{0}\left[s_{1} \neq s_{0}\right]$. From trace $A_{2}=0$ one finds that the multiplicity of $s_{0}\left[r_{0}\right]$ equals $g_{0}-v_{1}+\varepsilon$ $\left[f_{0}-v_{1}+1-\varepsilon\right]$, which must be a nonnegative number. The inequalities $s_{1} \geqslant s_{0}$ and $r_{1} \leqslant r_{0}$ follow from Cauchy interlacing [Result 1.1(i)]. What remains to be proved is that $s_{1}=s_{0}$ and $r_{1}=r_{0}$ do not both occur. Suppose they do. Define $\alpha=\left(k_{0}-\varepsilon r_{0}-(1-\varepsilon) s_{0}\right) / v_{0}$; then the matrix $A_{0}-\alpha J$, which has eigenvalues r_{0} and s_{0} only, has principal submatrix $A_{1}-\alpha J$, having only eigenvalues r_{0} and s_{0} too. So, by Result $1.1(\mathrm{i}), C-\alpha J=0$ and hence Γ_{0} is imprimitive: a contradiction.

The regular graph Γ_{2} is strongly regular, a clique, or a coclique whenever it has at most two distinct eigenvalues, except for the degree k_{2}. This leads to the following result.

Corollary 2.5. With the hypotheses of Theorem 2.4, the decomposition is strongly regular if and only if one of the following holds:
(i) $v_{1}=f_{0}+1-\varepsilon=g_{0}+\varepsilon$,
(ii) $s_{0}=s_{1}$ and $f_{0}=f_{1}+\varepsilon$,
(iii) $s_{0}=s_{1}$ and $v_{1}=g_{0}+\varepsilon$,
(iv) $r_{0}=r_{1}$ and $g_{0}=g_{1}+1-\varepsilon$,
(v) $r_{0}=r_{1}$ and $v_{1}=f_{0}+1-\varepsilon$.

A strongly regular decomposition is called improper if Γ_{1} or Γ_{2} is a clique or a coclique. Without loss of generality we may assume then that Γ_{1} is a coclique. If Γ_{0} is strongly regular and Γ_{1} is a coclique, then also Theorem 2.4(i) holds with $r_{1}=0$ and $g_{1}=0$. Thus we find the following result of Haemers [13]:

Theorem 2.6. Let Γ_{0} be primitively strongly regular, and let Γ_{1} be a coclique. Then $v_{1}=g_{0}=-v_{0} s_{0} /\left(k_{0}-s_{0}\right)$ (i.e., both Hoffman's bound and Cvetcovic's bound are tight) if and only if Γ_{2} is strongly regular.

Proof. Hoffman's bound is tight if and only if the decomposition is regular. Theorem 2.4(i) gives

$$
\operatorname{spec} \Gamma_{2}=\left\{k_{2},\left(r_{0}+s_{0}\right)^{v_{1}-1}, r_{0}^{f_{0}-v_{1}+1}, s_{0}^{g_{0}-v_{1}}\right\}
$$

since $\varepsilon=0$ if Γ_{1} is a coclique. By Theorem 2.3 we have $f_{0}-v_{1}+1>0$; hence Γ_{2} is strongly regular if and only if $g_{0}=v_{1}$.

We call a proper strongly regular decomposition exceptional if $s_{1} \neq s_{0}$ and $r_{1} \neq r_{0}$, which is by Theorem 2.4(i) equivalent to $s_{2} \neq s_{0}$ and $r_{2} \neq r_{0}$.

Theorem 2.7. If Γ_{0} is primitively strongly regular and admits an exceptional strongly regular decomposition, then Γ_{0} is the graph of a regular symmetric conference matrix, that is, Γ_{0} or its complement satisfies

$$
v_{0}=4 r_{0}^{2}+4 r_{0}+2, \quad k_{0}=2 r_{0}^{2}+r_{0}, \quad s_{0}=-r_{0}-1 \quad \text { for integer } r_{0}
$$

Moreover, one of the following holds:
(i) Γ_{1} and Γ_{2} are so-called conference graphs, that is,

$$
\begin{array}{ll}
v_{1}=v_{2}=2 r_{0}^{2}+2 r_{0}+1, & k_{1}=k_{2}=r_{0}^{2}+r_{0} \\
r_{1}=r_{2}=\frac{-1+\sqrt{v_{1}}}{2}, & s_{1}=s_{2}=\frac{-1-\sqrt{v_{1}}}{2}
\end{array}
$$

and D is a symmetric $2-\left(v_{1}, r_{0}^{2}, r_{0}\left(r_{0}-1\right) / 2\right)$ design, or the complement.
(ii) We have

$$
\begin{gathered}
v_{1}=v_{2}=2 r_{0}^{2}+2 r_{0}+1, \quad k_{1}=k_{2}=r_{0}^{2}+r_{0}, \\
r_{2}=\frac{k_{1}-r_{1}}{2 r_{1}+1}, \quad s_{1}=-r_{2}-1, \quad s_{2}=-r_{1}-1, \\
r_{1} \neq r_{2}, \quad r_{1}<r_{0}, \quad r_{2}<r_{0},
\end{gathered}
$$

and r_{1}, r_{2}, and $\left(2 k_{1}^{2}+k_{1}\right) /\left(k_{1}+2 r_{1}^{2}+2 r_{1}+1\right)$ are integers.

Proof. Take without loss of generality $\varepsilon=0$. Then Corollary 2.5(i) gives $f_{0}+1=g_{0}$, and the remaining parameters of Γ_{0} follow straightforwardly (see [9]). Also by 2.5 (i) we have $2 v_{1}=v_{0}$, so $v_{1}=v_{2}$ and $k_{1}=k_{2}$. By Theorem 2.2 it follows that $k_{1}=k_{2}=\left(k_{0}+s_{0}\right) / 2=r_{0}^{2}+r_{0}$. If Γ_{1} is a conference graph, then so is Γ_{2} (by Theorem 2.4), and by Lemma 2.1 we find

$$
C C^{\top}=\frac{r_{0}\left(r_{0}+1\right)}{2} I+\frac{r_{0}\left(r_{0}-1\right)}{2} J,
$$

proving (i). If Γ_{1} and Γ_{2} are not conference graphs, then $r_{1} \neq-1-s_{1}$ and the eigenvalues are integers. The remaining formulas of (ii) follow easily from Theorem 2.4 and the well-known identities for strongly regular graphs.

The Petersen graph partitioned into two pentagons is an example for (i). We give another example in the next section. For case (ii) it seems hopeless to find an example: The smallest feasible solution has $r_{1}=554, r_{0}=731$, $v_{0}=2,140,370$.

The next theorem relates strongly regular decompositions to strongly regular designs. The result is due to W. G. Bridges and M. S. Shrikhande [3].

Theorem 2.8. $\quad \Gamma_{0}$ is primitively strongly regular with a strongly regular decomposition which is proper and not exceptional, if and only if D is a strongly regular design with point graph Γ_{1} and block graph Γ_{2}, whose parameters satisfy
(i) $k_{1}+r=k_{2}+k$,
(ii) $k_{1}-k \in\left\{\sigma_{1}, \rho_{1}+\rho_{2}-\sigma_{1}\right\}$,
(iii) $\rho_{2}=\sigma_{1}+z_{1}, \rho_{1}=\sigma_{2}+z_{2}$.

Proof. Let D be a strongly regular design. From Definition 1.3 it follows that $A_{1} C+C A_{2} \in\langle C, J\rangle$; hence Lemma 1.2 applies. Clearly Γ_{0} is regular (of degree $k_{0}=k_{1}+r$) whenever $k_{1}+r=k_{2}+k$. For the remaining eigenvalues of Γ_{0} we get $k_{1}+k_{2}-k_{0}=k_{2}-r$ [by Lemma 1.2(i)], σ_{1} and σ_{2} [by Lemma 1.2(iii)], and the roots of

$$
\begin{equation*}
\left(x-\rho_{1}\right)\left(x-\rho_{2}\right)=\gamma \tag{*}
\end{equation*}
$$

(by $1.2(\mathrm{ii})$). These five eigenvalues take only two values if and only if σ_{1}, σ_{2}, and $k_{2}-r$ are roots of (*). By use of $\rho_{i}-\sigma_{i}=\gamma_{i} / z_{i}$ we find that σ_{i} is a root of $(*)$ for $i=1,2$ if and only if (iii) holds. Suppose σ_{1} is a root of $(*)$; then $\rho_{1}+\rho_{2}-\sigma_{1}$ is the other root; hence $k_{2}-r$ is a root of (*) if and only if (ii) holds. The decomposition is clearly proper, and it is not exceptional, since σ_{1} and σ_{2} are eigenvalues of Γ_{0}.

Next assume Γ_{0} has the required properties. Then $r_{0}=r_{1}$ or $s_{0}=s_{1}$, since the decomposition is not exceptional. Take without loss of generality $r_{0}=r_{1}$. Then Lemma 1.2(ii) gives

$$
\gamma_{j}=\left(r_{0}-s_{0}\right)\left(s_{1}-s_{0}\right) \quad \text { for } \quad j=2, \ldots, m
$$

So D satisfies (iii') of Definition 1.3. By Lemma 2.1 and the strong regularity of Γ_{1} and Γ_{2} we have

$$
C C^{\top} \in\left\langle A_{1}, I, J\right\rangle, \quad C^{\top} C \in\left\langle A_{2}, I, J\right\rangle .
$$

Moreover, the coefficient of A_{i} equals $r_{0}+s_{0}-r_{i}-s_{i} \neq 0$ for $i=1,2$. Hence also (i) and (ii) of Definition 1.3 are satisfied, so D is a strongly regular design.

From the above proof we have that a strongly regular Γ_{0} has eigenvalues σ_{1} and $\rho_{1}+\rho_{2}-\sigma_{1}$; one of the two must be equal to σ_{2}. The following result can be regarded as a special case of the above theorem (therefore a proof is superfluous).

Theorem 2.9. I_{0} is primitively strongly regular with an improper strongly regular decomposition (where Γ_{1} is a coclique) if and only if D is a quasisymmetric 2-design, having Γ_{2} as block graph, whose parameters satisfy

$$
r=k+k_{2}, \quad \sigma_{2}+z_{2}=0, \quad k=-\gamma / z_{2}
$$

From $k=-\gamma / z_{2}$ it follows that $z_{2}<0$. This means that if (as usual) adjacency in the block graph corresponds to the larger intersection number, then Γ_{2} is the complement of the block graph of D. M. S. Shrikhande [17] (see also [3]) proved that the conditions for D in Theorem 2.9 are equivalent to the following: D is a quasisymmetric $2-\left(1+z_{2}(k-1) /\left(k-z_{2}^{2}\right), k, k(k-\right.$ $\left.z_{2}^{2}\right) /\left(z_{2}+1\right)$) design with intersection numbers $k-z_{2}^{2}$ and $k-z_{2}^{2}-z_{2}$.

3. CONSTRUCTIONS

In this section we give constructions and some nonexistence results for strongly regular graphs with strongly regular decompositions. With the help of the results of the previous section we have made a table of feasible parameters up to 300 vertices (Table 1). For all cases in the table we indicate existence or nonexistence if known (to us).

Example 3.1. The vertices of the triangular graph $T(m)$ are all pairs of a given set M of cardinality $m(m>3)$; two vertices are adjacent whenever the pairs are not disjoint. $T(m)$ is strongly regular with

$$
\operatorname{spec} T(m)=\left\{2(m-2),(m-4)^{m-1},(-2)^{m(m-3) / 2}\right\} .
$$

For a fixed $x \in M$, partition the vertices into the pairs containing x and pairs not containing x. It is easily seen that this gives an improper strongly regular decomposition of $T(m)$ into a clique of size $m-1$ and $T(m-1)$.

The next result has often been observed before.

Theorem 3.2. The block graph of a quasisymmetric 3-design E admits a strongly regular decomposition. The decomposition is improper if and only if E is the extension of a symmetric 2-design.

Proof. Fix a point x of E. Partition the blocks of E to the blocks containing x and the blocks not containing x. This gives a partition of the block graph of E into the block graphs of the derived and the residual design of E (with respect to x) respectively. The derived or residual design of E is symmetric whenever E is the extension of a symmetric design; otherwise both designs are quasisymmetric. This proves the result.

The design whose blocks are just all pairs of points can be seen as a degenerate quasisymmetric 3-design. This leads to Example 3.1. We know of
TABLE 1
All feasible parameter sets for primitive strongly regular graphs with strongly regular decomposition up to

TABLE 1 (Continued)

TABLE 1 (Continued)

	Case	v_{0}	k_{0}	r_{0}	s_{0}	f_{0}	g_{0}	λ_{0}	μ_{0}	$\begin{aligned} & v_{1} \\ & v_{2} \end{aligned}$	$\begin{aligned} & k_{1} \\ & k_{2} \end{aligned}$	r_{1} r_{2}	$\begin{aligned} & s_{1} \\ & s_{2} \end{aligned}$	$\begin{aligned} & \hline f_{1} \\ & f_{2} \end{aligned}$	g_{1} g_{2}	λ_{1} λ_{2}	$\begin{aligned} & \mu_{1} \\ & \mu_{2} \end{aligned}$
+	20	221	64	12	-4	51	169	24	16	52	12	12	-1	3	48	11	0
										169	48	9	-4	48	120	17	12
P	21	236	55	11	-4	59	176	18	11	60	11	11	-1	4	55	10	0
										176	40	8	-4	55	120	12	8
$?$	22	245	52	3	-13	195	49	3	13	49	0						
										196	39	3	-10	147	48	2	9
-	23	246	85	3	-17	204	41	20	34	41	0						
										205	68	3	-14	164	40	15	26
$+$	24	253	112	2	-- 26	230	22	36	60	77	16	2	-6	55	21	0	4
										176	70	2	-18	154	21	18	34
$+$	25	255	126	7	-9	135	119	61	63	120	63	3	-9	84	35	30	36
										135	70	7	-5	50	84	37	35
$+$	26	255	126	7	-9	135	119	61	63	119	54	3	-9	84	34	21	27
										136	63	7	-5	51	84	30	28
-	27	261	84	21	-3	29	231	39	21	29	28						
										232	77	19	-3	28	203	36	20
$?$	28	265	96	6	-10	159	105	32	36	105	32	2	-10	84	20	4	12
										160	54	6	-6	75	84	18	18
$?$	29	266	45	3	-12	209	56	0	9	56	0						
										210	33	3	-9	154	55	0	6
$?$	30	287	126	3	- 21	245	41	45	63	42	21	0	-21	40	1	0	21
										245	108	3	-18	204	40	39	54
$?$	31	287	126	3	- 21	245	41	45	63	41	0						
											105	3	-18	205	40	36	51

[^0] indicated whether the decomposition exists (+), does not exist (-), or is not settled (?).
just three other quasisymmetric 3-designs (up to taking complements and except for the Hadamard 3-designs, which have imprimitive block graphs): the famous $4(23,7,1)$ design (see [9]), its derived design, and its residual design. These three 3 -designs are cases 8,16 , and 24 in the table. The first one provides an improper decomposition (D is the extension of the projective plane of order 4). In fact, this decomposition and the ones of Example 3.1 are the only improper decompositions we know.

Theorem 3.3. Let Γ_{1} and D be as in Theorem 2.7(i). Suppose their matrices A_{1} and C commute, and let Γ_{2} be the complement of Γ_{1}. Then Γ_{0} is strongly regular with an exceptional strongly regular decomposition.

Proof. We have

$$
\begin{aligned}
A_{i}^{2} & =-A_{i}+\frac{1}{2} r_{0}\left(r_{0}+1\right) J+\frac{1}{2} r_{0}\left(r_{0}+1\right) I \quad \text { for } \quad i=1,2, \\
C C^{\top}=C^{\top} C & =\frac{1}{2} r_{0}\left(r_{0}-1\right) J+\frac{1}{2} r_{0}\left(r_{0}+1\right) I \\
A_{1} C+C A_{2} & =A_{1} C-C A_{1}+C J-C=r_{0}^{2} J-C .
\end{aligned}
$$

This yields

$$
A_{0}^{2}=-A_{0}+r_{0}^{2} J+r_{0}\left(r_{0}+1\right) I
$$

which proves the result.
If $r_{0}=1$, then Γ_{1} is the pentagon, D is the degenerate $2-(5,1,0)$ design, and Γ_{0} is the Petersen graph. For $r_{0}=2$, the desired graph and design are known:

$$
\left.\left.\begin{array}{rl}
A_{1} & =\operatorname{cycle}\left(\begin{array}{lllllllllllll}
1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right), \\
C & =\operatorname{cycle}\left(\begin{array}{llllllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right. \\
0 & 0
\end{array}\right) 0\right) .
$$

Since A_{1} and C are both cyclic, they commute. Thus by the above theorem we find a strongly regular Γ_{0} with $\left(v_{0}, k_{0}, r_{0}, s_{0}\right)=(26,10,2,-3)$, decomposed into the strongly regular Γ_{1} and Γ_{2} with $\left(v_{1}, k_{1}, r_{1}, s_{1}\right)=\left(v_{2}, k_{2}, r_{2}, s_{2}\right)$ $=(13,6,(-1+\sqrt{13}) / 2,(-1-\sqrt{13}) / 2)$. These are all the exceptional strongly regular decompositions we know. More graphs and designs with suitable parameters are known, but it is not known whether there exists a pair with commuting matrices.

Theorem 3.4. If q is the order of a projective plane, and if there exist $q-1$ mutually orthogonal Latin squares of order $q^{2}+q+1$, then there exists a strongly regular decomposition with

$$
\begin{aligned}
& \left(v_{0}, k_{0}, r_{0}, s_{0}\right)=\left(\left(q^{2}+q+1\right)\left(q^{2}+2 q+2\right),(q+1)^{3}, q^{2}+q,-q-1\right) \\
& \left(v_{1}, k_{1}, r_{1}, s_{1}\right)=\left(\left(q^{2}+q+1\right)(q+1), q(q+1), q(q+1),-1\right) \\
& \left(v_{2}, k_{2}, r_{2}, s_{2}\right)=\left(\left(q^{2}+q+1\right)^{2}, q(q+1)^{2}, q^{2},-q-1\right)
\end{aligned}
$$

Proof. A set of $q-1$ mutually orthogonal Latin squares is the same as a transversal design with $q+1$ groups of size $q^{2}+q+1$. Let

$$
B_{2}=\left(\begin{array}{llll}
N_{1}^{\top} & N_{2}^{\top} & \cdots & N_{q+1}^{\top}
\end{array}\right)^{\top}
$$

be the incidence matrix of the transversal design, where the N_{i} 's correspond to the groups. Let M be the incidence matrix of a projective plane of order q, and define $B_{1}=I \otimes M(\otimes$ denotes the tensor product $)$, and $B=\left(\begin{array}{ll}B_{1} & B_{2}\end{array}\right)$. Then B is the incidence matrix of a $2-\left(\left(q^{2}+q+1\right)(q+1), q+1,1\right)$ design (which is obviously quasisymmetric) with block graph Γ_{0}. Clearly the block graph Γ_{1} of B_{1} is imprimitively strongly regular. Also the block graph of a transversal design is strongly regular. So the decomposition is strongly regular and the eigenvalues readily follow.

For many values of q the conditions of Theorem 3.4 are fulfilled-for instance, if q and $q^{2}+q+1$ are both prime powers (e.g. $q=1,2,3,5,8$), but also (see Brouwer [4]) if q and $q+1$ are both prime powers (e.g. $q=$ $1,2,3,4,7,8$). Cases 1,6 , and 20 in the table can be constructed in this manner. We do not know if the theorem provides an infinite family. The following example, however, does give infinitely many proper strongly regular decompositions.

Example 3.5. For every integer $m>1$, the symplectic graph Γ_{0} with

$$
\left(v_{0}, k_{0}, r_{0}, s_{0}\right)=\left(2^{2 m}-1,2^{2 m-1}-2,2^{m-1}-1,-2^{m-1}-1\right)
$$

admits two strongly regular decompositions: one with

$$
\begin{aligned}
& \left(v_{1}, k_{1}, r_{1}, s_{1}\right)=\left(2^{2 m-1}+2^{m-1}-1,2^{2 m-2}+2^{m-1}-2,2^{m-1}-1,-2^{m-2}-1\right) \\
& \left(v_{2}, k_{2}, r_{2}, s_{2}\right)=\left(2^{2 m-1}-2^{m-1}, 2^{2 m-2}-1,2^{m-2}-1,-2^{m-1}-1\right)
\end{aligned}
$$

and one with

$$
\begin{aligned}
& \left(v_{1}, k_{1}, r_{1}, s_{1}\right)=\left(2^{2 m-1}-2^{m-1}-1,2^{2 m-2}-2^{m-1}-2,2^{m-2}-1,-2^{m-1}-1\right) \\
& \left(v_{2}, k_{2}, r_{2}, s_{2}\right)=\left(2^{2 m-1}+2^{m-1}, 2^{2 m-2}-1,2^{m-1}-1,-2^{m-2}-1\right)
\end{aligned}
$$

In both cases Γ_{1} is the orthogonal graph, defined on the points of an orthogonal quadric in $\mathrm{PG}(2 m-1,2)$. The symplectic and orthogonal graphs are described in Seidel [15]. For $m=2$ the decompositions coincide with Theorem $3.4(q=1)$ and Example $3.1(m=6)$, respectively. For larger m, the decompositions are proper and Γ_{1} and Γ_{2} are both primitive. Cases 1,3, 4,25 , and 26 in the table are of this type.

Next we shall give some sporadic examples (making use of the table).

Example 3.6. Case 2 in the table exists, that is, the Clebsch graph has a strongly regular decomposition with

$$
A_{1}=A_{2}=\left(\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right), \quad C=\left(\begin{array}{cc}
I & J-I \\
J-I & I
\end{array}\right)
$$

Example 3.7. Case 12 in the table exists, that is, the Higman-Sims graph admits a strongly regular decomposition into two Hoffman-Singleton graphs (see Sims [19]).

Example 3.8. A hemisystem (see Cameron, Delsarte, and Goethals [8]) is a strongly regular decomposition of the point graph of a generalized quadrangle of order $\left(q^{2}, q\right)$. The only known hemisystem has $q=3$, where the point graph is decomposed into two Gewirtz graphs. This produces case 13 of the table.

Example 3.9. Goethals and Seidel [11] give a construction of Γ_{0} of case 15 from which the strongly regular decomposition is obvious.

Finally some nonexistence results are considered. Case 7 in the table is impossible, since Wilbrink and Brouwer [22] showed that Γ_{2} does not exist. For cases 17 and 18, Γ_{1} does not exist because of the absolute bound. By Theorem 2.9 the existence of an improper strongly regular decomposition is equivalent to the existence of a quasisymmetric 2 -design with suitable parameters. For quasisymmetric designs many nonexistence results are known. These results lead to nonexistence of cases 11, 14, 23 (due to Calderbank [6, 7]), and 27 (due to Haemers [12]; see also Tonchev [20]) in the table. The remaining cases are more complicated.

Theorem 3.10. No strongly regular graphs with strongly regular decomposition exist for the parameter sets numbered 5 and 9 in Table 1.

Proof. In both cases Γ_{1} is imprimitive. Therefore D is a group divisible design. Take C in canonical form, that is,

$$
C=\left(\begin{array}{lll}
C_{1}^{\top} & \cdots & C_{n}^{\top}
\end{array}\right)^{\top}
$$

where the C_{i} 's correspond to the groups. For case 5 we define

$$
B_{1}=\operatorname{cycle}\left(\begin{array}{llll}
J-I & I & I & I
\end{array}\right),
$$

wherein the blocks are 6×6 matrices. Then by straightforward verification it follows that ($C B_{1}$) is the incidence matrix of a quasi-symmetric $2-(24,8,7)$ design with intersection numbers 4 and 2. Brouwer and Calderbank [5] showed that such a design does not exist. Similarly, for number 9 we define

$$
B_{1}=\operatorname{cycle}\left(\begin{array}{lllllll}
J-I & I & I & 0 & I & 0 & 0
\end{array}\right),
$$

wherein the blocks have size 5×5. Then ($C B_{1}$) is the incidence matrix of a quasisymmetric $2-(35,7,3)$ design with intersection numbers 3 and 1 . Calderbank [6] has proved the nonexistence of such a design.

Theorem 3.11. Strongly regular decomposition 10 in Table 1 does not exist.

Proof. We use Seidel switching (see [9] or [16]). Since $k_{0}=-2 r_{0} s_{0}$, we obtain a strong graph by extending Γ_{0} with an isolated vertex. Next we
isolate, by switching, a vertex of Γ_{1}. The graph on the remaining vertices is strongly regular with the same parameters as the original Γ_{0}. However, the remaining vertices of Γ_{1} now induce a coclique of size 19. Therefore, by Theorem 2.6 we have constructed strongly regular decomposition 11 , which is impossible.

The smallest unsettled case in the table is 19 . Tonchev constructed a strongly regular graph with the parameters of Γ_{0} (see [21]), but it has no cliques of size 15 , so it does not admit a strongly regular decomposition. (In fact, Tonchev's graph has maximal clique and coclique size equal to 10 .)

REFERENCES

1 T. Beth, D. Jungnickel, and H. Lenz, Design Theory, B. I. Wissenschaftsverlag, Mannheim, 1985; Cambridge U.P., Cambridge, 1986.
2 R. C. Bose, W. G. Bridges, and M. S. Shrikhande, A characterization of partial geometric designs, Discrete Math. 16:1-7 (1976).
3 W. G. Bridges and M. S. Shrikhande, Special partially balanced incomplete block designs and associated graphs, Discrete Math. 9:1-18 (1974).
4 A. E. Brouwer, Recursive Constructions of Mutually Orthogonal Latin Squares, Note PM-N8501, Centre for Mathematics and Computer Science, Amsterdam, 1985.

5 A. E. Brouwer and A. R. Calderbank, An Erdös-Ko-Rado theorem for regular intersecting families of octads, Graphs Combin. 2:309-315 (1986).
6 A. R. Calderbank, The application of invariant theory to the existence of quasi-symmetric designs, J. Combin. Theory Ser. A 44:94-109 (1987).
7 A. R. Calderbank, Geometric invariants for quasi-symmetric designs, J. Combin. Theory Ser. A 47:101-110 (1988).
8 P. J. Cameron, P. Delsarte, and J.-M. Goethals, Hemisystems, orthogonal configurations and dissipative conference matrices, Philips J. Res. 34:147-162 (1979).
9 P. J. Cameron and J. H. van Lint, Graphs, Codes and Designs, London Math. Soc. Lecture Notes 43, Cambridge U.P., Cambridge, 1980.
10 D. M. Cvetcović, Graphs and Their Spectra, Thesis, Univ. Beograd; Publ. Elektroteh. Fak. Ser. Mat. Fiz. 354-356:1-50 (1971).
11 J.-M. Goethals and J. J. Seidel, The regular two-graph on 276 vertices, Discrete Math. 12:143-158 (1975).
12 W. H. Haemers, Sterke Grafen en Block Designs (in Dutch), Master's Thesis, Eindhoven Univ. of Technology, 1975.
13 W. H. Haemers, Eigenvalue Techniques in Design and Graph Theory, Thesis, Eindhoven Univ. of Technology, 1979; Tract 121, Mathematical Centre, Amsterdam, 1980.
14 D. G. Higman, Strongly regular designs and coherent configurations of type $\binom{32}{3}$, European J. Combin. 9:411-422 (1988).

15 J. J. Seidel, On Two Graphs, and Shult's Characterization of Symplectic and Orthogonal Geometries over GF(2), Report 73-WSK-02, Eindhoven Univ. of Technology, 1973.
16 J. J. Seidel, Strongly regular graphs, in Surveys in Combinatorics (B. Bollobás, Ed.), London Math. Soc. Lecture Note Ser. 38, Cambridge U.P., Cambridge, 1979.

17 M. S. Shrikhande, Strongly regular graphs and quasi-symmetric designs, Utilitas Math. 3:297-309 (1973).
18 M. S. Shrikhande, A survey of some problems in combinatorial designs-a matrix approach, Linear Algebra Appl. 79:215-247 (1986).
19 C. C. Sims, On the isomorphism of two groups of order 44, 325, 000), in Theory of Finite Groups (Brauer and Sah, Eds.), Benjamin, 1969.
20 V. D. Tonchev, Quasi-symmetric designs and self-dual codes, European J. Combin. 7:67-73 (1986).
21 V. D. Tonchev, Quasi-symmetric 2-(31, 7, 7) designs and a revision of Hamada's conjecture, J. Combin. Theory Ser. A 42:104-110 (1986).
22 H. A. Wilbrink and A. E. Brouwer, A (57, 14, 1) strongly regular graph does not exist, Nederl. Akad. Wetensch. Proc. Ser. A 86 (= Indag. Math. 45):117-121 (1983).

[^0]: ${ }^{\text {a }}$ The triangular graphs (Example 3.1) and the exceptional decompositions (Theorem 2.7) are omitted. For each case it is

