
Data & Knowledge Engineering 3 (1988/89) 261-284
North-Holland

261

A knowledge-based approach to
multiple query processing

J.T. PARK*, T.J. T E O R E Y and S. L A F O R T U N E
Computing Research Laboratory, Department of Electrical Engineering and Computer Science. University of
Michigan, Ann Arbor. M! 48109-2122, U.S.A.

Abstract. The collective processing of multiple queries in a database system has recently received renewed
attention due to its capability of improving the overall performance of a database system and its applicability
to the design of knowledge-based expert systems and extensible database systems. A new multiple query
processing strategy is presented which utilizes semantic knowledge on data integrity and information on
predicate conditions of the access paths (plans) of queries. The processing of multiple queries is accomplished
by the utilization of subset relationships between intermediate results of query executions, which are inferred
employing both semantic and logical information. Given a set of fixed order access plans, the A* algorithm is
used to find the set of reformulated access plans which is optimal for a given collection of semantic
knowledge.

Keywords. Database systems, Query optimization, Semantic knowledge.

I. Introduction

As knowledge-based systems are extended to more complex problems requiring large
volumes of information and knowledge, the need for efficient processing of multiple queries
and updates in a distributed environment becomes critical [7]. The handling of multiple
queries is also found in extensions to existing database languages for the support of CAE
applications such as VLSI design [9], and in deductive database systems [8].

An independent optimization of queries may overlook potential savings which can be
achieved when queries are optimized collectively. We address the collective optimization of a
set of queries such that, given a set of individual access plans of queries, a set of alternative
access plans of queries which exhibits minimum cost is found using semantic knowledge on
data objects.

The collective processing of batches of queries and update operations has been a popular
technique in conventional file systems of the sixties and early seventies [10, 34]. The majority
of the research in this area has focused on the processing of multiple queries in centralized
DBMSs [6, 8, 10, 14, 16, 28, 32]. We consider a new technique based on the concept of
subquery relationship for the efficient processing of multiple transactions which occur almost
simultaneously in both centralized and distributed computing environments. Both the
knowledge on the semantic data integrity constraints and the information of logical predicate
conditions of the access plans of queries are utilized in order to find a set of reformulated
distributed query execution plans that exhibit minimum cost. The task of processing multiple
queries is achieved by a rule-based expert system, Multiple Transaction Processor (MTP),
which employs a planning technique combined with a problem solving method. The plan step

* Current address: Jong-Tae Park, Samsung Semiconductor & Telecommunications Co., Ltd., San l4, Nongseo-
Ri, Kihung-Eup Yongin-Kun, Kyungki-Do, Korea.

0169-023X/89/$3.50 ~) 1989, Elsevier Science Publishers B.V. (North-Holland)

262 J.T. Park et al.

infers the necessary constraints as in Dendral [18], and the problem solving step searches the
state space to find an optimal solution using the A* algorithm [24].

Query processing can be categorized as individual or multiple. Individual query processing
implies that each query is processed independently with respect to other queries [13, 39].
Multiple query processing attempts to collectively optimize access plans of a set of queries
occurring either simultaneously or not, by utilizing the commonality which exists among the
set of queries in terms of accesses to relations, join/semi-join operations, and local physical
data access [5, 6, 8, 10, 14, 16, 26, 28, 32, 34, 36].

Multiple query processing may be further classified as semantic or nonsemantic. Semantic
query processing implies that semantic knowledge such as functional dependencies and
semantic data integrity constraints is utilized to achieve more efficient query processing [4,
11, 12, 18, 15, 25, 35].

Finally, queries can be specified as either concurrent or nonconcurrent. In the concurrent
case, a batch of transactions is assumed to occur almost simultaneously within a given time
unit. The nonconcurrent case corresponds to the conventional data allocation problem in
which frequencies of occurrences of transactions are given [2, 5, 6, 10, 14, 16, 28, 34, 36, 37],
The processing of nonconcurrent multiple queries attempts to improve the overall system
performance by storing or creating fast access paths via index or pointers for the inter-
mediate results of queries which do not necessarily occur concurrently.

The assumptions that we make are as follows. A precompiled individual optimal access
plan for each query is available. For example, the system R* query optimizer [21] generates
the global plan for a query which is a procedural sequence of operations such as the accesses
to relation, projection, join, inter-site transfers, and sorts whose estimated execution cost is
minimal. The global plan is in a high-level form that lacks internal representations such as i~s
parse tree structure or machine-executable code. Either joins or semi-joins or both are used
as query processing tactic [1, 17, 19]. We assume that the speed of the computer network is
relatively high such that the local processing cost cannot be negligible. The predicate
conditions of a query are in a conjunctive form as assumed by other relevant research [39].

The paper is organized as follows. In Section 2, the subquery relationship is defined along
with examples. In Section 3, the knowledge for efficient processing of multiple queries is
described, and we present an algorithm for the reformulation of access plans of queries. In
Section 4, the state space representation of the problem is formally presented, and the
admissibility of the heuristic cost estimates for both general and simple cases is proved. The
operation of MTP for a simple case is illustrated through an example in Section 5. Finally, a
discussion on performance and some conclusions follow in Sections 6 and 7, respectively.

2. View identification and subquery definition

We assume that the reader is familar with the basic concepts of relational database theory
[22]. Let DOM(A) be the domain of attribute A. Let t, u, v and w denote tuple variables.
Consider relation r on scheme R, and let A denote an empty predicate formula. The
standard relational operators will be denoted as follows: Projection, ¢rx(r) with X C_ R;
selection, ore(r), with P a 1st-order predicate formula; join (equi-join), Jp(r 1, rE) , with P a
conjunction of equality clauses; and Cartesian product, C(r 1, rE) = J A (r l , rE).

A relation in a database is referred to as a base relation. A view is the result of the
execution of a relational operator such as selection (or), projection (or), join (J), Cartesian
product (C), union (U) and difference (D), on relations in a database. An access plan of a
query is a sequence of relational operators applied to relations to get its result. Whe~l a view
V is a subset of another view V', we say that there is a subset relationship between two views
V and V'.

Knowledge-based approach to processing 263

Processing multiple queries requires the identification of subset relationships between
intermediate results (views) of queries, since some can be used for the processing of others.
In a distributed environment, the recognition of these relationships among different access
plans of queries can reduce the overall processing cost substantially by eliminating many
expensive intersite joins. Such subset relationships can be inferred either from logical
information of queries such as predicate conditions of queries, or from semantic information
such as semantic data integrity constraints and functional dependencies existing among the
attributes of each relation.

Example 2.1. Consider relations r~ and r 2 with schemes AB and CD respectively, and two
views V I = Jpl(rl, r2) and V 2 = Jp2(rl, r2), where P l - (A = C) ar, d P2 - (A = C) ^ (B = O).
Since P2 is more restrictive, we know that V 2 is a subset of or equal to V~. In this case, the
relationship between the join predicates is represented by VU,RIVO/R2(PE(U, o)::~ P~ (u, u)) in
a closed well-formed formula. For notational convenience, it is denoted as P2 ::> P~.

Example 2.1 illustrates that a subset relationship between views can be inferred from
logical information on predicates of queries. We now illustrate that a subset relationship can
also be inferred from the semantic knowledge on the database such as semantic data integrity
constraints and functional dependencies.

Example 2.2. Consider an automobile insurance company which maintains a distributed
database containing two relations OWNER and ISSUER at sites S~ and S2, respectively, and
whose schemes are as follows: ISSUER (REPNAME, BRANCH) and OWNER (NAME,
ADDRESS, AGE, SEX, INCOME, INSURANCE), where underlined attributes denote
the primary key of the corresponding relation. REPNAME is the name of the insurance
representative at the given branch of the company, and the other attributes are self-
explanatory.

We assume that the following semantic knowledge is obtained from the analysis of the
user's requirements: "All representatives are living at cities at which they work, and, by
managerial policy of the company, they are insured as owners at the branch where they
work."

Consider two queries QT~ and Q ~ which occur at site $2; the first says "List the names of
the owners insured by the company who work for the company as representatives"; and the
second says "List the names of the owners insured by the company who live at cities where a
branch of the company is located." From the knowledge, it is inferred that if the attribute
NAME of OWNER is equal to REPNAME of ISSUER, then OWNER.ADDRESS is equal
to ISSUER. BRANCH. Since the attributes NAME and REPNAME are keys of relations
OWNER and ISSUER, respectively, it is found that Jp~(r l, r2) is a subset or equal
to Jp2(r~, rE) where r I is OWNER; r E is ISSUER; P ~ - (N A M E = REPNAME) and
P 2 - (ADDRESS = BRANCH). The relationship between the join predicates P~ and P2
associated with QT 1 and QT 2 is represented by the assertion, Vu/RI '¢v/R:
(P,(u, v)=> t2(u, v)).

The access plan of a query can be represented by a query graph G [28] which is a triple

(N, E, fo) where N is a set Gf nodes:~E _C N x N is a set of directed edges, and fo: N--> 22N is
called the decomposition mapping for G. Each node of G corresponds to a view, and it
contains information on both the view and the processing method to obtain that view. fo(ni)
denotes the set of all possible sets of nodes in N from which the view corresponding to n i can
be constructed using suitable relational operations. The situation described in Example 2.2 is
shown in Fig. la. It indicates that relation r~ at site S i is transmitted to site S 2 to be joined

264 J.T. Park et ai.

with r 2 at site S 2, and the result of the join, either V t or V 2, is available at site S 2. If (V t , $2)
is replaced by (V t, S t) in Fig. la, r 2 is transferred from site S 2 to site S t to be joined, and V~
is available at site S t . In this way, the distributed access plan of a query can be represented
precisely.

Since Jet(r~, rE)C Je2(rt, r2) , view V t can be obtained by accessing view V 2 a s shown in
Fig. lb. That is, two intersite joins (a) are replaced by one intersite join and one local
selection (b). This can significantly reduce the total processing cost due to I / O , CPU and
data transmission across the network. In this case, query QT~ is said to be a subquery of
query Q T 2, meaning that the (intermediate) result of the former can be obtained from that
of the latter. Alternatively, QT 2 is called a superquery of Q T t.

"View identification" addresses this recognition of subset relationships between access
plans of two different queries to optimize collectively the processing of multiple queries.
Generally, these relationships depend on both logical and semantic information, as shown in
Examples 2.1 and 2.2. We will refer to such assertions as integrity constraints, denoted ICs.
Throughout this paper, we assume that integrity constraints of the form P~ ==> P2 are inferred
from either logical or semantic information. (More details on view identification can be
found in [25].)

It is assumed that a distributed query processing strategy processes all the (unary)
projection operations before any binary relational operations, as in [3]. All the attributes of
relations which are required for join conditions and target list of analyzed queries are
assumed to be projected before the intermediate result is transferred to the next site.

3. Multiple transaction processor: Reformulation algorithm

Multiple Transaction Processor (MTP) is a rule-based expert system for the collective
processing of multiple queries. Its operation is divided into two steps: a "plan step" and a
"search step". The plan step infers integrity constraints which can be employed in the
following search step for the generation of superqueries. The search step uses the A*
heuristic search strategy [24]. In this paper, we shall only discuss the search step. The plan
step is described in detail in [25]. It uses several heuristic rules to generate a set of ICs. This
set is then pruned to retain only the "promising" ICs, where an IC is said to be promising if
it can be used for the generation of a superquery.

We now describe the algorithm for the reformulation of access plans of queries during the
search step. For simplicty, we omit site information in this section. The generalization to the
case of a distributed database is straightforward (see next section). For the relational
operations selection, projection and join, there are corresponding construction rules for
reformulation.

(b)
Fig. 1. Two joins are replaced by one join and one selection.

Knowledge-based approach to processing 265

Since join is considered to be the most expensive operation in both centralized DBMSs
and distributed DBMSs, it is assumed that the access plan of a query is represented by a
sequence of join operations where local unary relational operations are considered aggre-
gately. Let uop~ be a unary relational operator. A sequence of unary operations
uoPi+k(uopi+k_ I (. . . (u o p i (V i) . . .))) applied to a view V/ is represented by uopi(Vi) for
notational convenience• The access plan of a query is then represented by the sequence
(J~(VI, V2), Je4(V3, V4),. . . ,Jp,.n(V2n_l, V2,)) where, for 1=1,2 V2,= uop2 ,
(Je(V/_l, V/)) and V21_ l = uop~l_~(Jpi(V i 2, Vi)) for some even i, j ,2<~i, j<21. Here, each
• , i

join operation, Jp,(V~_~, V~) for i = 2 , 4 , . . . ,2n in the access sequence, is defined as an
access step of the sequence (Jp,_(V ! , I,'2), Jp4(V.~, V4) J~n(V2,,_ i , V2n)). In Theorem 1 of
Section 4.2, each individual query access plan will be assumed to be optimal• But until then,
this restriction is not enforced•

1. Construction rule for the selection operation.
Let us assume that there are two selection operations o.th(Vk) and o.o2(V~) where V~, is a

view, as shown in Fig. 2a. Suppose that there are two ICs, Q~ ::> Q3 and Q2 ::~ Q3- The
construction rule allows for the query graph on the left-hand side to be transformed into that
on the right-hand side; two selection operations o-ol and o'02 are replaced by one selection
operation o-03. It is noted that the views V~ and V~ can be derived from the view V; in the
reformulated query graph as follows; V~ = o.o~(V~), V~ = o.o,_(V;).

2. Construction rule for the projection operation.
The projection operations ~rw~(V;) and 1rw2(V;) are replaced by the projection 7rw, uw2(V;)

as shown in Fig. 2b. The views V'~' and V~ can be derived from the view V~ in the
reformulated query graph since V'I' = ~w~(V~), and V[' = 1rw2(V'~).

3. Construction rule for the join operation.
Let V 1 = JI,(V', V") and V 2 = Jp2(V', V"). If there are two I t s , P1 :~ Pa and P2 ::> P3, one

join operation J h substitutes for two join operations Jp~ and Jp: The views V~ and V 2 can also
be derived from the view V3; V I = tre~(V3) and V 2 = o.~,2(V3). Two join operations are
replaced by one join operation, as shown in Fig. 3.

Now, let us look at a more general case in which the length of the query access plan is
greater than one. For notational convenience, let us define V~, V 2, V 4 and V 5 as follows:
V~ = Jv~(~rx~(V~), ~rx2(V~)), V~= Je:(~rx~(V/), ~rx~(V~)), V4= Je4(~rrl(V~), ~rwl(o.o,(V~))), and
V~ = Jps(~rw~(o'o~(V~))). Suppose that there are two queries whose access plans are described
below.

Q

(b)

Fig. 2. Construction rules for (a) selection and (b) projection operations.

266 J.T. Park et al.

Fig. 3. Construction rule for the simple join operation.

• access-plan (QT,'): (Jp,(Trx,(E), 7rz,(V,)---)
• access-plan (QTr'm"): (Jp,.(~rx,(V~), ~rx,(Vj)), Je~(zrv,(Vz), Ztw,(tro,(V~))) , rtz,(Vs)...)

(The superscripts r I and r m denote the set of relations referenced by queries Q'T I and QT,,,
respectively.)

The following ICs are assumed to be inferred from the knowledge base; P~ ~ P3, Pz => P3,
Q I ~ Q3, Q2 ~ Q3, P4 z~ P6, and P5 ~ P6- The rule for the simple join operation in Fig. 3,
using ICs P~ :~ P3 and P2 ~ P3, allows to obtain the reformulated query graph shown in Fig.
4a. Here, it is said that a superquery QG I v''vjl of QT" I' and QT~ m is generated whose access
plan is Je,(rrx,(V/), 7rx.,(Vj)).

The current access step, denoted CAS, of a query (superquery) is defined to be the most
recently reformulated access step of the access plan of the query. The current view of a query
is defined as the result of the execution of the current access step of the query. The CAS of
both QT~' and QT~m m is Je,(~rx,(V~), Irx,(Vj)) in Fig. 4a. Since the number of eliminated
intersite join 3perations tends to be proportional to the length of the access sequence of the
superquery, it may be a good strategy for the reduction of the total processing cost to stretch
out the superquery QG~ v''~ to QGt~ v''vrv~ such that the intermediate results V 4 and V 5 of
the executions of the queries QT~' and QT~ m can be obtained from QGtI v''vrv~. Exploiting
the knowledge Q~ :~ Q~, Q2 ~ Q3,/ '4 :~ P6, and Ps :~ P6 in the search step, the query graph
of Fig. 4a is transformed into that of 4b. It is noted that V 4 and Vs can be obtained from V~,
which is the result of the execution of QG~ v''vrv~ In this case, QG~ v~'v/~ is said to be
extended into QGI~ v''vrv~l. Here, two join operations are again replaced by one join
operation. This motivates the following heuristic in the search step:

Generate a superquery whose access plan is as long as possible.
In order to describe the above construction rule in more detail, we need to introduce some

definitions. Let V= trp(r~), attr(P) is defined as the set of all attributes appearing in the
selection predicate P. For example, if V = o r (a = n) ^ (C = , , v a l u e , ,) (r i) , attr((A= B) ^ (C =
"value")) = ABC. Similarly, lattr(P) and rattr(P) are defined for the join predicate P. Let
V= J~,(r~, r/) with the schemes of r i and r/being R~ and R/respectively. lattr(P) is defined as
the set of all attributes appearing in both P and R~; rattr(P) as the set of all attributes in both
P and R/. For example, lattr(P)= A and rattr(P)= B for JR, A=R/.n(r~, r/).

We now describe the construction rule of the join operation in Fig. 4. First, the conditions
for the extensibility of superquery QG I v''v~t are checked. This consists of the identification of
any ICs with respect to join predicates/'4 and P5. If this condition is satisfied, we then check
the feasibility of extending the superquery by verifying the conditions related to the local
selection and projection operations. Since these conditions are satisfied by /'4 :~ Po and
P5 : ~ / 6 , and Q~ :~ Qa and Q2 ~ Q3, we try to construct the intermediate result from which
both intermediate results of QT~' and QT~ m can be obtained. This construction of the
intermediate result of the superquery requires the projection operation ZrR, to be carried out,
in order to provide the necessary attributes and the corresponding data for the selection

Knowledge-based approach to processing 267

wXt

OP 1

7~

oPa

fXa

f ~

wZt

¢Oa

~W"i41' s

mO,

*'xl '~ fxa ~ oO~

wRa

a ' R t

°Pt APt ^Qs
lrz t

Pm AQa

Fig. 4. Construction rule including unary and binary operations.

operations 0.p, and 0.e2 to be executed at the next access step. It must also provide the
necessary attributes for the join operation JP6" Here, R, = (U ~--, Yi) O (U 2~,attr(Pi)) U

lattr(p6).
Second, the construction rules for the local selection and projection operations, 0.o, and

°'o2' are applied to the view V k. The join operation Jr6 also requires the attribute lattr(P6) to
be projccted. The selection operation 0.o, and 0"o2 are also deferred to the next stage, which
requires the attributes attr(Q,) and a/tr(Q2). Since all these projection operations can be

268 J.T. Park et al.

performed simultaneously in a centralized DBMS, all the attributes involved in the projec-
tion operations can be combined. This composite attribute is represented by R 2 with
R 2 = Wt O W 2 O rattr(P6) O attr(Q !) u attr(Q 2).

Finally, the local selection operations trpt and cre,, and crqt and tre. ,, are postponed to the
next access step where these are carried out together with the selection operations o'e, and
trp~, respectively, to get V4 and V 5 from V 6.

When the above transformation occurs, it is said that a state transition occurs from the
current state represented by Fig. 4a to the state corresponding to Fig. 4b. This state
transition is defined as a one-step transition since only one intersite join operation is
accounted for the state transition. All the local selection and projection operations involved
in an intersite join operation are considered to be executed at the access step associated with
that join operation) The CAS is also changed to Jt,(zrRt(V~), ¢rR,(o'o~(Vk))) for both queries.
In the above one-step transition, one join, one selection, and t~,o pi'ojection operations are
saved. If Q3 = Q2, tre,^es^Q,, is equivalent to tre.,^e ~. Furthermore, if P5 - P6, then tre,^e ' -
crp:. All the views which are involved in the generation of a superquery up to the current
access step in Fig. 4 are marked by/ / / .

The above construction rules for the general case are summarized below.

Step 1. Check the feasibility of extending a superquery. There must be promising join and
selection conditions for the predicate formulas in the access plans of the subqueries.
Step 2. If it is feasible, then compose R t and l 2.

Step 3. Apply the construction rules for the local selection and projection operations related
to V k.
Step 4. Extend the access plan of the superquery by replacing two join operations of a
subquery by one join operation, and postpone all the join, selection and projection
operations as shown in Fig. 4a and b.
Step 5. Update CAS and mark the views which are involved in the reformulated access
plans.

During the plan step, we can also identify the equivalence relationship P4 ¢¢ P.s. In this
case, we can further reduce the search space as follows. Let us assume that the attributes
appearing in 7rRt and ¢rR2 are R4 when P~ is replaced wi th /4 , and R.s when P6 is replaced with
Ps. We further assume that SIZE(R4)>-SIZE(Rs). The heuristic is as follows.

If P4 ¢¢ P s, then select P.s as the predicate for the superquery, i.e. let P5 play the role of P~
in Fig. 4. Since SIZE(R4) >t SIZE(Rs) , VOL(V6) derived using Je4 is always greater than or
equal to that derived using Je~. This guarantees that we always select the smaller volume of
intermediate results in the process of superquery generation associated with P4 and Ps. Since
we do not generate the superquery associated with IC P5 ::> P4, the subtree using P~ ::> P4 can
be pruned off in the search space.

4. Multiple transaction processor: Search step

4.1 Formal representation o f problem space

In this section, we present formal definitions for state, initial and goal states, heuristic cost
evaluation functions, and we describe the rules in the search step. These consist of
generation and test rules which together embody the A* search strategy.

~This aggregation of local unary operations and an intersite join operation is considered for the efficient
representation of a state transition.

Knowledge-based approach to processing 269

Let Q T _ C O S T k be the processing cost for the execution of the query Q T k along its access
plan in a distributed environment. Let G be a query graph which is constructed by
integrating all the individual access plans of queries. The objective is to reformulate the
access plans in G using the available knowledge such that the total processing cost over n
queries, Z~=~ Q T _ C O S T k, is minimized.

A state is informally defined as a set of access plans which are represented by a query
graph with attached proper information required to estimate the total processing cost in a
distributed environment. A state transition occurs whenever a new query graph is con-
structed by adding or modifying relational operations, thereby reformulating the access plans
of the queries, using both logical (syntactic) and semantic knowledge under the constraint
that all the views in the current state can be obtained from the new state. This state
transition occurs by the activation of the generation rules described below. The generation
rules allow for two types of state transitions to occur; one is advancing an access step of a
query, and the other merges two current access steps of two different queries and generates a
superquery according to the construction rule of the previous section. Both types of state
transitions are subject to the following constraints: (i) any view at the current state should be
derivable from the newly generated one; (ii) the state transition is only possible using the
knowledge associated with the current access step (one-step transition).

A state to is formally defined as a 5-tuple (G, AP, (?AS, g(to),/z(to)). G is a query graph
which is constructed by integrating all the individual access plans (see e.g. Figs 10-13). AP is
the set of (reformulated) access plans of queries inferred from G:

AP = { access-plan(Q T k) I k = 1, 2 n } . (1)

When a query is using the (intermediate) results of another query or superquery, Q G k, its
access plan should be reformulated as follows: (access-plan (Q G ,) , V/, V / + l , . . . , Vm). CAS
is the set of all the current access steps of queries:

CAS= {CAS of Q L I k = 1 ~ n} , i . . , . . . , • (2)

The value g(to) is the sum of all the processing costs of queries from their initial access steps
to their respective current access steps along their (reformulated) access sequence. The value
/~(to) is the estimate of the total remaining cost for all the queries from the current state to
reach the goal state, using the strategy of multiple transaction processing.

4.2 Generation rules

We describe the cost functions g and/~, and the generation and test rules in more detail.
There are three generation rules:/-rule, M-rule, and F-rule. /-rule moves forward the access
step of the query along the access sequence to reflect the individual distributed query
processing strategy. M-rule tries to generate a profitable superquery by merging access plans
of queries, and F-rule is useful for the cost evaluation at the end of the superquery
generation steps. The firing of the generation rules is controlled by the specificity ordering of
the conflict resolution strategy. M-rule has more priority than/-rule and F-rule, and/-rule
has more priority than F-rule. These priorities reflect one of the inference-guiding heuristics

in the search step.
Let (V~, ~ , . . . , It',,) be the access sequence of query QT, . / - ru l e is described as follows:

I-rule: Move forward one-step further the current access step of the query along the access
sequence (V~, V 2 V n). Initially, the CAS of Q T k is set to V !. The activation of/-rule
enables the CAS of Q T k to become V2; the next firing to become V 3 and so on.

270 J.T. Park et al.

When there are two current access steps for which promising integrity constraints exist,
M-rule reformulates the access plans of the queries to generate a superquery relationship by
invoking the construction rule described in Section 3.

M-rule: If there exist promising ICs which can be applied to views in the current access steps
of two different queries, then reformulate the access plans using the construction rule, and
make the newly generated access step to be the current access steps of the corresponding
queries.

The answer to a query can be represented by uop,(Vn) for some "final" view V. of the
query. Since it cannot move forward any further, we introduce the final view V r such that I/',
can be advanced to it without incurring any processing cost. This is actually a stopping rule.

F-rule: If the result of the current access step of the query QT k is view V,, where the answer
to the query is equal to uop,,(V,), then move forward the current access step to V r.

/-rule, M-rule and F-rule are complete in the sense that all the possible ways of
reformulating the access plans of queries can be enumerated along the access sequences
within a given knowledge• They are also nonredundant since each rule is fired only once
using given ICs. Finally, the search step is informed by using the priority existing between
/-rule, M-rule and F-rule as well as being guided by the heuristic cost evaluation function/~
which will be described subsequently. Note that the identification of the same views can be
facilitated by using ICs of the form Pi ::)' Pi.

For an access step Jp(uop~(V~), uopj(Vj)), we want to allow for various access strategies
which take into account the different intersite communication costs and different local
processing costs. In order to do that, we describe the cost function associated with a query
graph where each node of the query graph contains site information. Let V k = JpA(uopi(V~),
uopj(Vj)). The access step Jek(uopi(V~), uopj(Vj)) is represented by the query graph in Fig. 5.

Here, since the oval contains site information, we represent the node of the query graph
by the notation VS k where VS k is defined to be an ordered pair (V k, Sk), denoting view V k
located at site S k.

We describe the processing cost evaluation functions, t ~b~,(uop, V) is defined as the local
V " • C processing cost to carry out the relational operator uop to ~ew V at s~te Si; ~,,,~ (V) as the

• ' " 1 .
communication cost to transmit the volu,ne of view V, VOL(V), from site S~ to site Sj, and

t j ,)
~ , (ek' V, V as the local processing cost to carry out the join operation Jp~ for the views V
and V' at site S~." For a unary operation uop(V~), the corresponding query graph is shown in
Fig. 6, where Vj = uop(V~).

If S~ = Sj in Fig. 6, uop is performed at site S~. Otherwise, uop is performed at site S~, but
the result Vj of its execution is transmitted to site Sj, and stored there for further processing.

~uopi ~u°Pi

Fig. 5. The access step of Je~(uop,(V,), uopj(V~)),

Q uop ~_rQ

Fig. 6. The access step of uop(V,).

"~ If necessary, other cost functions can be defined; for example, semi-join operations can be considered.

Knowledge-based approach to processing 271

The corresponding cost function, cst(VS, VSj) with VS = { VS~ } is defined as follows.

t

cst(vs, vs,)= v,)
¢/,,(,,op. v,) + ¢g,,,(v,)

for Si= S j

for S~ # Sj.
(a)

Going back to the query graph in Fig. 5, we assume that all the unary operations are
carried out before any intersite data transmission occurs. However, the join operation Je can
be performed at different sites according to the following protocol. If S k = S~, it is assumed
that view V~ at site Sj is transmitted to site S~, and Je is carried out on g~ and V~ at site S~
where the result V k is stored. If S k # S~ and S k # Sj, both V[and V~ are transmitted to site
S k, and the join is performed at site S k. The result V k is also stored at site S k. According to
the above protocol, every distributed query access plan using the joins as processing tactic
can be represented precisely by the above modified query graph. We describe the cost
formula for each case below. Let VS = { VS~, VSj } where VS~ = (V~, Si) and VS i = (V/, S i).
Let VS k = (V k, S k). The corresponding cost formula, cst(VS, VS~), is shown below.

f c w I p local_cst + gt.s,s,(Vj) + d/s(Jr~, V r V~)

c t I w t

cst(VS, VSk) = local_cst + ~s,s,(Vi) + ~s,(Jek, V,, Vi)

| local_cst + *sis, (V;) + ~b~;s, " (V;)
(+ v;.

for S~= Si

for Sk= S j

otherwise,

(4)

t t t t where local_cst = Osi(uopi, Vi) + Os,(uopj, Vj) and where Vi = uopi(Vi), Vj = uopj(V/). Note
that we do not assume any specific cost model for the evaluation of the access step.

Let VS k be a view which is an intermediate result from the execution of a query along its
access plan. Let VS be the set of views such that VS E VS implies that VS is involved in the
part of the access plan yielding VS k. VS_COST(VS k) determines the processing cost to get
VS k along the access plan of the query, and it is defined as follows:

VS_COST(VSk) = CSt(VS, VSk) + V S _ C O S T (V S) .
VSEVS

(5)

Assume that state to consists of m superqueries, QG t for ! = 1 , 2 , . . . , m, and n original
queries 3 QTrk k for k = 1, 2 , . . , n where the current view of the query QTrk ~ is denoted as
VS k = (V k, Sk). Let VS~ be the result of executing QGi, and N Q G t be the number of queries
QTrk k which use the intermediate result VS~ to get their current view VS k. Then,

ii1

g(to) = ~ V S _ C O S T (V S k) - ~, (N Q G , - 1) V S _ C O S T (V S ' ,) .
k =! I=1

(6)

The second term in Equation 6 reflects the fact that the processing cost related to using the
intermediate result should be accounted for only once due to the strategy of multiple query
processing. V S _ C O S T is evaluated by a backward recursion.

We now wish to develop the heuristic cost estimate/](to) and prove its admissibility. We
need to define new functions. For a given access plan (J p , (V i , V2),
Jr4(g~' I/4) J pz~ (~_ l , g2,,)) of a query QTrk *, let us define a function ~k(VSi) such that

3 We mean by the original queries those supplied as input to MTP.

272 J . T . P a r k et al .

8~(VS~) returns the remaining cost starting from th, • view VS~ along the individual access
plan of QT'k ~ to get the result of QT'k k. Here,

6~(VS,) = VS_COST(VIEW(QT 2)) - VS_COST(VS,) , (7)

where the superscript / of 6~, indicates that the processing cost is evaluated along the access
plan which is determined by an individual distributed query processing strategy. We define
the function F as follows:

r (vs , , v &) = {(vk, &) 13#,((v~ = Je~(v,, v,)) ^ (v,, s,) E vs,

^(v,_,s , .)~vs,)} . (8)

Let x = (V, S) indicate a view V stored at site S. Let 6 ~(x) denote the remaining processing
cost of an individual query access plan starting from the view V. Let 6(VSk) denote the
estimate of the remaining processing cost associated with a current view VSk. Then,

6(VSk) = ~ { min {cst({VS~ y}, (V, S"))}
y~VS" x ~ I ' (V S k. y) ^ s ' E s

+ max {~l(x) - ~ss..(V)} } ,"
x ~ i ' (V S k . y) ^ S " ~ S

where S is the set of all sites in the given computer
{(v,, s,)la#,(J,,,(vk, v,)= v,) ^ (v,, S,)~ r(vk, v,) ^ s,, s ,~ s)}.

Let CVS be the set of all the current views in state to. Then,

network;

(9)

VS' =

~(~,)= ~ ~(vs) . (1o)
VS E CVS

We prove the admissibility of / I below.

Theorem I Suppose that the individual access plan of each query is optimal. Then h(to)>~ h(to)
where h(to) is the minimal cost to reach the goal state tog from the current state to.

Proof. Without loss of generality, let

/~(~)= ~ { min (cst({VS k, y}, (V, S")))
y ~ V $ ' x E I ' (V S k, y) ^ S ' ' ~ S

+ max {Bt(x) - q,i~s,,(V)} }.
x E I ' (V S k. y) ^ S " E S

(11)

We make the assumption that there exists only one current VS k and only one y. The situation
is shown in Fig. 7. In Fig. 7, F(VS k, y) = {(V~, S~)li = 1, 2 n}, S = {S~, S 2 S~} and
vs '= {y}.

Suppose that we generate a superquery QG starting from (V k, Sk) such that all the results
of queries Q T'~k for k = 1 , 2 , . . . , n can be obtained by accessing the result of QG.
Furthermore, let us assume that the access plan of QG is optimal among all the feasible
access plans of superqueries. As shown in Fig. 7, let us assume that (V', S ') is the view in the
access plan of QG from which the views (V,, Si) for i = l, 2 n can be obtained. Let
6t((V ', S ')) be the remaining processing cost of QG starting from (V', S ') . Since each
individual access plan of queries is assumed to be optimal, we know that ~bss,(V~)+
,St((V~, S')) > 6~((V,, S,)) for all i = 1, 2 n. Otherwise, it leads to a contradiction since

Knowledge-based approach to processing 273

Je

qT~

Fig. 7. A state with only one current view.

6~((E, Si)) does not become minimal in such a case. Since VOL(V')>~VOL(V~),
6'((V' , S')) I> 6'((V~, S')) > 6~((V~, S,)) - #ss.(V~) for any site S' ~ S and i = 1, 2 n.

r i c
Thus, 61((V ', S)) > maxxer~vsk, y~^s..es {6 (x) - Os.r(V)}.

Now, let us consider all the possible ways of constructing V~ for i = 1, 2 n from the
views VS k and y. For each V~, we have s ways of constructing it where s is the number of
sites. Let the view (V",S") be the view such that (V",S")E {(V~,Si)Ji= 1,2 n} and
cst({VS k, y}, (V", S")) is minimal. Since VOL(V')>~ VOL(V"), we know that cst({VS k, y},
(V',S'))>~cst({VSk, y}, (V", S'))>~cst({VSk, y}(V", S")). In other words, cst({VS k, y},
(V', S')) >~minxertvs~. y~^s"Es {cst({VSk, Y}, (V, S"))}, where x = (V, S). Thus, the lower
bound of h(VSk) where h(VS k) is the remaining processing cost associated with the current
view VS k when an optimal superquery is generated, is

f~(VSk)= { min {cst({VS k, y},(V,S"))}
x E i ' (V S k . y) ^ S " E S

+ max {6~(x) - ~ss-(V)} []
x E I ' { V S k . y) ^ S " E S

It is easily shown that ~(VS k) is simplified to 6~(VS k) when VS k is the current view of
QT~ k which is marked by the activation of generation ru le / - ru le . This is summarized below:

6~(VSk) if CARD(F(VSk, y)) = 1
~(vs,) [Eq. (9) otherwise,

where C A R D denotes the cardinality of a set.
Finally, we wish to describe the test rule. For each search step, we evaluate f (to)=

g(to) +/~(to). Among all the states which are generated at previous search steps, but are not
expanded, or which are generated at the current search step, we select the state which has
the minimal cost estimate f(to), and we test that state whether it is a goal state or not. If that
state is found to be a goal state, then the search process is stopped. Otherwise, we expand

that state, and the search process resumes.

274 J.T. Park et ai.

4.3 A special case

in this section we present heuristic cost evaluation functions for a simple case in which the
access plans of the given queries comply with the following assumption, called the assump-
tion o f f i xed access order: (i) for an access step Jp(V I , ~) , the join is performed at the site
where 17, is located by moving V~ there; (ii) the order of the access step in the access
sequence of a newly generated superquery precisely follows those of the original queries
which use the (intermediate) result of that new superquery. 4 Due to this assumption, the site
information is implicitly ignored throughout this section.

Here, we do not assume that each individual access plan is optimal. Under the assumption
of fixed access order, it is generally not feasible to infer subquery relationships in the middle
of the access sequences of two different queries, s Hence, we can assume that all the
superquery relationships which would be profitable can be inferred from the query graph
shown in Fig. 8. The function g is defined as in Equation 6.

For/~, we need to define the two functions ~ and F. Let I/'! and V~. be sets of views. F is
defined as follows:

r (v , , = {v laJ , , ((v= J,,(v,, v2)) ^ (v, 1I,) ^ (v2 E v2))} (12)

For a set V of views, the function ~(V) optimistically estimates the sum of the remaining
costs of queries which use the intermediate results in V.

Let x, y and z denote views (see Fig. 8). Then,

~(V)= ~ { max {cst((x, y),z)} + ~(F(V, Y))/'/ (13)
v~V' (xEV) ^ {z~/'C~.)'))

where V' = {V'l=lJp~((J,,k(V, V ') = V") A (V E V) A (V " ~ F(V, V')))}. ~(V) is evaluated by

Fig. 8. A f¢ Jle query graph.

This assumption is more likely to be valid in a centralized environment, but it may also be applicable to local
area networks.

Refer to [25].

Knowledge-based approach to processing 275

a forward recursion. The boundary conditions are as follows:

Case 1.
Case 2.
Case 3.

When V 3 = Je(Vi, V2) , jb(Vl)=cst((V1, V2) , V3).
When V 2 = uop(Vi) , f j(VI)= cst(Vl, I/2).
When # (V) = cst(V, Vr), # (V) = O.

Now, let e l l be the set of all the current views in state to. The heuristic cost evaluation
function/~ is defined as follows:

/~(to)= ~ /~(V). (14)
V ECV

The initial state ~o is (G, ALP, CAS, O,/~(too)) where AP is the set of access plans which are
not reformulated, and CAS is the empty set. The goal state tog is (G, AP, CAS, g(tog), O)
where G and AP are the reformulated query graph and the set of reformulated access plans,
respectively; CAS is {Vr}.

We prove the admissibility of/~ below.

Theorem 2. h(to) I>/~(to) where h(to) is the minimal cost f rom the current state to to the goal
state %.

Proof. Let V~ for i = 1, 2, 3, 4 denote views. Let J&(V~, V2) be an access step chosen for the
evaluation of some t~(V) defined in Equation 13 where V is a current view of a query at state
to. Let p(V) be an optimal remaining processing cost, at state to, for the current view V using
the multiple query processing strategy. (Equation (13) is clearly true if the individual access
plan are used.) For the access step Je~(V~, V2) of the query, let the corresponding access step
of the superquery be Je3(V3, V4) which is involved in the construction of an optimal access
plan. Let V[= Jp,(Vi, I/2) and V~= JP3(V3, ~/4)" Since JP3(V3, I/4) is an access step of the
superquery, the processing cost of performing this access step is greater than or equal to any
corresponding access step of the query which uses the result of execution of Jp3(V3, V4).
Hence, cst((V 3, V4), V;) >I cst((V 1 , I/2), V[). Since cst((V 3, I/4), V;) >I cst((V l , V2), V~) for any
access step Jv~(V~, I/2) which comes behind the current view V, p(V)>~ ~(V). Therefore,
h(to) >I b (v) . []

5. An example

This example illustrates the operation of Multiple Transaction Processor. For simplicity,
attention is restricted to the special case described in Section 4.3. The example shows how
multiple queries occurring concurrently in a distributed database system can be processed
optimally by utilizing jointly both database semantics and logical information of predicate
conditions of queries.

The distributed database r contains three relations r~, r 2 and r 3 at site 1, site 2, and site 3,
respectively, as shown in Fig. 9. Let V,, = JP4^es(Tryl(rl), r2) and V b = Je3(Crzl(rl), r2). Two
queries Q T 2 and Q T 3 occur at site 1 with the following access plans:

access_plan(QT2): .{ Jp4^~(~rr,(r,), r2), JeT^pS(~rh(V~), r3)), and
access_plan(QT3): (Jp3(1rz,(r,), r2), Jv~(1rz2(Vb), r3)) ,

where Y~, Z~ C_ R~, Y2 C_ R ! I.J R 2, and Z 2 C_ R~ O R 2. The access plan of Q T 2 implies that

276 J.T. Park et al.

r l r 3 ra

Fig. 9. Example of a distributed database with two queries.

7rrt(rt) is performed at site St; ~rv,(Jp4^e~(V', r2)) with V' = 7rv,(rl) being transferred from
S ! is performed at site S,_; Jp7^e~(V", r3) is performed at S 3 with V"= "trr, (Jl,a,,ps(Trvt(rl), r2).
The access plan of Q T~ can be interpreted similarly.

During the planning step, a set of int.egrity constraints is inferred from logical and
semantic information using inference-guiding heuristics. 6 The plan step infers only relevant
ICs for the efficient identification of subquery relationships and systematic generation of
superqueries in the subsequent search step. The following is the list of all the relevant ICs
associated with relations r~ and r 2, and r, and r3.

ICs related to rl and r 2 ICs related to r 2 and r 3

Pt ^ P2 ==> PI ^ P2 P7 ~ P7
P4 ^ Ps ==> P t ^ P._ P7 ^ Ps ==> P7 c
P t A P2 ==> Pt Ps ==> Ps
P4 A Ps ~ Pt P7 ^ Ps ==> Ps

P3 =~ PI P7 ^ Ps ==> Pa
P t ^ P2 ==> P, P7 ^ Ps :=)' P7 ^ Ps
P4 ^ P.~ ~ P, Ps ::> P~

P3 ~ P, P~ ::> P,
P4 ^ P.~ ::> "°4 ^ P.~ P7 ::)' Plo

P3 ::)> P3 P7 h Ps ==> Pt.
PI ~ PI P,, ~ P t .
P2 ~ P2 Pt. ::)' Pro

The initial state for this example is shown in Fig. 10 where the access plans of QT 2 and
QT 3 are integrated.

The processing costs for QT 2 and QT 3 are described below when individual distributed
query processing strategies are used.

QT_COST 2

QT_COST 3

I 71" I = ~b (v,, r,) + l]/C(.rry.(rl)) + i/t (Je4^es, ~rv , (r ,) , r2)

t , 7rr,(V,,), r3) "[- ~ (71"y2, Va) -~- ~c (,~Y2(Va)) .4- ~ (Jp7^p 8,

c i r = #t("n'z,, i t) + 6 (Trz,(r,)) + 0 (~,,3, 7rZ, (rl) ' rz)

/ C
+ + + r 3) .

(15)

"The planning technique is described in detail in [25].

Knowledge-based approach to processing 277

Fig. 10. A graphical representation of the initial state.

All site information is ignored here since we assume that all the sites have the same
processing capability and that the communication cost does not depend on sites. In

171- E q u a t i o n 15, cst2((1rr,(rl), r2), Va) = 0 (v,, r l) + 0C(~rr.(rl)) + 01(Je4^p~, ~rr,(rl), r2)
which is associated with the intersite join operation Jp4^p~, and cst2((~rr,(Va),r3),

17T Je7̂ ex('trv2(Va), r3)) = ~ (v 2, Je4̂ t,.~('rrr,(r,), r2)) + Oc(zrh(Je,̂ e~(zrv,(r,), r2))) + ~t(Jt,7̂ e~,
Irh(Jp4^es(%,(rl), r2)), r3), which is related to the intersite join operation JeT̂ e~"

We first discuss the search process. For example, by employing the two promising ICs
P3 ::> P~ and P4 A P5 ::> PI, state I, which is shown in Fig. I I, is generated from the initial
state. In Fig. If, the current access step of the query QG~ is Je,(wr, uz,(r~), r2), and the
current view of the query is V~. We make the assumption that the attributes involved in the
join operation Je, are contained in Y~ U Z~.

The construction rule for the join operation permits two intersite join operations Je,^e~
and Je, to be replaced by one intersite join Je,. Here, the superquery QG~ of both QT~ and
QT 3 is generated with respect to (r,, r2>. The view V~ which is the result of the superquery
execution allows for the production of intermediate results Va and V b of QT 2 and QT 3 since
V,, = "#v, uR2(crp.,,,p.~(V,)) and V b = Tl 'ZiUR2(O'p3(Vl)) .

fY~ u Zs

JP~

f ~

^ ~

Fig. 11. A graphical representation of state 1.

278 J.T. Park et al.

State 1 is generated by the activation of M-rule, and state 4 which is shown in Fig. 12 is
generated by the activation of / - ru le . All the views which are utilized in the search step are
marked by / / / in both Figs 11 and 12. Note that state 1 is generated following the access
sequence of execution plans of both Q T 2 and Q T 3.

g(to) is the processing cost incurred at the current state to. Let us define/~r(to) as the
heuristic cost evaluation function which estimates the sum of the incremental remaining
processing cost for each query, from the current access step to the final access step, when the
individual distributed query processing strategies are used. h(to) is the minimal incremental
cost from the current state to which can occur by reformulating access plans in the context of
multiple query processing. As before, let/](to) be an optimistic estimate of h(to).

Let V~ = ,rr~(tre4^p~(Vl)), and V'; = 7rz2(~re3(Vl)) as shown in Fig. 11. Also, let to be state 1.

g(to) = Q G _ C O S T , (r , , r2)

= cst((rrv, uz,(rl) , r2), I/1)

= ~bt(,rrv, , t j _ oz, r,) + IllC('n'vtuz,(rl)) + ~ (p,, ,rvtoz,(rt), r ,)

f~t(to) = cst2((V ',, r3), JeT^e8(v '1, r3))

+ CSts((V' ;, r3), Jeg(V';, r3)) .

¢$t(('lrv, oz,(rl) , r2), Vl) denotes the processing cost of the current access step of the
superquery Q G I. The access step Jpt(Trvlozl(rl) , r 2) is the current access step for all the
queries Q T 2, Q T 3 and QG t at the state shown in Fig. 11. cst 2 denotes the incremental cost
incurred using the intermediate result V 1 to get the answer of the query Q T 2. Similarly, cst 3
denotes that for the query Q T3, using the same intermediate result V 1. Here,

I i o . I f f cst2((V;' r3), JP,^es(Vl , r3)) = ~ (e4^es, Vl) + ~ (v2, tre4^es(VI))

t ' ' / 3) + Co(v;) + (JpT^, Vl,

V " I or I cst3((V'(, r3), J p g ((l) , r3)) = O (P3' VI) + ¢ (~'rZ2' O'e3(Vl))
I y ,, r3). + + ¢ (v,,

Now, we attempt to extend the superquery relationship since it may reduce the total
processing cost further. Since we do not know the existence of ICs at state 1, we do an
optimistic conjecture that either P9 ::> P7 ^ Pa or P7 ^ Ps ::> P9 or both might be true. This

Fig. 12. A graphical representation of state 4.

Knowledge-based approach to processing 279

optimistic conjecture allows us to estimate the remaining cost estimate h(to) at state !. Using
the construction rule for the join operation, the feasible state generated from state 1 which is
based on the optimistic conjecture is depicted in Fig. 13.

In the process of extending the superquery with respect to (r , , r 2) in Fig. 11 to that with
respect to (r , , r E, r3) in Fig. 13, the local selection operations ore, and ~e4^v~ are postponed
to the next stage in the access sequence, and a new projection operation ¢r z is added.
Z = Z 2 U Y2 U X where X denotes the attributes involved in the selection operations tre~ and
try4 ̂ p . Here, we can define two cost estimates for the remaining cost; one is/],(to) based on
the optimistic conjecture P7 ^ / ' 8 -:~ Jv~, and the other h2(~) based on Je9 ::~ P7 A Ps- These
estimates are evaluated as follows:

fl,(to) = cst((Crz(Vl)r3), V2) + (~,(0~)

/~2(to) = cst((~rz(V1)r3), V2) + ~'l(to) ,

where V2= JpT^ps('Irz(Vi), r3); 8 ! and 8~ account for the local processing cost at the final
access step to get the result of each query from those of superqueries. Here,

cst((~rz(V1)r3) , I/2)= ol(,rz, V1) + d/(,rz(Vt)) + ~/(Jp~., 1rz(V,), r3)
c I

cst((~rz(Vl)r3), V ') = d/(cr z, Vi) + 0 (*rz(Vl)) + 0 (JP7^ex, *rz(Vi), r3)

~,(~) = 0 ' (~ , , v:) + ¢'(~z:oR3, ~,3(v_,)) +

¢"(~4^~.~^~7^~, v:) + *'(*r~oR3, ~4^p.,^~7^~(V:))

~;(~) = ~'(~'3^ ~9' V;) + * '(~z2oR3' ~,3 ̂ ~9(V'-))' +

i~1110. • I , .~^.~ v~) + #, (~ , c,~^,,(v~)).

As described before, we take/~(o,) = min{/~,((o), ~.(oJ),/~2(oJ)}.
Now, we illustrate the search process with the actual input data given in Table 1. We

assume that the local processing costs due to projection and selection operations are

JPl

OP3 AP9 ot"4 APs AI~T I',1",

UR~

Fig. 13. A query graph based on an optimistic conjecture at state 1.

280 J.T. Park et al.

Table 1.
The input data.

~/ (.) ¢/(., . . .)

*rrt(r,) 5
*rz,(rt) 5

*rv,~z,(r,) 5

rrv,(V.) 2
~rz,(V~) 2
,rz(V,) 3

(Je4^e~. rrrl(rt), r:) 5
(Jp~. ~zt(rt). r2) 5

(Jet' ~'v, ozl (rt) ' r:) 6
(S,,,, "try, uz,(r,), r,) 9
(C, "a'vluzl(rl), r,) 12

(Je,^e~, lrv,.(V.), r d 3
(Y~,¢ *rz,(Vh), r.O 3
(JP,o" n'z(V')" r~) 4

negligible in comparison with intersite data transmission and join operations.
The search tree generated by MTP is shown in Fig. 14. The costs are listed in Table 2 for

state.~ 0 to 6.
In Fig. 14, the value of]" for each state is circled on the upper-right corner of the box

representing the state, and the uncircled number on the upper-left corner is the state
number; in this example, the state numbers also indicate the order in which states are
expanded, except for states 4, 5, 6, and 7 which are never expanded. The darkened line
shows the search path leading to the optimal solution. State 3 is generated by employing ICs
P7 A Ps =)' P~0 and P9 =)' Pt0 to state 1; state 2 by utilizing the individual distributed query
processing strategies at state 1. State 5 corresponds to the application of individual
distributed processing to the initial state without employing the knowledge available. State 6
is generated by using P4 A /'5 ::> P2 and P3 => P2; state 4 by using P, A P5 ~ A and P3 ::> A.
These states are never expanded since the heuristic evaluation function always underesti-
mates the total remaining cost. In this way, many subtrees can be pruned off in more
complex examples. State 5 is not expanded into states using any ICs associated with the
access steps JeT^ea(,rr2(V,), r3) and Je~(Zrz,(Vh),r3), even though there are several ICs
available like P7 A Ps ~ Pro and P9 => P~0. This is because, once a join operation is carried
out, it is generally not possible to infer any superquery relationships on the following access
step.

Among the nodes expanded from the initial state, state 1 has the minimal processing cost
of 17. It is expanded, generating states 2 and 3. Among states 2, 3, 4, 5, and 6, state 3 has
the minimal cost. Since state 3 cannot be expanded further, we conclude that state 3 is the
goal state with the total processing cost of 19. States 4, 5 and 6 are never expanded. If state 5
were expanded, we would have state 7 as shown by the dotted line in Fig. 14. This state
corresponds to the state when individual distributed query processing strategies are em-
ployed. It is easily found that the total processing cost of state 7 is equal to that of state 5;
T _ C O S T = Q T _ C O S T 2 + Q T _ C O S T 3 =](~os) = 30. The savings in the total processing cost
due to multiple query processing strategy amounts to 11 (3 0 - 1 9 = 11) (neglecting the
overhead due to MTP).

Table 2
The cost estimates

too ot 02 03 04 os 06

0 12 22 19 18 20 15
h 15 5 0 0 5 10 5

!

STATE COST

o ®
i

J

_ _ d J

/ ®

@

d

® / ~ \ ®

~ d

t

I

, ® 7 m

Fig. 14. The search tree generated by MTP.

282 J.T. Park et al.

6. Discussion

Suppose that we have two queries QT 2 and QT 3 where QT z is a superquery of QT 3 as
shown in Fig. 13. The total processing costs T_COSTI, using individual query processing
strategies, and T_COST M, using MTP, are

T_COST i = cost of executing QT 2 + cost of executing QT 3

T_COST M = cost of executing QT 2 + ~i(uop, VIEW(QT2)) + A,

where Ot(uop, VIEW(QT2)) is the local processing cost to obtain VIEW(QT3) from the
result of QT 2, and where A is the overhead of executing MTP. The main factor in A is CPU
time associated with running MTP. The I / 0 cost is assumed to be small since the size of the
knowledge base containing the semantic knowledge is unlikely to be large in our problem.
On the other hand, the cost of executing QT 3 usually involves intersite data communication
costs in addition to CPU and I / 0 costs. Thus one can conjecture that using a multiple query
processing strategy such as MTP will be beneficial in environments where communication
costs are significant and where the queries and ICs are such that some commonality can be
found between the given access plans. This conjecture is strengthened by the promising
empirical results recently reported in [33], where multiple query optimization produced a
decrease of 20-50% in both CPU and I / 0 time in a series of experiments on a centralized
database, and by the seminal work of King [15] on semantic query optimization.

The central issue for the cost of running MTP lies in the performance of the heuristic
search. First, we claim that the number of feasible states in the search space is O(s. k k. mr),
where s is the number of sites, k the p4/mber of queries, I the length of common access plans,
and m is the average number of superqueries which subsume a subset QT of the set of k
queries but do not subsume any superset of QT. This result is proved in [25]. In brief, assume
that there is at least one superquery which subsumes any subset of the k queries (worst case
analysis). The question is then how many collective query execution plans can be generated.
This problem is equivalent to the problem of partitioning a set of k elements where each
collective query execution plan corresponds to a partition. It is known that the total number
of partitions of a set with cardinality k is B k where B~ is the kth Bell number,

k - I

i--0 i Bi

where B o = 1. B k is almost of order k k for large k; for k = 15, it is almost 109. Therefore, for
k queries, the number of partitions on the set QT of queries ~ O(k k). For each partition,
there are m t possible state transitions. Thus, the total number of state transitions
O(k k" mr). If in addition joins can be performed at any site, i.e. if we relax the first
condition in the assumption of fixed access order, then the total number of state transitions is
O(s. k k. me).

A straightforward enumeration of all the possible collective execution plans, without using
any inference-guiding heuristics, is thus computationally intractable either for the case where
the number of queries is not small, or for a real-time environment in which the overhead due
to enforcing the multiple query processing strategy cannot be overlooked.

On the other hand, it is difficult to formally evaluate the performance of the heuristic
search of MTP, especially due to its dependence on the knowledge base and thus on the
predicate conditions of individual queries. As argued in [27], a worst case analysis assumes

Knowledge-based approach to processing 283

that A* exhibits its poorest performance; the average performance of A* is often significantly
better. To quantify this statement, one needs to develop a probabilistic model of MTP and
to apply the results in [27], Chap. 6. This is beyond the scope of this paper. However, we
point out that since there are only a few types of rules which can activate state transitions,
the search should be efficient if proper semantic knowledge is available.

7. Conclusion

We have introduced a new multiple query processing strategy that makes use of functional
dependencies and semantic integrity constraints to determine subset relationships between
intermediate results of different queries. The concept of the conventional query graph is
extended to represent distributed query processing strategies by including site information.
Given some semantic knowledge, the least cost solution is found by a rule-based expert
system, Multiple Transaction Processor (MTP), in which the planning technique is combined
with a search metilod. We define the cost function (g) and the estimated cost function (/~) for
the case of distributed query processing. We also provide a proof that the estimated function
(/1) is always underestimating to ensure that an optimal solution will be produced by the A*
algorithm.

Acknowledgement

The authc.rs gratefully acknowledge the critical analysis and suggestions by the referees.

References

[1] P.A. Bernstein, N. Goodman, E. Wong, C.L. Reeve and J.B. Rothnie, Query processing in a system for
distributed databases (SDD-I), ACM Trans. on Database Systems, voi. 6, no. 4 (Dec. 1981) 602-625.

[2] R. Blankinship, D. Donis and A.R. Hevner, The file allocation problem- A survey and annotated bibliog-
raphy, MSIS 85-013, Database Systems Research Center, University of Maryland (June 1985).

[3] S. C eri, and G. Pelagatti, Distributed Databases, Principles and Systems (McGraw-Hill, 1984).
[4] U.S. Chakravarthy, D.H. Fishman and J. Minker, Semantic query optimization in expert systems and database

systems, in Proc. 1st Intl. Workshop on Expert Data Base Systems, L. Kerschberg (Ed.) (Benjamin/Cummings
Publ. Co. Inc.) 659-674 (1986).

[5] U.S. Chakravarthy and J. Minker, Processing multiple queries in database system, 1EEE Database Eng., vol. 5
(Sept. 1982) 38-43.

[6] S. Finkelstein, Common expression analysis in database applications, in Proc. 1982 ACM-SIGMOD Int. Conf.
Management of Data, 235-245.

[7] M.S. Fox and J. McDermott, The role of databases in knowledge-based systems, CMU-RI-TR-86-3, Depart-
ment of Computer Science, Carnegie-Mellon University (Feb. 1986).

[8] J. Grant and J. Minker, Optimization in deductive and conventional relational database systems, in Advances
in Data Base Theory, Vol. 1, H. Gallaire, J. Miaker and J.-M. Nicolas (Eds) (Plenum, New York, 1981)
195-234.

[9] A. Guttman, New Features for Relational Database Systems to Support CAD Applications, Ph. D Thesis,
University of California, Berkeley (June 1984).

[10] P.A.V. Hall, Optimization of single expressions in a relational database system, 1BM J. Res. Develop., vol. 20
(May 1976) 144-257.

[11] M.M. Hammer and S.B. Zdonik, Jr., Knowledge-based query processing, in Proc. Sixth Intl. Conf. on VLDB,
Montreal (Oct. 1980) 137-147.

[12] M. Jarke, J. Clifford and Y. Vassiliou, An optimizing PROLOG front-end to a relational query system, in
Proc. 1984 ACM-SIGMOD Intl. Conf. Management of Data, Boston, MA (June 1984).

284 J.T. Park et al.

[13]

[14]

I151
[161

!171

!181

I191

[2o1

[211

[22]
[23]
[24]
[25]

[26]

[27]
[281

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[361

[37]
[381
[39]

M. Jarke and J. Koch, Query optimization in database systems, Computing Surveys, vol. 16, no. 2 (June 1984)
111-152.
M. Jarke, Common subexpression isolation in multiple query optimization, in Query Processing in Database
Systems, W. Kim, D. Re[net, and D. Batory (Eds.) (Springer-Verlag, 1985) 191-205.
J.J. King, Query Optimization by Semantic Reasoning (UMI Research Press, Ann Arbor, Michigan, 1981).
W. Kim, Global optimization of relational queries: A first step, Query Processing in Database Systems, W.
Kim, D. Re[her and D. Batory (Eds.) (Springer-Verlag, 1985).
S. Lafortune and E. Wong, A state transition model for distributed query processing, ACM Trans. on Database
Systems, vol. 11, no. 3 (Sept. 1986) 294-322.
R.K. Lindsay, B.G. Buchanan, B.A. Feigenbaum and J. Lederberg, Applications of Artificial Intelligence for
Organic Chemistry: The Dendrai Project (McGraw-Hill, 1980).
B.G. Lindsay, L.M. Hass, C. Mohan, P.F. Wilms et al., Computation and communication in R*: a distributed
database manager, ACM Trans. on Computer Systems, voi. 2, no. 1 (Feb. 1984) 24-38.
L. Lilien and B. Bhargava, Database integrity block construct, IEEE Trans. on Software Eng., vol. SE-II, no.
9 (Sept. 1985) 865-885.
G. Lohman, C. Mohan, L. Hass, D. Daniels, B. Lindsay, P. Selinger and P. Wilms, Query processing in R*, in
Query Processing in Database Systems, W. Kim, D. Reiner and D. Batory (Eds.) (Springer-Verlag, 1985).
D. Maier, The Theory of Relational Databases (Computer Science Press, Rocky[lie, Maryland, 1983).
J. McDermott, RI: A rule-based configurer of computer systems, Artificial Intelligence, vol. 19 (1982) 39-88.
N.J. Nilsson, Principles of Artificial Intelligence (Tioga Publishing Co., CA, 1980).
J.T. Park, A Knowledge-Based Approach to Multiple Transaction Processing and Distributed Database Design,
Ph.D. Thesis, University of Michigan, Ann Arbor (1987).
J.T. Park and T.J. Teorey, A knowledge-based approach to multiple query processing in distributed database
systems, Proc. 1987 ACM-IEEE Fall Joint Computer Conference, Dallas, TX, (Oct. 1987) 461-468.
J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving (Addison-Wesley, 1984).
N. Roussopoulos, View indexing in relational databases, ACM Trans. on Database Systems, vol. 7, no. 2 (June
1982) 258-290.
N. Roussopoulos, The logical access path schema of a database, IEEE Trans. on Software Eng., vol. SE-8, no.
6 (Nov. 1982) 563-573.
E.D. Sacerdoti, A structure for plans and behavior (American Elsevier, New York, 1977).
M. Schkolnick, A clustering algorithm for hierarchical structures, ACM Trans. on Database Systems, vol. 2,
no. 1, pp. 27-44 (Mar. 1977).
T.K. Sell[s, Global query optimization, in Proc. 1986 ACM-SIGMOD Intl. Conf. Management of Data,
Washington, D.C. (May 1986) 191-205.
T.K. Scllis, Multiple-Query Optimization, ACM Trans. on Database Systems, Vol. 13, No. ! (March 1988)
23-52.
B. Shneiderman and V. Goodman, Batched searching of sequential and tree structured files, ACM Trans. on
Database Systems, vol. 1, no. 3 (Sept. 1976) 268-275.
S.T. Shenoy and Z.M. Ozsoyoglu, A system for semantic query optimization, in Proc. 1987 ACM-SIGMOD
Int. Conf. Management of Data. 181-195.
S.Y.W. Su, K.P. Mikkilineni, R.A. Liuzzi and Y.C. Chow, A distributed query processing strategy using
decomposition, pipelining and intermediate result sharing techniques, in Proc. IEEE 1986 Intl. Conf. on Data
Engineering, Los Angeles, CA, (Feb. 1986) 94-102.
T.J. Teorey and J.P. Fry, Design of Database Structures (Prentice-Hall, Englewood Cliffs, N.J., 1982).
P. Valduriez, Join indices, ACM Trans. on Database Systems, vol. 12, no. 2, (June 1987) 218-246.
C.T. Yu and C.C. Chang, Distributed query processing, Computing Surveys, voi. 16, no. 4 (Dec. 1984)
399-433.

