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Abstraet--A key assumption in the usual computations of Doppler broadening is to ignore the dependence 
of F(j) on the state of the compound nucleus. This is an excellent approximation for the ),-emission 
contribution to F(j). It is not so clear that it is as good for the neutron contribution. In this paper, we 
derive an expression for Fn(j) and show that the effect of the dependence of Fn(j) on the intermediate 
energy of the target ej is not significant for an ideal gas, so that the absorption line shape is identical to the 
absorption line shape in which Fn is constant. Therefore, the effects of j  dependence F.(j) on the absorption 
cross section is not significant. 

I. INTRODUCTION 

The broadening of neutron scattering and absorption resonances by thermal motion of  the target atoms is 
referred to as "Doppler broadening". Doppler broadening is known to depend upon the state of the atom 
from which the scattering occurs. That is, it depends upon whether the atom is in a liquid, a solid, or a gas. 
This dependence is called the chemical binding effect. 

The general formulation of the resonance line shape, developed by Bethe and Placzek (1937) is the psi 
function ~b(¢, x), calculated under the assumption that the nuclei have a Maxwellian gas distribution of 
velocities. This function is given by : 

[" 1 ~ ( .  exp - ~ - ( x - y )  2 

0(~,x) = ~ J _  dy , (1) 1 +y2 2,/~ of~ 

where 

F 
= A '  (2) 

2 
x = ~ ( E , - E o - R ) .  (3) 

The Doppler width A is given by A = 2(R/if)1/2 where f l - l  is the temperature (multiplied by Boltzmann 
constant kn) in energy units, E, is the kinetic energy of the neutron, and E0 is the resonance energy. 

The chemical binding effect was first discussed by Lamb in (1939). He realized that the assumption of 
Maxwellian distribution of velocities for the absorbing nuclei is not valid if the target particles are bound in 
a solid. He was able to derive a formula for the absorption line shape for bound nuclei which is determined 
by the Debye theory of crystal lattice dynamics. The general formula is given by : 

W(E,) = IMr,dl 2 [ncomp[2E Eg(/~i) I(jle'K'~LI i)12 

i : (En_E0_sj+e~)2 + _ _  

where I M~dl 2 and IMcompl 2 are the matrix elements for radiation and compound nucleus formation, respectively, 
q(e,) is the probability of  finding the target in the state i. l i )  and I J )  are the initial and the intermediate state 
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of the target, respectively, and the es are the target energy. It was Lamb's work which led M6ssbauer (1958) 
to his results for resonant absorption of ~,-rays. 

A different form is obtained by transforming equation (4) into a time dependent representation (Singwi and 
Sjolander, 1960; Van Hove, 1954) 

W(E,)  = IM~.dl2 lM¢ompl2 ~ ff" y(e,)l(j[eiK'nLli)12~Re dtei(So-ro-",+",+oT/2))t/~. (5) 

W(E.) = IM~dl z ]M~ompl z ~ R e  h ( ,  2 g(e,)l(Jl e'K'aqi)12 e '<'-",)'/" e '(e:~°+<'r/2))'/" (6) 
Y 

writing 

and using 

I(j  I e'X'~q i)12 = (i I e-'K'nq j ) ( j  I ea"~q i), (7) 

IJ)(Jl  = I (8) 
J 

e ~:/~ I i )  = e"A,/~ Ii) ,  (9) 

e -'~//h I J )  = e -mA'/~ I J) ,  (10) 

equation (6) becomes: 

W(En) = [M~dl 2 IM~ompl 2 F Re e -(r/2)(t/h) e i(En-E°)t/h (e -K'ndO em'nL)T, (11) 

where RL(t) is the Heisenberg operator for the position of the Lth nucleus at time t : 

RL(t) = em('/~)RL(0) e -imt/h), (12) 

the notation ( . . - )x  in the above equation implies that a thermal average is to be taken. 
By definition : 

(e -iK'ndO eig'nL)x = ~. g(ei) (il e -iK'nL(0 e a~'nz Ii) (13) 
i 

and the distribution function is given by : 

g(£i) ~- Z - I  e -#~', Z = ~ e  -#",. (14) 
i 

It has been shown by Van Hove (1954) that for a perfect gas. the quantum mechanical form of the matrix 
element is : 

( e  -iK'n~°) e~'B~)T = e -'('~x~/21~-(:x'/2M#). (15) 

If we substitute (15) in (11), we get: 

2 1" dt 
W(E.) = IMr~dl 2 IM~ompl 2 F Re J0 h- Go(t) e a°°/h) e n*:, (16) 

where 

R 
B o =  [~, 

Go(t) = 1. 

Let us write equation (16) in terms of the psi-function: 

h2K2 
R = 2 M '  (17) 

(18) 

(19) 
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4 f :  W(E.) = IMradl 2 [Mcompl 2 ~ dycosyx e-Y-Y2/~ 2, (20) 

4 
W(E,) = [Mrad[ 2 IM¢omp[ 2 ~SW(x, ~), (21) 

where @(x, ¢)f, x and ~ are defined by equations (1-3) and the dimensionless variable can be introduced 
by : 

F t  

2. THEORY OF THE CHEMICAL BINDING EFFECT ON RESONANT ABSORPTION OF NEUTRONS 

We shall begin by examining the underlying approximations made in obtaining the Breit-Wigner cross 
sections and the connection of these expressions to the states of the target atoms. We can write both the 
absorption and scattering cross sections in terms of the T-matrix (Rodberg and Thaler, 1967) : 

T = V+ V ( E -  Ho - V+ i t)- '  V, (22) 

where V is the operator for the interaction and H0 is the operator which describes the relative motion and 
internal properties of the colliding particles. 

The cross sections are, of  course, proportional to the matrix elements of  T. The Breit-Wigner cross sections 
are obtained by assuming that the off-diagonal elements of ( E -  H 0 -  V+ it) are zero and expanding as follows : 

{/ 1 ) l  
J E - H o - 2 H ' + i t  j = E - E : - ( j I V I j ) +  (( j IV]j))2 - ( j l V ( E - H + i ~ ) - ' V l j ) +  (23) F~-~. +i~ . . . .  

after some manipulation, this permits us to write the matrix elements of T as : 

( f l T l i )  = ( f l  V I j ) + ~  ( f [  VI j ) ( j [  Vii) iF(j) + "'" (24) 
: E - E o +  2 

where 

Eo = E j + ( j I V l j ) + P  ~ ( j lVI I ) ( I IVI j )  + . . .  (25) 
l ~,: E -  Et 

P indicates the principal value. FO) is : 

F(j)  = 2re ~ (Jl VII)(I[ V I j ) f ( E - E , )  + . . .  (26) 
I#j  

Every one takes the total F(j)  and partial F.(j') level width to be energy independent. We will write an 
expression for the chemical binding effects on F(j). This is what Lamb (1939) calls F(ns) : 

r(ns) = G + r°(ns), (27) 

remember that V is the interaction potential binding the scatterer. However, if a photon is produced in the 
intermediate state, we must account for the interaction potential between the electromagnetic field and the 
produced photon (Davydov, 1966): 

q 
V = V,,e.t.o,,+~--A(r~,)'P~,, (28) 

.u mc 

t To obtain equation (21), it is necessary to use the integral representation : ;o 
1 = e -~ cos (sx) ds. l + x  2 
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the second term is the operator  for the interaction of  a spinless particle of mass (m) and charge (q) with an 
electromagnetic field, where p indicates the number  of  charge particles in the nucleus. 

The electromagnetic field, which is described by the vector potential  A, has the form : 

eQ~ . 
A (r) = (27the) 1/2 Z ~ {aQo e 'Q'' + a ~  e/Q'W } (29) 

Q,~ 

where eQ. is the polar izat ion vector;  Q is the wave vector of  the photon  and aQ. and a~. are the operators  for 
the creation and annihilat ion of  quanta  of  electromagnetic radiation,  respectively. 

In order to have just  F. ,  we can ignore the electromagnetic term and then have pure nuclear potential  : 

V(r) = V.¢ut~o.  = ~V(rv-r.), v = 1,2 . . . . .  A ( 3 0 )  
v 

where v is summed over the nucleons in the nucleus. 
Define the initial and final states of  the system as : 

l i )  = ~ i ( r l , r2  . . . . .  rA) fig"" 

I f )  = @r(r,, r2 . . . . .  rA) e 'g'''" 

(31) 

(32) 

w h e r e  (I) i and Dr are the initial and the final states of  the scattering a tom and e ~g''. and e ~g'''. are the plane wave 
representation of  the initial and final neutron state. 

The intermediate state can be represented by : 

l J )  = ~P*(r)~j(R), (33) 

where ~P*(r) is the excited state of  the compound nucleus as function of relative coordinate r and O(R) is 
motion of  the nuclei state as a function of  center of mass coordinate.  

R = (Arv+rn)/(A + 1). (34) 

Then the matrix element of  the potential  can be written as : 

Vjl=(llVlj)=fd3r. fd3rl ..... d3ra e- 'X"r .~*(r t ,  r2 . . . . .  rA) V(r)~P*(r)~j(R), (35) 

to reduce the complexity of  this equation, we suppress the dependence of the matrix element to one variable. 
Also we approximate  ~j(R) for a heavy nucleus, as : 

~Dj(R) = qJj k . ~ - )  = *j  r ~ -  ~ ~ *j(r ,) ,  (36) 

if we replace rn = r . - r ,  equation (35) becomes:  

Vj, = f d3r. e-ig" ".tb*(r.).j(r.) f d3rV(r)e'g"'ug*(r). (37) 

substituting this into equation (26) we get : 

V(r)~P*(r) 2(x) f e ~g"'~*J(ru) 26(E-E') Fn(j)  = 2n ~ d3r e iK''r dSr.O*(ru) (38) 
I # j  d 

o r  

where 

F . ( j )  = 2~[Mcomp] 2 ~ I(q,I e-g""lqj>]26(E--El), (39) 

Iqj) = ~y(r,) and Iq , )  = ~ t ( r . ) ,  (40) 
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The matrix element : 

h2 g "2 
Et = ~ +et, (41) 

h2K 2 

E = 2ram + ~' (42) 

f d K''" V(r)~*(r) 2, I Mcomp[ 2 = dr 3 (43) 

is purely nuclear so that the range of interaction << 1/K'. q**(r) is the compound state. This factor does not 
depend upon chemical binding and is independent of K'. 
For an ideal gas : 

h2q 2 h2q~ 
e~-  2 M '  e t -  2 M '  (44) 

qj and qt are defined by : 

Iqj) = e~"r", Iq,) = e'q"'", (45) 

[(q,I e-iW"olqj)l 2 = 6 (q ,+K ' -q j ) ,  (46) 

h 2 K  '2 
• F.(j)  = 2~r IMoo~pl z ~ 6(q, + K ' - q f l "  6(E eD, (47) 

, ~ #  2m 

6(ql+K'--qs) = 1, qt = qj--K',  (48) 

( h2q~ ti2K2 h2K'2 h2 ) 
F.(j) = 2~ln~ompl2~ 6 ~ -  4 x, 2m 2m ~ (qj-K')2 (49) 

In order to solve this equation, it is convenient to make transition from the discrete variable to continuous 
case• 

--+ (2n)-3 f d3K , (50) 
K' O 

then equation (49) becomes : 

= (2n)-2lM~ompl 2 d3K ' 6 ~ 4 ti qj + F.(j)  ZM 2m 2/*m 2M ~ q s K '  (51) 

where/*m is the neutron-nucleus reduced mass; changing variables: 

/*m 
Q = K ' + ~ .  ~ = - ~ q j  (52) 

2 h2q~ h2K 2 li qs , /*m 2 
F.(j) = 2(27z)- qM~ompl 2 Q dQ 6 4 (53) 

- ~  2m 2M ~ 2 ~  qj - 2/*m ]" 

Again we define a new variable: 

h2 
S =  h2 O2 d S = - - Q d Q ,  (54) 

2/*= ~ ' /*,. 

f h2K 2 h2q~[ 1 "~ "~ (2/*m~3[ 2 ]Mc°rripl 2 S1/2 d S l ~ ( V  ~ ~- t m ~ )  - S), (55) 
r , ( j )  = k h= ) 2n 2m 

perform the integration and get: 
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( e, M ej '~'/= ( ~ ) 3 / 2  [Moomp[ 2 X/~n" (56) 
F . ( j ) = F  ° l q E~ m+-M ~ J  ' F° = 27r 

This equation indicates that F. is ej dependent. Therefore there must be an effect on F~. However, if the neutron 
energy is large in comparison with the total level width, then it is a good approximation to neglect this energy 
dependence. 

We approximate the above equation for heavy nuclei as : 

F.(j) = F2 1+ ~ E. ]" (57) 

Let us find out the effect of the chemical binding at zero temperature : 

W(E.) = IM,~al 2 IM~omp[ 2 ~ #(e 3 6 ( q , + K - q j )  

at T = 0, ei = 0, and 

/ M  
q / =  q ,+K = K then ~JE~ = m/M and F = Fox /m+M" (59) 

Therefore there is no effect on F, at T = 0 

3. THE CORRECTED RESONANCE LINE SHAPE EQUATION 

To compute the effect of the ej dependence of F(j) on the absorption cross section for an ideal gas, we start 
from equation (5) and write : 

W(En) = IM~dl2lM~o=pl 2 ~. g(g,) 2 fo ~ 
dt 

~ F ~ R e  ~-ei(~-~0-'J +',+~'r~j)/2)) ,/h ~ ( q , + K -  qj). (60) 

We use an ideal gas for simplicity and to give us an order of magnitude estimate of the size of  the correction 
from nonconstant F,. 

Now we use equation (57) and use the expansion : 

2 2 r:  
(61) 

r ( j )  r ,+r o (r,+r°)~\ E~ / | / 

and perform the summation over i. Then equation (60) becomes : 

2 ~° dt A,/h+s,~ 
hG(t)  e , F F~+F, ,  (62) W(E.)  = CpRe Jo = o 

where : 

F m 
A = - ~ + i ( E . -  E ° - R) + F ° 4-M' (63) 

R  (Fo 2 
s = ~ t \ 4 ~ j  - ' - ' ~ . .~ ' ,  (64) 

F m "~/" F ° 2t'~ 
G(t) = 1+ L~ ~-M) k l + 2~E~ t - - i ~ )  , (65) 

we can see that the corrections to Bo are of order F°/En and the corrections to Ao and Go(t) are of order m/M. 
Thus we do not expect the contributions from these corrections to be significant. 

Let us write equation (62) in terms of a modified psi-function ug(X, 'I) : 
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W ( X , q )  = d Y [ ~ c o s X Y +  Y ( ¢ c o s X Y + v s i n X Y ) ] e  (v-zlr-(r%~) 

where 

X Y  = x y  - wy2/~ 2, 

Y = Ft /2h ,  

y = 1 + ( m / M ) ( F ° / 2 F ) ,  

z = ( m / f l g E . ) ( F ° Z / 2 F 2 ) ,  

r/2 = ~2/[1-(w/2)21, 

w = F°/2En, v = 4 E . z / r  °, 

the new Doppler width is : 

(66) 

,67, 

4. R E S U L T  A N D  D I S C U S S I O N  

Now we present the results of  the resonance line shape of the neutron absorption. Table 1 gives the psi- 
functions which were expressed by equations (20) and (64) for the 6.67 eV resonance at two different 
temperatures: 4 and 1000 K. The difference in the results from equations (20) and (64) for either T = 4 or 
T = 1000 K increases as we reach the resonance energy (order of 10-4). The differences are not  significant, so 
that Fig. 1 shows that the resonance line shapes given by equations (20) and (64) are identical for T = 4 K 
and Fig. 2 shows also the same for T = 1000 K. Both figures are centered at 6.67 eV plus the nucleus recoil 

Table 1. The psi-function at 6.67 eV resonance o f  238U 

T = 4 K  T =  1000K 
e (eV) 'V(x, 0 'P(x, ~) 'e(x, ~) 'e(x, 7) 

6.50 0 . 4 8 3 7 6 E - 2  0 . 4 8 3 7 6 E -  2 0 .11379E-  1 0 .11383E-  1 
6.60 0 . 1 9 5 1 8 E -  I 0 . 1 9 5 1 8 E -  1 0 .93211E-  1 0 . 9 3 2 2 3 E -  1 
6.66 0.11946 0.11947 0.18780 0.18787 
6.67 0.20292 0.20295 0.19890 0.19896 
6.68 0.38708 0.38717 0.20701 0.20707 
6.69 0.73460 0.73493 0.21170 0.21177 
6.70 0.90747 0.90799 0.21273 0.21281 
6.71 0.59219 0.59244 0.21006 0.21014 
6.72 0.30103 0.30112 0.20386 0.20394 
6.73 0.16452 0.16453 0.19446 0.19454 
6.74 0.10081 0.10082 0.18236 0.18245 
6.75 0.67461E - 1 0.67464E - 1 0.16818 0.16826 
6.80 0 . 1 8 1 4 1 E -  1 0 . 1 8 1 4 1 E -  1 0 . 8 8 5 2 2 E -  1 0 . 8 8 5 6 3 E -  1 
6.90 0.46622E - 2 0.46622E - 2 0.11381E - 1 0 .11380E-  1 

1.00e+O 

~ 8.00e-1 

~ 6 . t ~ e -  1 

~ 4.00e- I 

~ 2 . ( ~ -  1 

2.71e-20 
6.4 

g 

ta 

c 

iil n. 

6"6 6.7 6`8 6'.9 7.0 
Energy of  neutron 

238 Fig. I. The 6.67 eV resonance line shape of U at T = 4 K. 
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F i g .  2. T h e  6 .67 e V  r e s o n a n c e  l ine  s h a p e  o f  238U a t  T = 

1000 K .  
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energy. Therefore our  results indicate that the nonconstancy of  F .  is not  an important  effect in calculating the 
broadening of  the resonance cross sections. 
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