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Abstract: Consider a finite population of hidden objects, and consider searching for them for
one unit of time. Suppose that both the size and the discovery time of the objects have unknown
distributions, and that the conditional distribution of time given size is exponential with an
unknown non-negative and non-decreasing function of the size as the failure rate. Order restricted
M.L.E.’s are derived for this function, other parameters are estimated, and the consistency of
the estimates is shown.
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1. Introduction

Consider searching for hidden objects (like a play of mineral deposits), in a finite
population with unknown size N, at a certain cost, and receiving a reward depending
on the sizes of the objects found. Let X, X,, ..., Xy denote the sizes, and 7, 75, ..., Ty
the discovery times of the objects, in an infinite search. Suppose that (X, 77),
(X5, T3), ..., (Xn, Ty) are independent and identically distributed as (X, T) (non-
negative); and let F and G* denote the unknown distribution of X and conditional
distribution of T given X, respectively. Intuitively G*(# | x) should be non-decreasing
in x, for each ¢. That is, it should be easier to find large objects than small ones.

There has been substantial recent interest in this general model. Barouch and
Kaufman (1975) described models for exploring petroleum reserves, in which the
probability of finding a pool is proportional to its size. Lynden-Bell (1971), and
Jackson (1974) derived nonparametric M.L.E.’s for Fand G*, in the case G*(¢ | x) =
G*(tx). Nicoll and Segal (1980) obtained M.L.E.’s for grouped data, for this model;
Bhattacharya, Chernoff and Yang (1983) derived M.L.E.’s for conditional dis-
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tributions, based on a conditional likelihood function given the observed x-values,
and derived nonparametric estimators of regression parameters in models similar to
the one described earlier. Woodroofe (1985) obtained Lynden-Bell nonparametric
estimates of F and G from a different perspective and showed their consistency (G
being the unconditional distribution of X7 in the model above).

Here we study a class of models closely related to those in Kramer (1983), under
time censorship. More precisely, G*(¢ }x) is considered to be of the form:

G*(t | X) = 1 — exp{ —tH(x)} (1.1)

for ¢, x>0 where H is a positive and non-decreasing function on (0, o). Section 2
of this paper describes the M.L.E.’s of H, N and F in the truncated case T;<1,
i=1,2,...,n, using the isotonic regression technique. An example is included there.
The consistency of the estimates is shown in Section 3.

2. Estimation

As mentioned earlier, this section deals with the derivation of nonparametric
M.L.E.’s for F, H, and N in the truncated case T<1. The primary interest is in a
suitable estimation of H. Let n denote the number of i for which T;<1; and let
X1, X2, ...,X%, and 1,,15,...,1, denote the sizes of the objects found and their dis-
covery times.

To estimate F, H, and N consider only distribution functions F supported by
X1, X2, ..., X, And let p;=F(x;) — F(x;—) and h,= H(x;), for i=1,2,...,n. Further let
p=(P,D2, -0, and h=(h, hy,...,h,). Then the likelihood function based on
this sample is

n
L(p,m, N | n;x,,...,t,) = [] pihe ™(N), (1 —a)N~", .1
i=1

where n
a=Y p(l-e")y=P(T<1). 2.2)
i=1

First, we maximize with respect of &V, the portion of L that depends on N. Fix values
of p and h. Then it is easily seen that the difference (N),(1—a)Y "= (N—1),(1—a)¥ 17"
vanishes when N=N,=n/¢ and that the maximum occurs when N is an integer ad-
jacent to N,y. The maximizing value is approximated by N, for p, and # fixed.

Now note that L can be written as

L(p,h,N|n;xy,....t,) = Li(p,h | n;xy, ..., t,)Lo(p,h,N | n) (2.3)
where
nt o s
Ll(p,h|n;x1,...,t,,)=;;_Hlp,-hie" i (2.4)
and .

N
Lo(p N | n) = (n )a"(l —an, 2.5)
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Then using Stirling’s formula,

max Ly(p,h, N | n) = Ly(p,h, N, | n)
N 1 172
| 3| &0

The latter term is not highly sensitive to p, and A, when compared to L,. The
M.L.E.’s of p and h are obtained from L, alone, a further approximation. To find
them, fix an & for which #;>0, i=1,2,...,n. Then

%) -n h 1 .
—loglij=—({—-e"™+—, i=12,...,8, .7)
op; a ;

! 1

and Y7 | p;=1. Hence for some Lagrange multiplier A,
1

n _h .
i:—__(l_e I), l=1)2)"'sn' (28)
P«

Multiplying equation (2.8) by p; and summing over / yields

n n
A=n-— Y p(l—-e™=n-n=0. (2.9)
o =1

Hence, the M.L.E. of p; is

o

hj=————, i=12...,n, 2.10
P = ey 210
and
no poetil
max L, o [] ——. 2.1
P i=11—e™™

All that remains now is the M.L.E. of A. Now,

9 g L(pih) = . i-lL2 2.12)
—1o Vh) = — — —t, i=12..,n. .
an, e = T e
Let
") = - L @.13)
uth)=—- ——, : .
h 1—e"

Then, u is a decreasing function, as is shown below; so, setting the partial deriva-
tives equal to zero leads to the estimates

Bl=u"l(t), i=12..,n. (2.14)

But these estimates are unsatisfactory since they ignore the monotonicity of H. This
problem is overcome by the isotonic regression method.

Let us relabel the sample so that x; <x,< --- <x,. Then, 0<=h <h,< - <h, <
and 0=t=<1, i=1,2,...,n. Let

(/(),'Z*hi, i:1,2,...,n, (215)
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SO —o< W, < <w;<w;=0. Let

we'
gl(tlw,-)=w—1, i=12,..,n 0=sr=<l, (2.16)
e P
and
Wi 1 .
0= Eg(T|w) = 5 - o = @.17)

Then $=6,=60,=--- =6,>0; and 8,=u(h;) is decreasing. Hence it suffices to find
the M.L.E.’s of the 8;’s. These are based on the unconstrained M.L.E.’s of 8;, ¢;,
i=1,2,...,n. On the other hand, g(¢ | w) is of the exponential form given in
Barlow et al. (1972) p. 92, with

e?—1
DO)= — [log p —w@], (2.18)

and
$(0) = 2'(0) = w,

where 8 and w are related as in (2.17) and w is regarded as a function of 6. All the
conditions imposed by Barlow et al. are satisfied. So, the M.L.E.’s may be deter-
mined from Theorem 2.12 of the same book. The order restricted M.L.E.’s of 6;,
which are denoted é,», are the isotonic regression of ¢;, i=1,2,...,n, with weights
m;=1, i=1,2,...,n, and are given by

6, = min max Av(s,), i=12,...,n, (2.19)
s<i rzi
where
,
Avis,)=Y ,/(r—s+1). (2.20)
k=s

It is easily seen that 0<6,<+ for all i=1,2,...,n and that 8,=4 iff w,=0. To
keep the estimators in the parameter space and to avoid problems with the end
points, it is convenient to truncate them. Let c,, n= 1, be a sequence for which
0<c¢,<7 for all n and ¢,—0 as n—>oo. Then the 8; of (2.19) may be replaced by
8:A(4 —c,). Thus the estimators of 8, 8,, ..., 0, are taken to be

§; = min{} — c,; min max Av(s, )}, i=1,2,...,n. (2.21)
s<i r=z=i

After this, it remains to invert ¥ to obtain the order restricted M.L.E.’s of the
h;’s, )

Fi=u'(@), i=12..,n (2.22)

Once & has been estimated, the M.L.E. of p is given by (2.10). We may substitute
the estimate of A in (2.10.) and estimate p by

1
= —— i=12..,n (2.23)

P e -y’
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where C= Y7 | 1/[n(1 —e~)] is a normalizing constant.
Finally the estimate of N is

N=Ny(@,) = (2.24)

n
a,
where @,= Y™, pi(1—¢™") = 1/C, denotes the M.L.E. of a.

Note. To estimate Fin the truncated case 7<1, F#, the conditional distribution of
X given T=<1 is estimated by F,,#, the empirical distribution of x,x,,...,x,. But,
dF *(x)oc[1 — e H™}dF(x). Hence

dF?(x)oc[1 — e PNdF (x) (2.25)

where H,(x;)=#h;, i=1,2,...,n, and F, has jump at x; given by equation (2.23)
above.

Example. The Rimbey—Meadowbrook reef play. As an illustration, the estimators
are applied to estimate the total remaining reserve of an oil play. The data of this
example come from the Rimbey—Meadowbrook reef chain located in central
Alberta, Canada. This play has been investigated by many workers who proposed
models to describe the play, estimate parameters like the population size N, and the
size distribution F, and assess the remaining number of undiscovered pools and their
potential. They also examine the influence of size on the discovery sequence. Lee
and Wang (1986), and Nair and Wang (1987) are good recent sources for such
details, and may be consulted for further references. Here x is in millions of barrels.

Assuming that the search started in 1946 and ended in 1970, it lasted 9125 days.
The time data were recorded in number of days to go along with algorithm (2.21).
For computational convenience the time is reduced to the unit scale. The estimates
are reported below and in Table 1. Here ¢, =0.05.

n 23
- = =35.
é, 0.6715

@,=0.6715, N=

The total remaining reserve is estimated to be 67.96 million barrels. This estimate
is substantially higher than that of Nair and Wang (1987) which is 6.11 million bar-
rels. On the other hand it is less than the estimates of Lee and Wang (1986). Our
purpose here, however, is more to illustrate the nature of the estimators than to
enter a controversy about the oil play.

3. Consistency

Here the consistency of H,, is established as a corollary of the consistency of the
empirical distributions. The properties of the least concave majorant (L.C.M.) are
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Table 1
M.L.E.’s of 4, H and F
i I X; 9; &; k; b F,(x)
1 0.8617 0.3 0.4500 —0.6036 0.6036 0.06443 0.06443
2 0.3859 0.6 0.4500 —0.6036 0.6036 0.06443 0.12896
3 0.7302 1.0 0.4500 —0.6036 0.6036 0.06443 0.19330
4 0.7371 2.2 0.4500 —0.6036 0.6036 0.06443 0.25772
5 0.2059 2.6 0.4500 —-0.6036 0.6036 0.06443 0.32215
6 0.7107 3.4 0.4500 —0.6036 0.6036 0.06443 0.38658
7 0.3773 4.7 0.4290 —0.8620 0.8620 0.05054 0.43713
8 0.2860 6.6 0.4290 —0.8620 0.8620 0.05054 0.48767
9 0.2733 8.6 0.4290 —0.8620 0.8620 0.05054 0.53822
10 0.6314 14.2 0.4290 —0.8620 0.8620 0.05054 0.58876
11 0.5771 14.6 0.4290 —0.8620 0.8620 0.05054 0.63930
12 0.2795 14.7 0.3088 —2.5286 2.5286 0.03173 0.67103
13 0.2252 15.0 0.3088 —2.5286 2.5286 0.03173 0.70276
14 0.4216 20.1 0.3088 —2.5286 2.5286 0.03173 0.73450
15 0.2228 27.6 0.2517 —3.5577 3.5577 0.03005 0.76455
16 0.2806 111.0 0.2517 —3.5577 3.5577 0.03005 0.79461
17 0.1810 142.9 0.2175 —4.3322 4.3322 0.02958 0.82420
18 0.2539 169.6 0.2175 —4.3322 4.3322 0.02958 0.85378
19 0.1473 290.8 0.1571 —6.2893 6.2893 0.02925 0.88303
20 0.0447 351.5 0.1571 —6.2893 6.2893 0.02925 0.91230
21 0.2080 366.7 0.1571 —6.2893 6.2893 0.02925 0.94154
22 0.2284 765.9 0.1571 —6.2893 6.2893 0.02925 0.97080
23 0.1023 1295.4 0.1023 -9.7586 9.7586 0.02920 1.00000

also useful. As in the estimation, the main focus here is on the consistency of

H(x)=h=u'@), i=12..,n,

3.0

where u, A; and §; are as in Section 2. Note that the consistency of g; follows from

that of 6, since ¢, —0 as n— o.

Theorem 3.1. If the distribution F of X is continuous, and strictly increasing on its
support, and H is continuous, then the estimate of H, H,, is uniformly consistent.

That is
max |H,(x;)—H(x;)| >0 as. asn—o
l<i<n

or equivalently

max |0,—6;| >0 a.s. asn—o

1<i=zn

where 0;,=u(H(x;)).

Three lemmas are needed in the proof:

(3.2)

3.3)
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Lemma 3.1 (A.W. Marshall). Let I" be concave on [0, 1] and ¥ be a continuous real
valued function on [0,1]. If A is the L.C.M. of ¥ then

sup |[AX)—-I(x)|< sup |Px)-T(x)|. 3.9
O0=x=<1 O0=x=1
For a proof of this lemma see Marshall (1970).

Lemma 3.2. If Q,, and Q are increasing functions such that Q,,~ Q and Q is con-
tinuous, then Q, converges to Q uniformly on compact subintervals of the domain.

This lemma is a version of Polyd’s theorem. See Breiman (1968), p. 160.

Lemma 3.3. Let G, G,, n=1, be concave functions such that G,— G. Let G}, be
the right hand derivative of G,, and suppose that G has a continuous derivative G’
Then G, — G’', uniformly on any compact subinterval.

Lemma 3.3 follows from the fact that the derivatives of concave functions con-
verge whenever the functions do, and from Lemma 3.2, which supplies the uni-
formity.

Let us now introduce the notation needed in the proof of (3.3). Let x;, x5, ..., X,
be the values of X, X5,..., Xy for which T;<1 (i.e. n=ny=#{i<=N:T;<1}), so
labelled that x; <x, < --- <x,,. Recall that 6(x) =E(¢, |x). Let F* be the conditional
distribution of X given T<1, and F,* be the empirical distribution of x, X3, ..., x,.
Let

K(3) = 5 BAF*(x), yelo,1]; 3.5)
{F*(x)=<y}

K,(j/n) = { n' Y1 6(x) for 1<j=n,

linear on [j/n,(j+1)/n), 1<j<n-1; 3.6)
Ie(j/n):{nl {:]ti forlsjsn,
4 linear on [j/n,(j+1)/n), 1<j<n-—1, 3.7

and

£ (i/m n ' YI_ 6, for 1<j=n,
n) =
"~ linear on [j/m(j+1)/n), 1<j<n-—1. (3.8)

Thus K, is the L.C.M. of K,. It is easily seen that
(1) K, K,, and K, are concave;
(2) K, K,, K,, and K, are all increasing;
(3) by consistency of F7,

K, (») = K(y) :S 0(x)dF*(x) w.p. 1, 3.9)
{F*()=y}

for all y; and
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(4) since K,, K are increasing and K is continuous the convergence in (3.9) is
uniform by Lemma 3.2.

Proof of Theorem 3.1. It is enough to prove the result for (9:, That follows by first
proving B
max |K,(j/n)—K,(j/n)| >0 a.s., (3.10)

I<j=<n

then by using Lemma 3.3. To prove (3.10), first observe that by Marshall’s lemma
(Lemma 3.1),

max |1<:',,(j/n)—K,,(j/n)|s max |K,(j/n)~K,(j/n)| (3.11)
l=j=<n l<j=n R

(the maximum over all y is attained at one of the j/n). Therefore it is enough to show
max |K,~K,| 0. Let $,(y)=nK,(y), and S,(y)=nK,(»). Then

$,(/m - S,(i/m = ¥ (- 6) (3.12)
i1

is the sum of conditionally independent, zero mean random variables given
Xps X2, ..., X, for each n and j. It follows easily that S,(j/n)—S,(j/n) is a martingale
in j for each n and that

~ . _ . 4
E[<Sﬂ(j/n) Sn(J/n)> ] 5%, l1<j=n, (3.13)

n n

for some constant c¢. So fixing #, and letting &,=n"1",

Pi max |K,(j/n)—K,(j/n)| = 8,,}

1sj=<n

= P{ max |S,(j/n)—S,(j/n)| = enn]

1sj=n

1A\
= <—> E[(S,(n/n)— S,(n/n)*] (submartingale inequality)
n

n

=—— (by equation (3.13))
ne,
=cn 93 (3.14)
and
y P{lmax |K,(j/n)— K,(j/n)]| zn*”} < . (3.13%)
n=1 =/=n

Hence by the Borel-Cantelli lemma,

P{ max |K,(j/n)—K,(j/n)| =n"'"3 i.o.} =0. (3.16)
1<j=n
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This proves (3.10) above. Therefore Ién — K uniformly since, as seen earlier K, —> K
uniformly. Now K, and K are concave, and K is continuouslyﬁdifferentiable on the
support of F, by the conditions imposed on F and H. So K, — K’ uniformly by
Lemma 3.3, i.e.

max |K)()—K'(»)| =0 a.s. as n— oo. (3.17)
yelo 1]

Similarily,
max |K;(»)—K{(y)|—0 a.s.asn—oo. (3.18)
yel0,1]

Equations (3.17) and (3.18) together imply

max |K,(»)—K,(»)| >0 a.s. as n— . (3.19)
yelo,1]

Now just notice that ,=K,(i/n), and 8;=K;(i/n), to conclude that

max \(5;—9,-\ -0 a.s.asn— . (3.20)

l<isn
This completes the proof of Theorem 3.1.

In what follows, H, is extended to all of [0, ) by letting A, be linear between
x;-;and x; for i=1,2,...,n and constant to the right of x,; x,=0.

Corollary 3.1. If H is continuous and bounded and the support of F is [0, ), then

sup |H,(»)—H(»)|~0 a.s. as n— co. (3.2D

0<y<o

Proof. If 0=y=<M, and if n is so large that x,>M, there is an /=i, for which
x;<y<x;,, and, therefore, H(x;)< H(y)< H(x,, ) and H,(x)<H,(y)<H,(x;, ).
It follows easily that

|H,(»)—H(»)| smlax |H, () —H(x;)| +mf‘x 1H(x; ) — H(x;)|

for all 0=<y=<M for all sufficiently large n w.p. 1. The first term on the right tends
to zero by the theorem; the second term approaches zero since max;|x;,. | —x;| =0
w.p. 1 and H is assumed to be continuous. Therefore by Polya’s Theorem, it suf-
fices to show that

H,()~ H().
This follows easily from Theorem 3.1 since x,— o w.p. 1 and

H,() — H(o0) = H,(x,,) — H(x,) + H(x,) — H(x).

Theorem 3.2. If F is strictly increasing on its support, F and H are continuous,
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F(0)=0, H(x)>0 for x>0, and H()=0, then
sup [Fn(x) —F(x)| >0 in probability as n— . (3.22)
X

The following lemmas are needed in the proof.

Lemma 3.4 (Bernstein). If Z;, i=1, are independent and identically distributed
random variables with zero mean and —1<27;<1, then

_ m
P{sup Z,,>r}sexp{———r2}, r=1. (3.23)
n=m 6

For a proof of this lemma see Serfling (1980), p. 95.

Lemma 3.5. (Helley). If P,= P, g,—g uniformly where g is bounded and con-
tinuous a.e.(P), then

\g,,dpﬁjgdp as n— o, (3.24)

This follows easily from Theorem 5.2, p. 31, of Billingsley (1968).

Proof of Theorem 3.2. It suffices to show convergence for fixed x=0 by a simple
variation on Polya’s Theorem. For x=0 and n=1, let

C,(x) = dF* (). (3.25)

Then C=C,(0) and 1 — F,(x) = C,(x)/C,(0), for all n, and x. So, it suffices to show
that

Cal) \m i AF () =€
say, for all x. For x>0, this follows from Lemma 3.5 since H(x)>0 for x>0 and

1/(1 —e‘ﬁ")—* 1/(1 — e~y uniformly by Theorem 3.1. The delicate part is at x=0.
Let

1 1
Bae)=— Y > (3.26)
irxi=e 1l —e "
then C=g,(g) + C,(¢), for all £>0. Therefore it is enough to show that
lim lim 8,(¢)=0 in probability. 3.27)

e—0 n

Next, let 0<c,<%, n=1, and m=m,, n=1, be two sequences for which ¢,—0;
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m—oo; m/nc,—0; and ne "m0 for all n>0. For example if ¢,=n"'° and
m =vn for all n=1, then the above conditions are satisfied. Now u has a negative
derivative on [0, ®). So z~! has a negative derivative on (0, 4]. It follows that there

is a A>0 for which 4 —u(y)=Ay and u~'( —y)=A4y for all sufficiently small y. Let

d,=u '(-cy) (3.28)
and
, 1 1
Be)=— ) — . (3.29)
iix<e i>m 1 —e™ M
Then
Bo-Bil=~ T ——— = 10
o _nisml—e_ﬂ’_nén '
Let
J=Jm e)={i=n:x;<¢, H(x;)=4d,}, (3.30)
and
” 1
Bie)=— % = (3.31)
nics Py
Then
, " 1 1 1 .
B -Biey=— ) ——= #{i: H(x)<3d,},
iiH()<d, By  NOp
and
E{RHS|n} = j [1—e 7 dF(x)
0(5,, {H(x)<3,}

1
37[1 —e " FoH (8,)=0(1), as n— oo,
n
by right continuity of F. So it is enough to show that lim, ., lim, B,(¢)=0. Let
i=1(-6),i=1,2,...,n Then yi=3{+ —ulHx;)]} = 4c,, VieJ. By definition of
ém+i’

r+i

0m+i-9iSém+i_0iSI}12an§ el jgi = 6))-

So,
P{b, .- 0>y, died|n, x;, Xy ..., X}

1 r+i
= Plmax t,i—8)>4¢,\n, x;, X9y ey X
iZ:J {ram r-}-ljgi(J / : nl b2 "

<Z 1 m , <n m , -0 N
= —eX - —C = —€X — —C as n oo,
Z AP T A =P T "}

for some constant A. Finally, if §,,,;—6,<y,, for all i€ J, then
Apsizu™ @+ y)=u""G—y)=u '3 - AH(x)] = A*H(x)),

for all i e J, for all sufficiently small €. For such g, let
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1 1
Bre)=— % (3.32)

nicy A*H(x,) '
Then

P =B} = exp { - %cﬁ}

which is independent of ¢ and approaches zero as n— o; and

a

E{fe)} = j

1-e ¥

H

1 £
dF#(x)sTS dF—0
A%a )y

1
o A2 H(x)
as £¢—0. It follows easily that B(g)—0 in probability as n— o and ¢—0 and
therefore that F,(x)— F(x) in probability, for each fixed x=0.
Corollary 3.2. Under the conditions of Theorem 3.2,

a,—a in probability as n— . (3.33)
Proof. This follows directly from Theorem 3.2, since &, =1/C,(0).
Remark. It scems plausible that techniques developed by Groeneboom (1985) and

P. Rao (1969) may be used to find the asymptotic distribution of n'’? (G:j- ;) as
follows:

= 2 u u j

n'?(0,-0,)<u iff 0=+ 75 iff Un<9,+ W)s% (3.34)
where the process U, is defined by

U,(a)=sup{t>0:K,(¢) — at is maximal}. (3.35)
This suggests using the empirical process J, defined by

{U @)=t} = {matx J(s)> m>atx Jn(s)} R (3.36)

s=< s

where, for fixed 7,

J,(8) =K, (s)— K, (1) —a(s—1). (3.37)

It is reasonable to hope that the distribution of J,,*(u)znZ/3 J,,(t+u/n”3) may be
related to Brownian Motion and Brownian Bridges by using some results in Csorgd
(1983). This suggests that the estimates converge at a rate of n'3.
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