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1. INTRODUCTION AND PRELIMINARY RESULTS 

The title refers to strongly regular graphs r, which admit a partition 
{ X,, X,} of the vertex set such that each of the induced subgraphs r1 and l?, 
on X, and X, respectively is strongly regular, a clique, or a coclique. A 
central role is played by the design D having point set X,, block set X,, and 
incidence given by adjacency in r,. If rl is a clique or a coclique and r,, is 
primitive, D must be a quasisymmetric design. If rl and r, are both 
strongly regular, D is a strongly regular design in the sense of D. G. Higman 
[14], except possibly when r, is the graph of a regular conference matrix. 
Conversely, a quasisymmetric or strongly regular design with suitable param- 
eters gives rise to a strongly regular graph with strongly regular decomposi- 
tion. Moreover, if r, and rl are strongly regular with suitable parameters, 
then r, must be strongly regular too. We give several examples and some 
nonexistence results. We include a table of all feasible parameter sets up to 
300 vertices. For most of the cases in the table existence or nonexistence is 
settled. Some of the results in this paper are old, due to M. S. Shrikhande 
[17], W. G. Bridges and M. S. Shrikhande [3], and W. H. Haemers [13]. 

We mainly use eigenvalue techniques. We need results on interlacing 
eigenvalues (see [13]). Two sequences p1 > . . . 2 p,, and u1 > . . . 2 a, 
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( n > m ) are said to interlace whenever 

pi 2 ui 2 Pn- n, + I for i=l ,...,m. 

Interlacing is tight if there exists an integer k such that 

pi = ui for i=l,...,k, 

P,- n, + I 
= ui for i=k+l,...,m. 

RESULT 1.1. Let A, be a symmetric matrix partitioned as follows: 

4, = 

Let B be the 2 X 2 matrix whose entries are the average rozu sums of the 
blocks of A,. 

(i) Cauchy interlacing. The eigenvalues of A, interlace the eigenvalues 
of A,,. If the interlacing is tight, then C = 0. 

(ii) The eigenvalues of B interlace the eigenvalues of A,. Zf the interlac- 
ing is tight, then A,, A,, and C have constant row and column sums. 
Conversely, if A,, A,, and C have constant row and column sums, both 
eigenvalues of B are also eigenvalues of A,. 

Our main tool is the following lemma. It is a kind of mixture of Theorem 
5.1 in [3] and Theorem 1.3.3 in [13] (J denotes the all-one matrix). 

LEMMA 1.2. For i = 0,1,2 let Ai be a symmetric vi X vi matrix such that 

A,= and A,C+CA,=K+/?J forsome a,pER 

Let A,, A,, C, and C’ have constant row sums k,, k,, r, and k respectively. 
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For i = 0,1,2 denote the eigenvalues of Ai by pi, 1,. . . , pi, “,. Denote the 

singular values of C by fi,...,K, where m = rank C. Then we can order 

the pii’s and yj’s so that: 

(i) pl,l = k,, pz,l = k, with all-one eigenvector, y1 = rk, k, + k, = a + 

/3v,/k, and pe,r, p0,z are the roots of (x - k,)(x - k,) = rk. 
(ii) pl, j + pz, j = a with eigenvectors in the range of C and CT, respec- 

tively, and P0.2,jT PO,Zj-1 are the roots of (x - pl, j)( x - p2, j) = yj for j = 

2 ,...,m. 

(iii) pl,i has an eigenvector in the kernel of C’, pl, j = P”,“,+~, for 

j=m+l,..., vr; p2, j has an eigenvector in the kernel of C, p2, j = pO,“, + j, 

fm j=m+l,...,v2. 

Proof. We have 

A,CCT=&CT+PrJ--CAaC’. 

The right-hand side is a symmetric matrix; hence A ,CC T = CC ‘;1 r. So A 1 
and CC T commute, and therefore they have a common orthonormal bases of 
eigenvectors ur, . . . , uol (say), ordered so that A,uj = pl, juj for j = 1,. . . , vr, 
CCTuj = yjuj for j = l,..., m,CCTuj=Oforj=m+l,...,v,,andu,isthe 
a&one vector. Now the first two equations of (i) are obvious. Furthermore 

A,CT~j=~CTuj+~Juj-CCA1uj=(~-P1,j)CTuj for j=2,...,m, 

proving the first equation of (ii). Define 

i 

Yj"j 

wj= (~-p,,~)ck~ 1 for j = l,...,m. 

Then it is easily verified that A,wj = lcwj whenever (r - pr, j)(x - pa, j) = y,. 
Thus (i) and (ii) are proved. Next define 

wj = ui 
i 1 0 

for j=m+l,...,v,. 

Then A,wj = pr, jwj, proving the first part of (iii). The second part of (iii) 
follows by interchanging A, and A,. n 
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We assume the reader to be familiar with the theory of designs and 
strongly regular graphs. Some references are Beth, Jungnickel, and Lenz [l], 
Cameron and Van Lint [9], and Seidel [16]. We recall some result about 
strongly regular designs (see Higman [14]). 

DEFINITION 1.3. A design D with ui points and us blocks and incidence 
matrix C is strongly regular whenever there exist graphs Ii and I, (not 
complete or void) with adjacency matrices A, and A, respectively, such that 
the following hold: 

(i) CC’= w,Z + yiJ+ .ziA, for integers wi, yi, and zi (z, z 0), 
(ii) C TC = w,Z + y,J + “aA, for integers wg, y2, and zs (zs # 0), 

(iii) CC’C = yC + SJ for integers y and 6. 

It is easily seen that C has constant row sum r = wi + yr and column 
sum k = wg + y,, and that 6 = k(kr - y)/ul. The graph l?i is the point 
graph of D, and I’, is the block graph of D. It is straightforward that Ii 
(i = 1,2) is strongly regular with eigenvalues 

ki = 
kr - yiui - wi Y - wi - w, 

Pi = 0. = - , 
‘i zi 2, 

of multiplicity 1, m - 1, and ui - m, respectively, where m = rank C. The 
eigenspaces of the eigenvalues ui and ua are the kernels of C and C ‘, 
respectively. (The point and block graph are determined up to taking 
complements. To avoid this ambiguity one often requires that zi > 0. How- 
ever, for our purposes it is not convenient to do so.) Bose, Bridges, and 
Shrikhande [2] proved that (iii) may be replaced by: 

(iii’) The singular values 6,. . . , qz of C satisfy 

yI=rk, Yz= . . . =y,,,=y. 

In case zr = 0, D is a quasisymmetric block design. A strongly regular 
design is the same as a quasisymmetric special partially balanced incomplete 
block design (see Shrikhande [Ml). 

We finish this section with some notation. For a graph r,, ui denotes the 
number of vertices, and the adjacency matrix is denoted by A,. If Ai has 
eigenvalues p 1, . . . , pn with respective multiplicities ‘pi,. . . , (p,, we write 
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If Ii is regular, the degree is denoted by k,, and if I, is strongly regular, we 
write 

spec r, = { ki , rif’ , sf’ } with ri>O>si. 

Throughout the paper r, denotes a graph decomposed into subgraphs Ii and 
r,, that is, the respective adjacency matrices A,, A,, and A, satisfy 

A,= 

where C is the incidence matrix of some structure D (say). For regular I, the 
decomposition is called regular if also Ii and I, are regular. For strongly 
regular I,, the decomposition is strongly regular if Ii and I, are strongly 
regular, a clique, or a coclique. 

2. THEORY 

If I’, or the complement is the disjoint union of two or more cliques of 
equal size, then I, is a so-called imprimitive strongly regular graph. In this 
case the strongly regular decompositions are obvious. Therefore we restrict 
ourselves to a primitive r,. 

LEMMA 2.1. Zf I, is strongly regular with a regular decomposition, then 

Cl= (k, - k,)J, CTl=(ko-k&L 

A”1 + CC T = (r, + so)A, - ros,Z + (k, + q,sO)J, 

A2, + C ‘C = (r, + so)A, - rOsOZ -+ (k, + rOsO)J, 

A,C + CA, = (r,, + sa)C + (k, + q,q,)J. 

Proof. The first line reflects the fact that the decomposition is regular. If 
Ia is strongly regular, then A$ - (ra + sa)A, + r,s,Z = (k, + rOsO).Z. Thus the 
block structure of A, gives the remaining formulas. m 
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THEOREM 2.2. Suppose I’, is strongly regular and r, is regular. Then 

k,% - k,v, 
sg < 6 r,. 

vo - v1 

The decomposition is regular if and only if equality holds on the left- or 

right-hand side. If the left-hand [right-hand ] inequality is met, then 

k, = k, - k, + s0 [k,=k,-k,+r,] 

Proof. We apply Result l.l(ii). The matrix of the average row sums, 

k1 h-k, 
(kc,-k,)u,/‘v, kc,-(kc,-k,)v,/u, 

has eigenvalues k, (row sum) and p (say). From k, + p = trace B it follows 
that p = (k,v, - k,v,)/( v0 - ul), which gives the desired inequalities. Equal- 
ity on either side means that the interlacing is tight, and hence the decompo- 
sition must be regular. If the decomposition is regular, the eigenvalues of R 
are k, and p = k, + k, - k,. These are also eigenvalues of A,; hence p = sg 
or p = rO. n 

It is easily verified that if equality holds on one side, then the correspond- 
ing decomposition of the complement of r, satisfies equality on the other 
side. If rl is a coclique (i.e. k, = 0) the above result gives 

This is Hoffman’s coclique bound. Another bound is the following one. 

THEOREM 2.3. If rl is a coclique and r, is primitively strongly regular, 

then 

vl i min{ f,, g,}. 

Proof. Define A = A, - vi- ‘(k, - sO)J - s,Z. Then rank A = fO. Since 
A, = 0, A has a submatrix - v;‘(k, - s,)J - s,Z of size zjl X vl, which is 
nonsingular ( s0 # 0, since r, is primitive). Hence vuI < f,. Similarly we get 

271 ~&I. 
n 

Theorems 2.2 and 2.3 are special cases of theorems of Haemers [13] and 
Cvetcovib [lo], respectively. 
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THEOREM 2.4. Suppose F, and IF1 are strongly regular, let I?, be 
primitive, and suppose the decomposition is regular. Put E equal to 0 or 1, 
according to whether the lej& or the right-hand side is tight in Theorem 2.2 

(e.g. k, = k, - k, + ET,, +(l - E)s~). Then one of the following holds: 

(i) sr > sa, f1 < ra, vr < min{ f0 + 1 - s, g, + .s}, 

(iii) sl>so, r,=ro, vlGfO+l-E, 

speck,= { k,,(r, + so - s~)~‘, rofo-Ol+l-E, ~$(-gl-l+~}. 

Proof. By Lemmas 1.2 and 2.1 it follows that k,, r, + so - rl, r. + so - sI, 

r,, and so are the only possible eigenvahres of T,, and that r, + so - rr 
[r, + so - sr] has multiplicity f, [g,] whenever r,f r, [s,f so]. From 
trace A, = 0 one finds that the multiplicity of so [r,] equals g, - v1 + E 

[ f, - v1 + 1 - E], which must be a nonnegative number. The inequalities 
sr >, so and rl < r. follow from Cauchy interlacing [Result 1.1(i)]. What 
remains to be proved is that sr = so and rr = r. do not both occur. Suppose 
they do. Define a = (k, - ETA - (1- E)s~)/v~; then the matrix A, - cr./, 
which has eigenvahres r. and so only, has principal submatrix A, - aJ, 
having only eigenvahres r, and so too. So, by Result 1.1(i), C - aJ = 0 and 
hence F. is imprimitive: a contradiction. = 

The regular graph I?, is strongly regular, a clique, or a coclique whenever 
it has at most two distinct eigenvalues, except for the degree k,. This leads to 
the following result. 

COROLLARY 2.5. With the hypotheses of Theorem 2.4, the decomposi- 
tion is strmgly regular if and only if one of the following holds: 

(i) Or= f,+l-E=go+E, 

(ii) so = s1 and fo = fi + E, 

(iii) so =sr andv,=g,+s, 
(iv) r,=r, andg,=g,+l-E, 
(v) ro=r, a&v,= fo+l-e. 
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A strongly regular decomposition is called improper if lr or I’, is a clique 
or a coclique. Without loss of generality we may assume then that r, is a 
coclique. If l?, is strongly regular and IL is a coclique, then also Theorem 
2.4(i) holds with rl = 0 and g, = 0. Thus we find the following result of 
Haemers [ 131: 

THEOREM 2.6. Let r, be primitively strongly regular, and let rl be a 
coclique. Then v1 = g, = ,- voso/(k, - sO) (i.e., both HoffiTlan’s bound and 
Cvetcovid’s bound are tight) if and only if I?, is strongly regular. 

Proof. Hoffman’s bound is tight if and only if the decomposition is 
regular. Theorem 2.4(i) gives 

since s=Oif 
r, is strongly 

spec r, = { kz,(r,, + s~)“~-‘, rOf~O-“lll, sgg”-‘l), 

rl is a coclique. By Theorem 2.3 we have fo - vr f 1> 0; hence 
regular if and only if g, = vi. n 

We call a proper strongly regular decomposition exceptional if si # s,, 
and rl # rO, which is by Theorem 2.4(i) equivalent to ss # sa and rz z ra. 

THEOREM 2.7. If r, is primitively strongly regular and admits an 
exceptional strongly regular decomposition, then I’, is the graph of a regular 
symmetric conference matrix, that is, I’,, or its complement satisfies 

v,=4r~+4rO+2, k,=2rt+r0, sO= -r,-1 for integer rO . 

Moreover, one of the following holds: 

(i) Ii and r, are so-called conference graphs, that is, 

VI = v2 = 2rOz + 2r, + 1, k, = k, = r,” + rO, 

-1+J;T -1-G 
rl = r2 = 

2 ’ 
s1=s2= 

2 ’ 

and D is a symmetric 2-(v,, TO”, rO(rO - 1)/2) design, or the complement. 
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(ii) We have 

v,=v,=2r(+2ro+1, k, = k, = ~0” + r,, 

k,-r, 
5=2r,+l’ sl= -rz-1, sz= -r,-1, 

rl f r2, r1 < ro, rz < rot 

and rl, r,, and (2kH + k,)/(k, +2rT +2r, + 1) are integers. 

Proof. Take without loss of generality E = 0. Then Corollary 2.5(i) gives 

&+I=& and the remaining parameters of I’, follow straightforwardly (see 
[9]). Also by 2.5(i) we have 2v, = v,, so vi = v2 and k, = k,. By Theorem 2.2 
it follows that k, = k, = (k, + so)/2 = ro2 + ro. If Pr is a conference graph, 
then so is P2 (by Theorem 2.4) and by Lemma 2.1 we find 

CC'= 
ro(ro + 1) z+ r,(ro - 1) 

2 2 
I, 

proving (i). If Pi and I, are not conference graphs, then rl z - 1 - s1 and 
the eigenvalues are integers. The remaining formulas of (ii) follow easily from 
Theorem 2.4 and the well-known identities for strongly regular graphs. n 

The Petersen graph partitioned into two pentagons is an example for (i). 
We give another example in the next section. For case (ii) it seems hopeless 
to find an example: The smallest feasible solution has rl = 554, r, = 731, 
v. = 2,140,370. 

The next theorem relates strongly regular decompositions to strongly 
regular designs. The result is due to W. G. Bridges and M. S. Shrikhande [3]. 

THEOREM 2.8. I',, is primitively strongly regular with a strongly regular 
decomposition which is proper and not exceptional, if and only if D is a 
strongly regular design with point graph rl and block graph r,, whose 
parameters satisfy 

(i) k,+r=k,+k, 

(ii) k, - k E { u19 p1 + ~2 - al}, 
(iii) p2 = ui + z,, pl = a2 + z2. 
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Proof. Let D be a strongly regular design. From Definition 1.3 it follows 
that A,C + CA, E (C, 1); hence Lemma 1.2 applies. Clearly r, is regular (of 
degree k, = k 1 + r ) whenever k, + r = k, + k. For the remaining eigenvalues 
of r, we get k, + k, - k, = k, - r [by Lemma 1.2(i)], ur and u2 [by Lemma 
l.Z(iii)], and the roots of 

(x - Pl)(X - P2) = Y (*I 

(by 1.2(ii)). These five eigenvalues take only two values if and only if ur, ua, 
and k 2 - r are roots of ( * ). By use of pi - ui = y, /z i we find that u, is a root 
of ( *) for i = 1,2 if and only if (iii) holds. Suppose ur is a root of ( *); then 
pr + pz - u1 is the other root; hence k, - r is a root of ( *) if and only if (ii) 
holds. The decomposition is clearly proper, and it is not exceptional, since ur 
and u2 are eigenvalues of I’,. 

Next assume r, has the required properties. Then r, = r, or sg = sr, since 
the decomposition is not exceptional. Take without loss of generality r, = rr. 
Then Lemma 1.2(ii) gives 

Yj=(r~-sO)(sl-s~) 
for j=2,...,m. 

So D satisfies (iii’) of Definition 1.3. By Lemma 2.1 and the strong regularity 
of r, and r, we have 

CC’ E (A,, 1, J), CTC E (A,, 1, J). 

Moreover, the coefficient of Ai equals r, + s0 - r, - si # 0 for i = 1,2. Hence 
also (i) and (ii) of Definition 1.3 are satisfied, so D is a strongly regular 
design. W 

From the above proof we have that a strongly regular I?, has eigenvalues 

o1 and p1 + ,02 - el; one of the two must be equal to ua. The following result 
can be regarded as a special case of the above theorem (therefore a proof is 
superfluous). 

THEOREM 2.9. I’, is primitively strongly regular with an improper 

strongly regular decomposition (where rl is a coclique) if and only if D is a 
quasisymmetric 2design, having r, as block graph, whose parameters 

satisfy 

r=k+k,, a,+- -0, b2 - k = - y/z,. 
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From k = - y/z, it follows that za < 0. This means that if (as usual) 
adjacency in the block graph corresponds to the larger intersection number, 
then I, is the complement of the block graph of D. M. S. Shrikhande [17] 
(see also 131) proved that the conditions for D in Theorem 2.9 are equivalent 
to the following: D is a quasisymmetric 2-(1-t z&k - l)/(k - zz), k, k( k - 

z,“)/( z2 + 1)) design with intersection numbers k - ~2” and k - z,” - z2. 

3. CONSTRUCTIONS 

In this section we give constructions and some nonexistence results for 
strongly regular graphs with strongly regular decompositions. With the help 
of the results of the previous section we have made a table of feasible 
parameters up to 300 vertices (Table 1). For all cases in the table we indicate 
existence or nonexistence if known (to us). 

EZXAMPLE 3.1. The vertices of the triangular graph T(m) are all pairs of 
a given set M of cardinality m (m > 3); two vertices are adjacent whenever 
the pairs are not disjoint. T(m) is strongly regular with 

specT(m) = {2(m - 2), (m - 4)“‘-r, ( - 2)‘ric”1+3)‘2}. 

For a fixed x E M, partition the vertices into the pairs containing x and pairs 
not containing x. It is easily seen that this gives an improper strongly regular 
decomposition of T(m) into a clique of size m - 1 and T(m - 1). 

The next result has often been observed before. 

THEOREM 3.2. The block graph of a quasisymmetric 3design E admits a 

strongly regular decomposition. The decomposition is improper if and only if 
E is the extension of a symmetric 2design. 

Proof. Fix a point x of E. Partition the blocks of E to the blocks 
containing x and the blocks not containing x. This gives a partition of the 
block graph of E into the block graphs of the derived and the residual design 
of E (with respect to x) respectively. The derived or residual design of E is 
symmetric whenever E is the extension of a symmetric design; otherwise 
both designs are quasisymmetric. This proves the result. n 

The design whose blocks are just all pairs of points can be seen as a 
degenerate quasisymmetric 3-design. This leads to Example 3.1. M’e know of 
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just three other quasisymmetric 3designs (up to taking complements and 
except for the Hadamard 3-designs, which have imprimitive block graphs): 
the famous 4-(23, 7, 1) design (see [9]), its derived design, and its residual 
design. These three 3-designs are cases 8, 16, and 24 in the table. The first 
one provides an improper decomposition (D is the extension of the projective 
plane of order 4). In fact, this decomposition and the ones of Example 3.1 are 
the only improper decompositions we know. 

THEOREM 3.3. Let rl and D be as in Theorem 2.7(i). Suppose their 
matrices A, and C commute, and let I’, be the complement of lYl. Then r, is 
strongly regular with an exceptional strongly regular decomposition. 

Proof. We have 

At = - Ai + $,,( r, + l).J + $a( r, + l)Z for i=1,2, 

CC’ =CTC=&(rO--l)J+&(rO+l)Z, 

ArC+CA,= Arc-CA,+CJ-C=$_Z-C. 

This yields 

A: = - A, + rt_Z + rO( r, + l)Z, 

which proves the result. n 

If r, = 1, then Ii is the pentagon, D is the degenerate 2-(5, 1, 0) design, 
and I?, is the Petersen graph. For rO = 2, the desired graph and design are 
known: 

A,=cycle(l 0 1 1 0 0 0 0 1 1 0 1 O), 

C=cycle(l 1 0 1 0 0 0 0 0 1 0 0 0). 

Since A, and C are both cyclic, they commute. Thus by the above theorem 
we find a strongly regular I,, with (u,, k,, r,, sO) = (26,10,2, - 3), decom- 
posed into the strongly regular Ii and I, with (or, k,, ri, sr) = (os, k,, r,, sz) 
= (13,6, ( - 1 + m)/2, ( - 1 - m)/2). These are all the exceptional 
strongly regular decompositions we know. More graphs and designs with 
suitable parameters are known, but it is not known whether there exists a pair 
with commuting matrices. 
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THEOREM 3.4. Zf q is the order of a projective plane, and if there exist 
q - 1 mutually orthogonal Latin squares of order q2 + q + 1, then there exists 
a strongly regular decomposition with 

(vo~kO~r,~so~=((q2+q+l)(q2+2q+2),(q+1)3,q2+q, -q-l), 

(“1~kl~~,~sl)=((q2+q+l)(q+1)~q(q+l),q(q+1), -l), 

(~2, k,>r,> ~2) = ((q2 + q + I)‘> q(q + 1)2, q2, - q - 11. 

Proof. A set of q - 1 mutually orthogonal Latin squares is the same as a 
transversal design with q + 1 groups of size q2 + q + 1. Let 

B,=(NC N,T ... N;+L)l 

be the incidence matrix of the transversal design, where the Ni’s correspond 
to the groups. Let M be the incidence matrix of a projective plane of order q, 
and define Z?, = I@ M (B denotes the tensor product), and B = (B, B,). 
Then B is the incidence matrix of a 2-(( q2 + q + l)( q + l), q + 1,l) design 
(which is obviously quasisymmetric) with block graph r,. Clearly the block 
graph rr of B, is imprimitively strongly regular. Also the block graph of a 
transversal design is strongly regular. So the decomposition is strongly regular 
and the eigenvahres readily follow. n 

For many values of q the conditions of Theorem 3.4 are fulfilled-for 
instance, if q and q2 + q + 1 are both prime powers (e.g. q = 1,2,3,5,8), but 
also (see Brouwer [4]) if q and q + 1 are both prime powers (e.g. q = 

1,2,3,4,7,8). Cases 1, 6, and 20 in the table can be constructed in this 
manner. We do not know if the theorem provides an infinite family. The 
following example, however, does give infinitely many proper strongly regu- 
lar decompositions. 

EXAMPLE 3.5. For every integer m > 1, the symplectic graph r. with 

( vo, k,, r,, so) = (22m - 1,22”-‘- 2,2”-l- 1, - 2”-’ - 1) 
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admits two strongly regular decompositions: one with 

(u2, k2,r2, s2) = (22-l _ 2”‘-1,22”-2 _ 1,2”‘-” _ 1, _ y-1 _ I), 

and one with 

(02. k 2,r2, s2> = (22nlFl +y-1,22”‘~~2 - 1,277’ -I_ 1, _ 2”’ 2 _ 1). 

In both cases l1 is the orthogonal graph, defined on the points of an 
orthogonal quadric in PG(2m - 1,2). The symplectic and orthogonal graphs 
are described in Seidel [15]. For m = 2 the decompositions coincide with 
Theorem 3.4 (9 = 1) and Example 3.1 (m = 6) respectively. For larger m, 
the decompositions are proper and P, and l?, are both primitive. Cases 1, 3, 
4, 25, and 26 in the table are of this type. 

Next we shall give some sporadic examples (making use of the table). 

EXAMPLE 3.6. Case 2 in the table exists, that is, the Clebsch graph has a 
strongly regular decomposition with 

A,=A,=(; ;j, C=iJTI llr). 

EXAMPLE 3.7. Case 12 in the table exists, that is, the Higman-Sims graph 
admits a strongly regular decomposition into two Hoffman-Singleton graphs 
(see Sims [19]). 

EXAMPLE 3.8. A hemisystem (see Cameron, Delsarte, and Goethals [8]) 
is a strongly regular decomposition of the point graph of a generalized 
quadrangle of order (92, 9). The only known hemisystem has 9 = 3, where 
the point graph is decomposed into two Gewirtz graphs. This produces case 
13 of the table. 

EXAMPLE 3.9. Goethals and Seidel [ll] give a construction of r, of case 
15 from which the strongly regular decomposition is obvious. 
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Finally some nonexistence results are considered. Case 7 in the table is 
impossible, since Wilbrink and Brouwer [22] showed that I, does not exist. 
For cases 17 and 18, rl does not exist because of the absolute bound. By 
Theorem 2.9 the existence of an improper strongly regular decomposition is 
equivalent to the existence of a quasisymmetric 2design with suitable param- 
eters. For quasisymmetric designs many nonexistence results are known. 
These results lead to nonexistence of cases 11, 14, 23 (due to Calderbank 
[6, 7]), and 27 (due to Haemers [12]; see also Tonchev [20]) in the table. 
The remaining cases are more complicated. 

THEOREM 3.10. No strongly regular graphs with strongly regular decom- 
position exist for the parameter sets numbered 5 and 9 in Table 1. 

Proof. In both cases I1 is imprimitive. Therefore D is a group divisible 
design. Take C in canonical form, that is, 

c=((y . . . C$ 

where the Ci’s correspond to the groups. For case 5 we define 

B,=cycle(J-Z I Z I), 

wherein the blocks are 6 X 6 matrices. Then by straightforward verification it 
follows that (C B,) is the incidence matrix of a quasi-symmetric 2-(24, 8, 7) 
design with intersection numbers 4 and 2. Brouwer and Calderbank [5] 
showed that such a design does not exist. Similarly, for number 9 we define 

B,=cycle(J-Z Z Z 0 Z 0 O), 

wherein the blocks have size 5 X 5. Then (C B,) is the incidence matrix of a 
quasisymmetric 2-(35, 7, 3) design with intersection numbers 3 and 1. 
Calderbank [6] has proved the nonexistence of such a design. n 

THEOREM 3.11. Stnmgly regular decomposition 10 in Table 1 does not 
exist. 

Proof. We use Seidel switching (see [9] or [16]). Since k, = - 2r,s,, we 
obtain a strong graph by extending Ia with an isolated vertex. Next we 
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isolate, by switching, a vertex of rl. The graph on the remaining vertices is 

strongly regular with the same parameters as the original r,. However, the 
remaining vertices of rl now induce a coclique of size 19. Therefore, by 
Theorem 2.6 we have constructed strongly regular decomposition 11, which 
is impossible. n 

The smallest unsettled case in the table is 19. Tonchev constructed a 
strongly regular graph with the parameters of r,, (see [21]), but it has no 
cliques of size 15, so it does not admit a strongly regular decomposition. (In 
fact, Tonchev’s graph has maximal clique and coclique size equal to 10.) 
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