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1. Introduction 

At this stage a substantial body of literature exists for shape optimization involving isotropic 
materials. The reader is referred to the articles of Haug [1] and Haftka and Grandhi [2] for 
overviews of the material. 

One approach to the problem is analytical. Calculus of variation techniques are employed 
to derive explicit optimality conditions. Choi and Haug [3], Dems and Mroz [4], and Banichuk 
[5, 6] have adopted this approach. Of note is the recent work of Kikuchi, Chung, Torigaki and 
Taylor [7] who used variational methods together with an adaptive grid scheme developed by 
Diaz, Kikuchi and Taylor [8] for shape optimization in linear elastic structures. The works of 
Braibant and Fleury [9, 10], involving B-splines, should also be cited. 

Up to now, structural optimization of laminated composites has involved ply orientations 
and thicknesses as design variables. To the authors' knowledge, no work on shape optimiza- 
tion Of laminated structures has been done. Kicher and Chao [11] considered the optimum 
design of fiber composite cylinders under combined axial, radial, and torsional loads. 
Minimum weight was taken as the objective function, with the ply thickness being the design 
variable. Hirano [12, 13], Park [14], and Tauchert and Adibhatla [15] treated the optimum 
design of laminated plates under various types of loading. The objective functions used were 
maximum buckling load, first ply failure (see [16]), and minimum strain energy, respectively. 
Hirano and Park used fiber angles as design variables, whereas Tauchert and Adibhatla 
employed both fiber angles and layer thickness as variables. Yiping [17] treated the optimal 
design of a laminated plate with several elliptical holes under uniaxial tensile loading. 
Minimizing the maximum value of the Tsai-Wu failure functional (see [18]) was the objective 
and the fiber angle was the design variable. In all of the above works on composites, 
mathematical programming techniques were used to obtain the solutions. Other approaches 
have been used. Bauchau [19] considered the optimal design of rotating graphite-epoxy shafts. 
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The objective function involved the first natural bending frequency and ply thickness was used 
as the design variable. An optimality condition was derived and an iterative algorithm 
developed for the solution. 

In view of the lack of information on shape optimization in composite media, it was decided 
to do a pilot study involving a hole in a laminated plate subject to in-plane biaxial tension. 
Classical plate lamination theory is used, together with a finite element approach. Minimizing 
the maximum values of certain failure functions • (Tsai-Hill, see [18], and Tsai-Wu) is taken 
to be the objective. In the sin#e-ply case it can be shown that the optimality condition is that 
the mutual strain energy is constant on the design boundary under the condition that the 
design boundary has no geometrical constraint (see [7, eq. 10; 20]). For isotropic media, it has 
also been shown that the optimality condition is • = constant on the hole boundary. This, so 
far, has not been proven for anisotropic media. Here, analogous to the isotropic case, it is 
postulated that the maximum value of • occurs on the hole boundary. At all stages of the 
numerical work this was monitored numerically and found to be true. Moreover qb = constant 
on the hole boundary is postulated as the optimality condition. This, in general, will not lead 
to a global optimum (in view of the possibility of multiple holes), but it should lead to a local 
minimum. 

Of particular interest was to see whether the techniques developed for shape optimization 
in isotropic media would work for laminated composites, involving as they do much larger 
stress gradients. 

2. Weak formulation 

The coordinate systems employed are shown in Fig. it. xt, x 2 are global coordinates, 
whereas x',, x~ are the principal material coordinates in the fiber direction and perpendicular 
to the fiber direction, respectively. 

For plane stress the equations of equilibrium are, in the absence of body forces, 

o-ij,j--0 in the domain • .  (1) 

Here, and throughout, standard index notation is used, with the range of the indices being 
from 1 to 2, unless otherwise specified. 
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Fig. I. Coordinate systems employed. 
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Displacement boundary conditions are 

u, =g~ on the boundary F , ,  

where g~ are specified functions. Stress boundary conditions are 

~jnj = t i on the boundary F t , 

where t~ are components of the applied surface traction vector per unit thickness. 
Multiplying (1) by arbitrary virtual displacements 6, (note 6i 

integrating one obtains 

f or~j.jfj dn  = O, 

or, applying the divergence theorem and using the boundary conditions, 

fn %6,,j d ~  = fr, t,6, d r .  

31 

(2) 

(3) 

= 0 on Fu), summing, and 

(4) 

(8) 

where QPm'. is the reduced stiffness matrix, which involves the various Young's moduli and 
Poisson's ratios. Details can be found in Jones [18]. 

0tPi = Qft cos4 ~p + (2Qf2 + Q3~) sin 2 ~p cos 2 ~p + Q~2 sin 4 cp, 

Qm., the first For the single lamina, Em, is the so-called traesformed reduced stiffness matrix -p 
term of which is 

Elm Eln2 
E2212 E22 E23l E2222 -- 

LSYM E1212 SYM E33 j 
(7) 

For a single lamina, the constitutive law is 

O.i] _~ Eljklekl~_ 1Ei]kl(Uk,I d~. Ul.k) , (5) 

where the elastic moduli satisfy 

E,jk,-- Ej,k,- E~,,j. 

Then (4) may be written 

fn E"k'u"'6'" d• - fr, t'6' dF ' (6) 

which constitutes the weak formulation of the problem. A reduced form of the stiffness 
matrix, Em., is customarily employed: 
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For multiple layers, classical plate lamination theory leads to a set of averaged moduli given 
bY 

E m” = ; $ bP8L, 
P 1 

(9) 

where hP is the thickness of the pth lamina, and H is the total thickness of the laminate. 

3. Finite elements 

The domain 0 is discretized into a total NE of finite elements &_. Standard finite element 
methodology leads to 

U iy = gly on the discretized boundary r,,, , 

where y ranges from one to the total number of boundary nodes on &, and 

w 

NE 2 ND 

where 

(11) 

In the above, ND is the number of nodes in an element, NE, is the number of line elements 
on the traction boundary, N,, NP stand for shape functions, and & denotes a boundary 
segment on which traction is applied. 

Two types of shape functions will be studied later, namely isoparametric QUAD4 and 
QUAD9 elements. Before going in?o details, the shape optimization problem will first be 
discussed. 

4. Shape optimization definitions 

The shape optimization problem studied here is as follows. Consider a composite infinite 
plate with a central hole, boundary &, subject to a uniform biaxial tensile stress applied at 
infinity. It is postulated that maximum zitrength is achieved by minimizing the maximum value 
of some appropriate failure function. The issue then is: what shape of the hole minimizes the 
maximum value of the failure function? Lamina (ply) failure and laminate failure must be 
treated separately. 
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Anisotropic ply failure functions are extensions of isotropic yield criteria. Various aniso- 
tropic failure theories are present in the literature [18]. Typically they involve polynomial 
functions @ of the stress components. Failure occurs when @ = ~. Two popular failure criteria 
for anisotropic plies, the Tsai-Hill and Tsai-Wu failure criteria, are chosen for study since 
experimental data [18] show reasonable agreement with them. 

The Tsai-Hill failure function is 

@ffi X - - r - - -+~  y / + , (14) 

where X and Y are the uniaxial tensile strengths parallel and perpendicular to the fibers, and S 
is the lamina shear strength. The Tsai-Wu function is 

where 

i.- 2 + + 2 
= rxixiOrxix i 2FxixlOrxi~ iorxlxj Fxjxi°r:1xl 

2 
+ F~sorxix~ + Fxiorxi~ i + Fx~orx~x~, 

1 1 1 

l / { , , ,  
1 1 1 1 

F ' i f x ,  Xc ' y, yo. 

1 1 

(15) 

(~6) 

(17) 

(18) 

Xt, Yt and X c, Yc are the lamina longitudinal and transverse strengths in tension and 
compression, respectively, and or is the bia~i.J tensile failure stress. 

To avoid unrealistic designs, a constraint in the form of a bound on the area must be 
specified. Here the area of the hole is taken to be constant. For plates of finite size (which are 
the ones studied numerically), this constraint is equivalent to 

f n d n -  •0,  
(19) 

where A is the original area of n.  The optimization problem for laminae can then be stated: 

minimize@o=min max O ,  (20) 
I"o (x I, x2)Eh 

subject to the isoperimetric constraint (19), where O is the closure of D. 
For the isotropic case, @ is usually taken as the Von Mises function. Using the properties of 

harmonic functions (stress potentials) and the maximum principle, Banichvk [5] proved that 
the maximum value of @ occurred on the hole boundary. Moreover, he proved that the 
optimality condition of the problem given by (20) is that • is a constant on the hole boundary. 
In the anisotropic and the composite laminate cases, potential functions do not, in general, 
exist and to the authors' knowledge no one has proved that the maximun value of the failure 
function occurs on the boundary or that the optimality condition leads to @ = constant on the 
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boundary. An operational procedure is adopted here as follows: At every step of the 
calculations, the location of the maximum value of • is determined. In all cases studied, it was 
found to be on the hole boundary. Moreover, the condition 

• = constant on F 0 (21) 

is postulated as the optimality condition. 
Laminate failure poses further problems. Failure of composite laminates are complicated by 

a multitude of independent and interacting mechanisms which include filament breakings, 
delamination, and crack propagation, etc. There are two failure criteria frequently used for 
composite laminates. One is the first ply failure (FPF) criterion, described by Tsai and Hahn 
[16] in which failure in one particular ply is regarded as total laminate failure. The other is the 
last ply failure (LPF) criterion, adopted by Soni [21], in which failure in last ply is regarded as 
total laminate failure. 

If first ply failure is adopted as a criterion, the optimization problem can be stated by 

Min Max Max ~ )  (22) 
F 0 I = 1  . . . . .  N (X i ,X2) ~:~') 

where N is the number of plies and O~ denotes the failure function in the Ith ply. Attempts to 
use (22) were not successful. It led to large, nonconvergent oscillations in the design 
boundary, and so FPF was not pursued. 

If last ply failure is taken as a criterion, an optimization problem may be posed as follows: 

/ \ 
M i n |  Min Max O I). (23) 

I~ \ 1  I . . . . .  N (x l . x2 )¢ f?  

However, in using LPF, the stiffness matrix has to be continuously updated. A ply, once 
failed, is regarded as having zero stiffness. The formulation (23) does not take this into 
account. Alternate formulations were not evident and so LPF was not pursued either. 

In the present study on composite laminates an average failure criterion is hypothesized. 
The average failure functions, O, vo, are obtained by averaging the failure function values 
through the plies and the total laminate is regarded as failing when the maximum value of the 
average failure function reaches 1. Then (20) is replaced by 

minimize ~0 ffi rain max t/,av ,. (24) 
FO XI~X2~ 

Again we postulate that the maximum value occurs on the hole boundary (checked at each 
step numerically) and that optimality is achieved by Oave = constant on the hole boundary. 

S. Choice of element type 

For isotropic materials, a substantial body of experience has been accumulated on the type 
of finite element best suited to a given problem. For a great many cases that element has been 
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found to be the eight-node or nine-node quadrilateral isoparametric element. For smooth 
enough solutions higher-order finite elements provide more accurate solutions. However, in 
anisotropic media, stress gradients can be substantially larger than in isotropic materials and 
so choices based on that experience cannot automatically be made. Some pilot studies were 
done to assess the relative merits of QUAD4 versus QUAD9 isoparametric elements. In 
particular studies were made on the stresses in both isotropic and anisotropic plates with a 
central hole under uniaxial tension (for which analytic results are available in the literature). 
Three regular uniform meshes as shown in Fig. 2 are used for the convergence test of QUAD4 
and QUAD9 elements. In order to relate the number of divisions to the size of element for 
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Fig, 2, Meshes used, NF. is total number of elements, NX is total number of nodes, 
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convergence analysis, one QUAD9 element is arranged to be four QUAD4 elements, i.e., the 
mid-nodes of the QUAD9 elements are located exactly at the centers of edges. The number of 
divisions in both the r- and 0-directions are uniformly increased by the same amount. 

The item of comparison was taken to be the maximum value of [o-00 - °ro0h[ on the hole 
boundary. Here the circumferential stresses o'00 and o'oo h represent the analytic solution and 
the numerical solution by the finite element method, respectively. The dimensions are such 
that infinite plate solutions can be used. For the isotropic case, the dimensional recommenda- 
tions of Krauthammer [22] have been followed. For the anisotropie case, the dimensions are 
based on the work of Nuismer and Whitney [23] who used analytic results from Lekhnitskii's 
book [24]. Dimensions satisfying both cases are 

L / W =  1. ,  L / D  = 10. (L = W = 40 cm, D = 4 cm). 

(The plate thickness is taken to be 1 cm.) L and W represent length and width of the plate, 
respectively. D is the diameter of the central hole. 

The analytic solution for tr00 on the hole boundary for anisotropic plates under uniform 
tension was given by Lekhnitskii [24]. The Lekhnitskii solution is 

Eoo 0"00 = P ~ {(-cos 2 tO + (k + n) sin 2 (p)k cos 2 0 

"4" ((  1 + r~) c o s  2 ~o - k sin 2 (p) sin 2 0 

- n(1 + k + n) sin tO cos ~0 sin 0 cos O},  (25) 

where P is tensile stress applied at infinity in the xl-direction, (p is the angle measured from 
xl-axis to x't-axis (in ccw direction), 

k - (E.,i,i/Ex~x,,) '/2 , (26) 

n = {2(k - vxlx~ ) + (Exixl/Gxix~))1/2, (27) 

Gxix~ is the shear modulus measured in the laminate coordinates, vxlx~ is the major Poisson's 
ratm measured in the laminate coordinates, Ex, x, is Young's modulus in the fiber direction, • ! 
Ex~x~ is Young's modulus in the direction perpenc~icular to the fiber, and 

1 sin 4 0 / 1 2vxlx~ sin2 cos4.._~e 
-- + 0 0 + (28)  

Eoo Exlx i G~ix; E~ix i / E~x~, 

Note that in Lekhnitskii's book ([24, eq. (39.1), p. 171]) the square root in (26) is left out. 
This typographical error was pointed out by Hyer [25]. 

Figure 3 shows graphs calculated from the exact solution (25) of the distribution of o-00 
around the hole boundary. The anisotropie materials used are glass/epoxy and graphite/epoxy 
with 45 ° fiber angles. The material properties are given in Table 1. For the isotropic material, 
Young's modulus E = 210 Gpa and Poisson's ratio v = 0.29. In the figure, the outward and 
inward arrows denote tension and compression, respectively. It is seen that in anisotropic 
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Isotropi¢ Glass/Epoxy 

Fig. 3. Distribution of o'oo on the hole boundary. 

Table 1 
Material properties of GL/EP and GR/EP 

GL/EP GR/EP 
(Scotch ply 1002) (T300/5208) 

E~ixl (GPa) 38.6 181 
Ex~i (GPa) 8.27 10.3 
G~t,i (GPa) 4.14 7.17 
v~,~, 0.26 0.28 
,~ ~MPa) 1062 1500 
Xc (MPa) 610 1500 
Yt (MPa) 31 40 
rc (MPa) 118 246 
S (MPa) 72 68 
F~,xl (GPa) -2 1.543 0.444 
F~*,~, (GPa) -2 273.3 101.6 

22 2 
F~i ~, (GPa)- -10.27 -3.36 
F~s ~(]Pa)-" 192.9 216.2 
Fxl (GPa)-' -0.697 0 
F.~ (GPa)- i 23.78 20.93 

Graphite/Epo~:y 

plates, the circumferential gradients of the circumferential stress are very large compared to 
these in the isotropic plate. For example, the maximum gradient in glass/epoxy is 2.5 times 
that in the isotropic case. For graphite/epoxy the maximum gradient is 7.5 times higher. From 
this, it is to be expected that greater difficulties will be encountered in analyzing anisotropic 
plates using numerical methods. 

In the finite element work with QUAD4 and QUAD9 elements, the materials studied were 
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steel and glass/epoxy (with a 45 ° fiber angle). The meshes employed are as in Fig. 2. Note that 
uniform mesh refinements are used (which is the process used in mathematical studies of 
convergence). For both elements, the stresses computed are Cartesian components evaluated 
at the Gaussian integration points. These stresses are extrapolated to the nodal points using a 
global, least-squares smoothing procedure (see, e.g., [26]) and then the stress transformation 
laws yield the circumferential stress tr00 h (note that the reverse procedure is less accurate). 

Figure 4 shows results for an applied axial stress of 100N/cm 2, which leads to exact 
maximum values of or00 = 300N/cm 2 and tr00 = 325.40N/cm 2 for the isotropic and G L / E P  
cases, respectively. Shown are convergence rates for the two elements together with the 
tabular data from which they are generated. Several points can be made. It can be shown 
mathematically that the theoretical convergence rate for the QUAD9 should be twice that for 
the QUAD4 for sufficiently smooth solutions. This behavior is not seen here, for the current 
level of remeshing. In fact it is seen that the convergence rates are very similar. An important 
point is that uniform meshing with both types of element leads to unacceptable inaccuracies in 
the stresses. Convergence tests were also performed using irregular meshes. Comparable, 
poor performance for both QUAD4 and QUAD9 was found (see [27] for details). 

To gain some insight as to why the poor performance, oroo h and tr,, h, along a line at 45 ° to 
the xl-axis, as obtained from the global smoothing procedure (a least-squares method) are 
compared with the raw values obtained from a set of adjacent Gaussian integration points. For 
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/ , " ~ "  QUAD9 

"| " .... I ' .... I ' "'i .... i 

lxlO "2 lxlO "1 I IxlO-~ IxlO-I 
l/v"  lJ4-N'  

: : : , ~ i : : :  I 
q5~ w 

I 

Mesh type 

Isotropic 

maxlo'o, - troohl a 

QUAD4 QUAD9 

Composite (GL/EP 45 °) 

maxlo . s0  - Greoh[ b 

QUAD4 QUAD9 

I 113.50 101.70 177.50 171.30 
I1 85.60 71.80 164.90 158.90 

III 64.60 50.20 148.50 142.40 

"Exact solution for isotropic case: max treo = 300.00 (unit: 
100 N/cm2). 

bExact solution for composite case: max ~rss = 325.40 (unit: 
100N/cm~). 

Fig. 4. A comparison of convergence rates and errors for QUAD4 and QUAD9 regular meshes. 
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a type-Ill mesh the results are shown in Figs. 5 and 6, for a GL/EP plate. Far away from the 
hole, both procedures give the same stress values. However, as the hole boundary is 
approached, the raw stresses obtained at the Gaussian integration points take on an erratic, 
jumpy behavior (because of the large stress gradients arising near the hole boundary). The 
poor quality of these stresses leads in turn to poor quality in the smoothed stresses, which 
suggests that fine meshes rather than uniform meshes should b.e used near the hole boundary. 
The major lesson learned from the overall study is that some adaptive mesh scheme should be 
used, instead of uniform meshing. 
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6. Mesh adaptation 

There are, typically, three methods of mesh adaptation: h-method; p-method; r-method. 
The first method increases the number of elements in regions in which interpolation errors are 
large. The second me~hod increases the order of the polynomial approximation inside the 
elements with large interpolation errors. The third method relocates the nodes optimally by 
applying an optimality criterion, for a given number of elements and a prespecified order of 
polynomial approximation. 

For the h.method case, the following problems are noted. A special refinement for 
transition from refined elements to coarse elements, or introduction of appropriate constraint 
conditions among degrees of freedom, is needed since not all meshes are subdivided. Now 
element connectivities must be reassigned. Thus much more computing time is required. 

The comparisons performed between the QUAD4 and QUAD9 elements constitute a study 
of the p-method. The use of the QUAD9 gave only marginally better results, and so the 
p-method may not be advocated for anisotropic media. Here, the r-method with QUAD4 is 
chosen as the best procedure and it will now be described in greater detail. 

The essence of the method is: given an initial, moderately refined grid, relocate the nodes 
to achieve 

Min{Max E,.}, e = 1 , 2 , . . . ,  N E ,  

where E¢ is some appropriate element error measure. Diaz, Kikuchi and Taylor [8] treated the 
problem as one of optimization and showed that a necessary condition for optimality is 
E¢ ffi constant, for all e ffi 1 , . . . ,  NE. Since the exact solution is unknown, computationaUy the 
optimality condition is approximated by 

E,~I = constant for all e ffi 1 , . . . ,  NE. 

Consider the error measure 

Ep 

with piecewise 
A two-term 

stresses yields, 

_ 

1/2 
{fne (o'q - o'ijl)(O'q - o'ql) d•e (29)  

constant interpolation of the stresses. 
Taylor expansion in s and t about the centroid of the master element for the 
where s and t are master element coordinates, 

% ,  = % ( s ,  t) - % ( 0 ,  0 )  = s ~ + t 0t ' 

where %(0, 0) is the value of % at the centroid, and the interpolated stress %~ has the same 
value. 

Then an approximate error measure using the finite element approximation of stresses, O'qh, 
can be written as 

E h~ { f l  f~ (s - - ~ - s ~ - t y ]  oO'tjh oO'ijh )(s " " ~ - ~ - ~  ~ O0"ilh Oorijh ~ /1/2 
1 l o~ + t  at  / J d s d t ,  ' 

where J is the determinant of the Jacobian matrix. 
Note that O'Oh is not the stress 

E,,. ( ) O'if ~ "- klEk I U h , 

(30) 

(31) 
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computed by using the constitutive equation and the finite element solution %. %h is spanned 
by the same shape functions for the displacement uh, i.e., 

Croh = ~ trij~N=(s, t) in he, (32) 
ot=l 

where %= are the values (unknown at this stage) of o'ij h at the four nodes in an arbitrary 
element D e. The stresses %,, are computed from the least-squares procedure (a smoothing 
operation): 

Min ½ ~ cr,#,N,,(s, t )  - % .  d t ~ .  
~riia effi l - I  

(33) 

Although ~r~j h is not continuous across the element boundaries, O'//h is. Furthermore, %n is 
differentiable in s and t in each element/2 e. 

a%hlas and #%hlat are approximated by their values at the eentroid in each element. Then 
the error measure in (30) is approximated by 

E ~ = t ~ ~ L \ --~-s ) \ ~-s-s ) + \ at / \ " ~ -  / _l J " 

(34) 

In the plate with a hole, %0 is the dominant stress component and an error measure was 
constructed using only this component in (34). The results were compared with those obtained 
using the full error measure and no appreciable differences were seen. In the sequel, the error 
measure involving %0 alone is used for simplicity. 

One further study of the error measure was performed for the OUAD4 element by taking a 
five-term Taylor expansion in s and t about the midpoints between the Gaussian integration 
points, as opposed to the centroid as used previously. The error measure based on this 
resulted in oscillations of meshes and no improvements. 

The nodes must be relocated until the approximate condition E~ ffi constant is satisfied. 
Here the scheme used by Diaz, Kikuchi and Taylor [8] is employed. The nth node is moved to 
the point (x~ "~, x~"~), where 

1 I I  a +4 = r / ° + 4  
.,J"' E E:/ae) (35) 

where a is an element number, and xie are the coordinates of the centroid of the eth element. 
Note that the summation is over the four elements neighboring the nth node. 

This scheme implies that the new location of the nth node becomes closer to the centroid of 
the element which has the largest error measure among them. There is the possibility of 
'nonconvexity', that is, the determinant of the Jacobian matrix in the normalized coordinate 
system may become nonpositive. Geometrically, this corresponds to an element with angles 
>180". Such elements are not allowed. If at any iteration step nonconvexity occurs, the 
relocation of the node responsible is skipped. 

Another item of concern is the least-squares method, (33). The meth¢~d computes continu- 
ous first derivatives (i.e., stresses) using the discontinuous first derivatives generated by the 
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finite element solution. If small and large finite elements are arranged alternately, the method 
gives artificially high gradients in the small elements. Since the error measures aie computed 
using derivatives of stresses, an artificially larger error is assigned to small elements. This 
nature can destroy convergence in the r-method. To avoid this misbehavior, one sets up a 
minimum area in the code. 

Finally it should be noted that the node relocation scheme, (35), involves two aspects: 
diminution of error measures and smoothing of the meshes. These two aspects work in 
harmony for rectangular domains covered by nearly rectangular finite elements. However, 
they are almost contradictory close to the curved boundary, with its large curvatures. The 
relocation scheme tends to pass through the optimality condition in order to form very small 
elements. It has been observed that the maximum error measure first monotonically decreases 
and then starts to increase. Thus it is recommended that one monitors the value of the 
maximum error and that the adaptive process be terminated when it starts increasing. This 
feature is one of the drawbacks of the relocation scheme, (35). 

7. Computational procedure for shape optimization 

The optimality condition postulated previously requires that the values of the failure 
function be constant along the design boundary. The shape of the design boundary repre- 
sented by the nodes should be moved to satisfy the optimality condition and the area 
constraint. A method of node moving following Chung [20] is adopted. 

Suppose there are N nodes on the design boundary F a. To achieve optimality, these are 
moved, in an iterative fashion, to new locations by means of 

Xk+, k Ax~ i =  1,2, N (36) -------Xt + , . . . ,  , 

where x denotes position vector and k is an iteration index. The vector Ax~ has a magnitude 
8~ and a direction a~: 

a ¢  = 8, (37) 

The overall scheme is outlined in Fig. 7. There NDE and NOP denote nodes on the design 
boundary and on the corresponding (by means of the vector a~ to be described) opposite 
outer boundary, s; is the arc length between two neighboring boundary segments. The choice 
of 8~ and a~ will now be discussed in more detail. The magnitude factor is taken to be 

 max--/3 amax' (38) 

where ~, is the value of the failure function at ith node,/3 is the average value of • over the 
nodes, i.e., 
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NOPfi) a 

, N'DE(i) - NOPfi* 11 .o 

" i ÷ l  I ' ' ~  ~t ' , ' t  I 

Fig. 7. Design node relocation scheme. 

k An initial moving constant 8 max1 is assigned and the value of ~ max in the successive iterations is 
determined from 

t 

max --" ~raax - -  ( ~ ' ~ =  k - i ) ,  (39) 

where NI denotes the number of anticipated iterations (an assigned value). The parameter g is 
1 1 usually taken as 1% of 8ma x. The value of 8 max dictates rate of convergence. If the value of 

8 ~x is big, the convergence speed is fast but is sometimes accompanied by oscillations of the 
t design boundary. The range of 8 max is taken to be 

0 < 8 t < slave 
m a x  

t where sav e denotes the average value of s~ for the first iteration. The value of 8 ~max is taken as 
25% of stave . This was found from many numerical experiments to be a good choice. 

The direction vector a~ is taken to be the normal vector calculated as follows: 

xk(NDE(i) ) -  xk(NOP(i)) 
a k = Ixk(NDE(i))-  xk(NOP(i))i " 

(40) 

After the new coordinates of the design nodes are obtained, the interior nodes between the 
design nodes and the opposite outer boundary nodes should also be moved, in a proportional 
fashion, to keep a proper mesh (e.g., "no crashing"). This is done as follows: 

Ixk(NIN(i))- xk(NOP(i))l Axk(NIN(i)) = Axk ~ )  - - ' ~ 1  ' (41) 

where NIN(i) denotes the interior nodes assoel.atcd with the ith design node. 



44 M.S. Lee et al., Shape optimization in laminated composite plates 

The iteration is stopped through use of the quantity 

D T P =  ~ s/~ , , 

i= ! /~ Say e 
(42) 

k where Say e is the average value of s~. When DTP ~< 0.01, the iteration process is terminated. 
The overall procedure was checked as follows. A glass/epoxy 45 ° plate, with a circular hole, 

under a uniaxial tension of 100 N/cm 2 was treated, using both uniformly refined meshing and 
the r-method. It should be pointed out that the r-method will not be good unless original mesh 
is reasonably accurate [26]. Results on o'00 are shown in Table 2 and Fig. 8. In Fig. 8, the solid 
line and the dotted line represent Lekhnitskii's solution (equation (25)) and the finite element 

\ / I / / / / / / / .  

Y/2 ' / / / / / / / I  / \ \ \ \ \ \ "~ ~, 
7 , / / / / / / /  / \ \ \ \ \ \ ' ~  F"/272/ / 

Orlg, mesh r.meah 

\ \ \ \ \ \ ~  

Distribution of uoB Aiound the Hole 

Fig. 8. Application of the r-method to a ply, with a circular hole, under uniform tension. 
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Table 2 
Comparison of Maxl~,oo - ~'oo~l ~ : h  Iwi.*hout r-mesheg 
(unit: 100N/cm 2) 

QUAD4 

Mesh type Original mesh r-mesh 

I (NX ffi 160) 140.00 51.16 
lI (NX ffi 336) 92.81 32.41 

IXI (NX ffi 576) 65.25 17.17 
(20.0%) (5.2%) 

Table 3 
Comparison of Max ~ooh (unit 100 N/cm 2) 

Isotropic Composite (GL/EP 45 °) 

Mesh type max o-so h DP (%) max o%h DP (%) 

I (NX = 160) 246.80 - -  209.80 - -  
II (NX = 336) 288.40 16.9 265.80 26.7 

III (NX = 576) 301.90 4.7 276.90 4.2 

solution, respectively. Noticeable improvement in the accuracy is seen with almost 15% error 
reduction. 

In general an analytic solution is not available for comparison. In these cases" a useful 
operational procedure can be inferred from the data. Table 3 shows a comparison of the 
maximum value of o'0o h. In the table, DP denotes ( m a x [ o - ~ -  crO0hl)/(max ~ o'00h), where 
max or~o h denotes the value of max oroo h using the ith-type mesh. The change of the maximum 
value of o'so h using the type-III mesh was 4.7% compared to the maximum value of o'00 h using 
the type-II mesh. This corresponds to 20% error between the finite element solution and the 
analytic solution using the type-III mesh for the case with known analytic solution. Based on 
this experience, it is suggested that the r-method be used when the change of the maximum 
value of o'so h in an iteration is within around the 5% range. This strategy will be adapted in 
later sections. 

8. Validation. lsotropic plate with a hole 

For isotropic media, the failure function • is the Von Mises stress. It has been shown 
analytically that for an infinite isotropic plate under biaxial loading the optimal hole shape is 
an ellipse with a semiaxis ratio the same as the stre'ss components at infinity (see [6]). The 
isotropic case is examined here as a check on the procedures and the computer program. 
Biaxial loading with a ratio of o-l/o" 2 = 1.5 is applied. The initial hole shape is taken to be 
circular, with the dimensions of the plate and the material properties the same as in Section 5. 

The strategy discussed earlier is used. The change in the maximum value of or00 h is examined 
for QUAD4 meshes to find out an appropriate number of elements for which the r-method 
should be applied. A scheme with NE = 512 (type-III mesh) was chosen, since the change in 
going from type-II to type-IIl mesh was only 3.23%. The r-method is applied to this initial 
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t 

Fig, 9. The initial and final shapes for an isotropic plate. 

mesh and then the shape optimization procedure is used. No further use of the r-method after 
the initial application was found necessary to obtain good results. 

The initial and final shapes are shown in Fig. 9. Convergence was achieved with 12 
iterations. The final hole shape is an ellipse with a semiaxis ratio of 1.55, which differs only by 
3.3% from the analytic result. 

9. Single lamina with a hole 

In this section a single lamina with a 45 ° fiber angle is studied to find out the optimal hole 
shape under biaxial loading. The biaxial loads are applied with a ratio of 1. The plate material 
is glass-epoxy, with p~operties as given in Table 1. Using the criteria described before, a 
type-III type mesh (NELX = 512) was chosen as the initial mesh. 
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An interesting issue is whether the r-method should be just applied initially, or applied 
several times as the node relocation scheme to achieve optimization progresses. A study was 
done on this issue, with Tsai-Hill failure chosen as the criterion. 

The r-method was applied after each design iteration. This was not successful. Oscillating 
meshes occurred, with the process terminating after 9 iterations. The reason for the failure can 
be traced to the nature of the least-square method, as discussed in Section 6. The shape 
optimization scheme is generating alternate large and small elements near the boundary and is 
leading to unacceptable errors in the r-method. This approach was abandoned. 

Figure 10 shows the initial and final shapes, with the r-method applied at the initial stage 
only. Figure 11 shows the final shape with the r-method applied also at the fifth and tenth 
iterations. Note that the final shapes are practically identical. The conclusion drawn is that 
even though there was some reduction in the number of iterations required, an initial 

\ 

i • 
Fig. 10. The initial and final shapes for a GL/EP 45 ° plate using the Tsai-Hill failure function. 
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t It 
II 

Fig. 11. The final shape for a GL/EP 45 ° plate with the r-method applied after several shape optimization 
iterations. 

r-method is all that is required in the current work. Further discussion on results will now be 
given. 

Figure 12 shows the final shape using the Tsai-Wu criterion. An elliptical shape is again 
seen, with a semiaxis ratio of 3.8 (compared to 3.5 using Tsai-HiU, Fig. 10). 

Figure 13 shows the distribution around the hole boundary of the failure functions for both 
the initial and final shapes. It is seen that the postulated optimality condition of • = constant 
is achieved exactly. The maximum value, and the difference between the average and the 
minimum, of the Tsai-Wu failure function are always larger than those of Tsai-Hill. This 
induces sharper corners in the optimal shape when Tsai-Wu failure is used instead of 
Tsai-Hill fai!ure. 

Fig. 12. The final shape for a GL/EP 45* plate using the Tsai-Wu failure function. 
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Fig. 15. Convergence characteristics with the Tsai-Wu failure function for a GL/EP 45 ° plate. 

Convergence characteristics are shown in Figs. 14 and 15 (relative % deviation is DTP as 
defined by (42)). Note that the number of iterations is about five times bigger than the number 
for the isotropic case. 

10. Multilayered laminates with a hole 

All the laminateg treated here are symmetric and are made of glass-epoxy plies with 
properties as given in Table 1. Biaxial loads in a one-to-one ratio are applied. Optimization is 
based on using average failure functions, as discussed in connection with (24). 

Treated first is a two-ply with lay up [0, 90°L. The initial and final shapes for both Tsai-Hill 
and Tsai-Wu failure are shown in Figs. 16 and 17. Now, instead of ellipses, the optimum 
shapes are more like squares with rounded shoulders. Both criteria lead to very similar shapes 
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~ \ \ \ \ \  \ I l l l / / / / / / ~  ~\\\\\ \ 1 I/////,Q 
I / / / / ~  

Fig. 16. The initial and final shapes for a GL/EP 
[0, 90]s plate using the Tsai-Hill failure function. 

~ \ \ \ \  \ \ I I I / / / / / , , ~  
~~-~\ \ \ \  11 I////,~-'~ 

Fig. 17. The initial and final shapes for a GL/EP 
[0, 90L plate using the Tsai-Wu failure function. 

(true also in the sequel, for which only results based on Tsai-Hill are presented). Figure 18 
gives the distribution of the failure function around the hole boundary. Note that the 
postulated optimality condition is achieved precisely. Convergence was achieved in about 
twelve iterations, much quicker than for the single lamina, due, apparently, to the smoothing 
involved in the averaging process. 

The next case studied is a three-ply with lay up [0°/-45°L. The initial and final shapes are 
shown in Fig. 19. An elliptical final shape is now observed, with a major axis in the direction 
transverse to the 0 ° fiber. The ratio of major to minor axis is 1.63 (it is 1.81, using Tsai-Wu). 
It was found that the optimality condition was again achieved precisely. 

Further cases can be found in [26], involving other lay-ups and more plies. Results similar 
to the ones discussed above were found. 
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Fig. 18. Distribution of Tsai-Hill failure function for both the initial and final shapes in a GL/EP [0, 90 L plate. 
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Fig. 19. The initial and final shapes for GL/EP [0/±45]s plate using the Tsai-Hiil hilure function. 

11. Isotropic plate with a pin-loaded hole 

A nat"~ral extension of the work reported here is shape optimization of pin-loaded holes. 
Here a preliminary pilot study is presented', using the postulated optimality condition and a 
postulated stress distribution at the pin boundary. The Von Mises failure function is used. 

A plate with a pin-loaded hole is shown in Fig. 20. The pin is taken to be rigid and fixed in 
space. Friction is neglected and 180 ° contact is assumed. For equilibrium one must have 

D f~r/2 
2" j-,~/2 q cos 0 dO = p ,  (43) 

where p is the total applied load, and q is the normal traction on the hole boundary. Here q is 
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Fig. 20. A plate with a pin-loaded hole. 

i L 

Fig. 21. The initial and final shapes for isotropic plate with a pin-loaded hole. 

assumed uniform. As the pin and hole shapes change, q also changes and must be updated 
according to (43). 

The initial and final shapes are shown in Fig. 21. An oval-like final shape is seen. Now, 
however, final convergence was not achieved. The distribution of the Von Mises stress along 
the hole boundary is shown in Fig. 22. The optimality condition is not fully achieved. However 
the final shape involves a 25% reduction in peak stress and the design could be regarded as 
better. Whether the manufacturing difficulties involved in such shapes are worth 25% stress 
drops must be considered a debatable point at this stage. 
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Fig. 22. Distribution of Von Mises stress for both the initial and final shapes in an isotropic plate with a pin-loaded 
hole. 

120 Note 

This paper was submitted in 1987. In the review process, the related work of B~icklund and 
Isby [28] has been brought to our attention. 
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