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Abstract--The concept of the "noise equivalent source" in the Langevin equation description of fluctuations 
in nuclear reactors is reexamined within the framework of the Markov assumption to clarify the ambiguity 
in the recent literature concerning different interpretations of the Schottky formula. Particular attention 
is paid to the calculation of the cross power spectral density of two out-of-core detectors to elucidate the 
effect of the detection process on the observed power spectral densities. 

I. INTRODUCTION 

This work has been prompted by a recent paper by Difilippo (1988), in which it is stated that there are two 
different prescriptions for interpreting the Schottky formula, depending on whether or not the detector removes 
the neutron upon detection. It is implied, in fact, that only one of these interpretations is correct when the 
detected neutron is removed from the system. Apparently, this point has been a source of controversy among 
various groups (Difilippo, 1988 ; Mihalczo et al., 1987). In this communication, we want to point out that the 
Langevin equation approach for studying fluctuations in linear physical systems is equivalent to the "Master" 
equation approach, provided the fluctuations can be assumed to be a Markov process. The power spectral 
density of the noise equivalent source is unambiguously determined by the transition probability rates charac- 
terizing the underlying Markov process, and thus leaves no room for different interpretations of the Schottky 
formula for different modes of detection. Finally, the same expression for the source power spectral density 
can be used under all conditions and at any level of detail such as diffusion, transport, multi-group, and/or 
multi-region descriptions. We hope to demonstrate this point by working out simple reactor models with 
different detector configurations. 

We should mention at the outset that there is nothing new in our theoretical discussions that has not already 
been mentioned in the literature before the mid-seventies. In fact, the following theoretical discussions are 
based on a paper published by Lax (1960). However, the calculation of the auto- and cross-power spectral 
densities of the detection rates for out-of-core detectors in terms of random point processes may be novel. 
Also, in view of the controversy mentioned above, it seems worthwhile to restate some of the earlier work and 
apply it to several problems in neutronics. 

2. A BRIEF DESCRIPTION OF THE MASTER EQUATION APPROACH 

Let {X(t)} denote a vector Markov process characterized by W(X[X', t), i.e. the transition probability per 
unit time from a state X' at time t to another state X. We assume that the process is homogeneous so that 
W(XIX') is independent of time. The probability density p(X, t) satisfies the Master equation : 

~p(X, 
- fdX ' [  W(X I X')p(X', t) - W(X' I X)p(X, t)]. (1) 

t) 

Ot 

The transition probability density P(X, t lXo, to)(t > to) also satisfies the same Master equation with the initial 
condition : 
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lim P(X, tlXo, to) = 6 ( X - X o ) .  (2) 
t~t~ 

The equation for the mean is obtained from the Master  equation as : 

dX(t) 
dt  = (q_(X(t)), (3) 

where q_(X) is called the drift vector and is defined by : 

n(X) = J ' d X ' ( X ' -  X) W(X'IX).  (4) 

For  linear systems, such as zero power nuclear reactors without feedback, q(X) is a linear function of its 
argument,  i.e. q(X) - q_0- AX, so that  equation (3) reduces to : 

dX(t) + A,~(t) = qo, (5a) 
dt  

where A may be identified as a relaxation matrix. The steady-state value of the mean, Xo, for linear systems 
is obtained from r/o = AXo. The mean of  the fluctuations defined by ~(t) = X(t) - Xo during transients following 
an initial per turbat ion is thus given by : 

d~(t) 
dt + A ~ ( t )  = O, (5b) 

with a solution 

~(t) :- exp [ -  A t] ~(0). (6) 

In nonlinear systems, equation (3) is not  closed. Therefore, equation (5b) is only approximate  and is obtained 
from equation (3) by expanding about  an equilibrium state X0, given by ~(X0) = 0, and ignoring higher order 
terms in ~_(t) (linearization). The relaxation matr ix in this case is defined as : 

~q(X) 
A 

0X 

The correlat ion matrix ~(t ,  t') is defined by ~(t ,  t') = (~( t )~v( t ' ) ) ,  with the convention t > t'. It  can be 
shown that  in linear systems : 

~(t ,  t') = exp [ -  A ( t - -  t ' ) ]~(t ' ,  t '), t > t'. (7) 

In a stat ionary process, ~( t ' ,  t '), which denotes the variance matrix at  t ' is independent of  time, so that  ~(t ,  t') 
becomes a function of  z = t -  t'. Then equation (7) reduces to : 

~(z) = e x p [ - A z ] ~ ( 0 ) ,  r > 0, (8a) 

@(z) = $ (0)exp[ - -AXlz l ] ,  z < 0, (8b) 

where A T denotes the transpose of A. 
The power spectral density (PSD) matrix G (~o) for the case of a stat ionary process, is defined as the Fourier  

t ransform of  ~(z),  and is obtained from equations (8) as : 

G (co) = [i~o] + A ] -  '@(0) + @(0)[ -  icoD + A v]-  '. (9) 

The static correlat ion matrix @(0) can also be calculated in terms of  the moments  of  the transit ion probabi l i ty  
per unit time. We first consider the non-stat ionary case in which @(t, t) -- ~2(t) = ( c t ( t ) c t x ( t ) )  depends on time. 
The following equation is found : 

d o  ~ 
d ~  = ([1) (X(t)))  + (q_(X(t))~v(t)) + (~(t) r/V(X(t))), (10) 

where 
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D (x)  - JdX'  (x'  - x )  (x'  - x )  T w ( x ' l  X) (1 l) 

and is referred to as the diffusion matrix. The process is not yet assumed to be linear in equation (10). When 
the system is linear, ( l)(X)) is a linear function of X so that (1)(X(t))) = D(~(t)). Hence equation (10) 
reduces to : 

do2(t) 
- ~(,X(t))- A~2( t ) -  ~2(t)/~T, (12) 

dt 

which is coupled to the equation of the mean X(t) = X0+ ~(t) given in equation (5). In the case of a stationary 
process, ~(t) = X0 and o 2 is independent of time, so that: 

D(X0) =/~¢(0)  + ¢(0)/~ T, (13) 

which is often referred to as the generalized Einstein relation, relating the diffusion matrix to the static 
correlation (or variance) matrix and the relaxation matrix &. 

In conclusion, the inputs to the noise analysis in linear systems are/% and D, which can be obtained from 
the description of a given physical system in terms of its parameters, as the following examples will illustrate. 

3. THEORETICAL FOUNDATIONS OF THE LANGEVIN EQUATION APPROACH 

Let ~(t) be a particular realization of a vector Markov random process {X(t)} and operate on it by: 

( d  + A)_~(t) = S(t), (14) 

to produce a new vector random process {S(t)}. S(t) is often called the "noise equivalent source" and equation 
(14) is referred to as the "Langevin equation". The statistical properties of {S(t)} can be determined in terms 
of the properties of the original Markov process {X(t)}. One can show that: 

(i) (S(t))  = 0, (15a) 

(ii) (S(t)ctx(t')) = 0, t > t' (causality), (15b) 

(iii) (S(t)SX(t')) = D(X(t))f(t-t') (white noise), (15c) 

where I)(X) was defined, in general, by equation (11). [Here we assume that the system is linear. The Langevin 
equation description of fluctuations in nonlinear systems is problematic (van Kampen, 1981 ; Akcasu, 1977)]. 
We emphasize that the above properties of S(t) in equations (15) are not introduced as postulates but 
rather derived from the Master equation (Lax, 1960; Akcasu, 1977). In the case of stationary processes 
D(R(t)) = D(Xo) and D(X0) in equation (15c) can be interpreted as the power spectral density Gss of the 
vector noise equivalent source, i.e. 

G ss = fdX(X - X 0) ( X -  X0) T W(X I X 0). (16) 

Equation (16) is what is referred to in reactor noise analysis as the Schottky formula in matrix form. It is the 
1-D form of this that was used by Cohn (1960) as the Schottky formula. 

The important point here is that the PSD of the noise equivalent source is unambiguously defined in terms 
of the transition probability per unit time W(X I X') of the underlying vector Markov process, and that there 
is no way to attach different interpretations to it. Furthermore, the Langevin equation and Master equation 
descriptions are completely equivalent. 

In the Langevin equation description, one regards ~(t) as the response of a linear system with a transfer 
matrix : 

T(s) = [sl +/~]-  ', (17) 

to a random process S(t), so that one can take advantage of the known properties of stable linear circuits 
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when A is positive definite. For example, the PSD of the output process can immediately be written as 
G(co) = -]-(iog)GssTr(--ito) or more explicitly as: 

G (w) = [iwU + A] - ' G ss [ -- iw~ + A T] - ', (18) 

which is identical to the form given in equation (9). In this example, the process is assumed to be stationary. 
Another example illustrating the utility of the Langevin equation method is to multiply equation (14) by ~_x(t') 
where t > t' and average. Using the property in equation (15b), one finds: 

a~(t, t') 
O ~ - + A ~ ( t , t ' ) = O ,  t > t ' ,  (19) 

the solution of which is given in equation (7). 
As a last example, we demonstrate the calculation of o2(t) = (~(t)~T(t)). Using the solution of equation 

(14) as: 

and forming (~(t)~r( t)) ,  one finds: 

~(t) = du exp [ -  A u ] S ( t -  u) (20) 

o'2(t) = d u e x p [ - A u ] D [ ' ~ ( t - u ) ] e x p [ - A T u ] ,  (21) 

where we have used equation (15c) as ( S ( t -  u)sT(t-- V)) = D [~(t--  u)] 6 (v-- u). This is precisely the solution 
of equation (12). In the stationary case D[R( t -u ) ]  = D(X0), and hence 02(0 becomes independent of time. 

From a theoretical point of view, the Langevin equation approach lends itself better to generalizations. For  
example, one can obtain a non-Markovian description of the fluctuations through the so-called "Generalized 
Langevin Equation" derived microscopically from the Liouville equation using a projection operator technique. 
This generalized form has been the starting equation in the study of fluctuations of physical systems in statistical 
mechanics for the past 30 yr (Mori, 1965). 

4. THE CONNECTION BETWEEN COUNT-RATES AND ACCUMULATED COUNTS 

The statistical description of the detection process always involves the statistical properties of both the count 
rates I(t) and the accumulated counts D(t) in a time interval (0, t) : 

D(t) = du I(u), t >t O. (22) 

The variance a~o (t) of the accumulated counts is related to the variance C~(t) of  the detection rate by:  

a~D(t) = du ( t - - lu l )G(u) ,  t >i O, (23) 
t 

where we have assumed that the count rate fluctuations are stationary. By differentiating once for values of 
t > 0, one finds : 

f_ dai~D(t) = duCi(u),  t > 0. (24) 
dt t 

Differentiation once more yields : 

1 d2t~2DD(t) 
C , ( t ) - - 2  dt 2 , t > 0 ,  (25) 

which is often used to calculate C I (t) from the variance of the accumulated counts (Pluta, 1961). This relation, 
however, must be used with care since it yields C~ (t) only for t > 0 [and also for t < 0 because Cj (t) = C1 ( - t ) ]  
and its limit as t ~ 0 fails to reproduce the correct behavior of Cj(t) at t = 0 if C~(t) contains a dirac delta 
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function at t = 0. Indeed, if Ci(t) is replaced in equation (23) by cR( t )+Xf ( t ) ,  where cR(t) is finite at t = 0, 
and X is a constant, one finds that the singular term does not contribute to equation (25). This implies that 
the limit of C~(t) as t --} 0, calculated from equation (25), yields only the regular part, CIR(t), at t = 0. The 
singular part can be determined from equation (24), which becomes : 

da~o(t) f '  d ~  - X +  duCR(u), t > 0, (26) 
t 

where G(t) = X f ( t )+  cR(t). Hence, by taking the limit as t ~ 0 +, one obtains: 

X = limit da2oo(t). (27) 
,~0 + dt 

This result also implies that the power spectral density of the count rate fluctuations is of the following form : 

G,,(w) = X+ G~(oo). (28) 

Hence, X can be interpreted as the power spectral density of the singular part of C~(t). fit seems that this term 
has been missed by Difilippo (1988) in his derivations ; cf. equation (9).] In reactor applications, the physical 
origin of the singular part of the PSD of the count rates is the probabilistic nature of the detection process. 
Consequently X is often called "detector noise". The flat spectrum in G~(co) was observed in the power spectral 
density of the fluctuations in the flux of nuclear reactors by Nomura (1965). 

5. APPLICATIONS 

5.1. One-yroup, bare, po&t reactor model without delayed neutrons 

5.1.1. In-Core Detector 

Method 1. For this reactor model, the expression for the power spectral density of  the count rate fluctuations 
will be obtained using the Master equation approach. The same problem will then be solved using the Langevin 
equation method, emphasizing the equivalence of the two approaches. 

The state of the system X(t) can be written as : 

X(t) = I N ( t ) ]  (29) 
LO(t) I ' 

where : 

N(t) = number of neutrons in the reactor at time t, 
D(t) = number of neutrons detected in the time interval (0, t). 

The events resulting in a transition of the state of  the system, as well as the corresponding transition probabilities 
per unit time, W(N, D I N',  D'), are listed in tabular form below. It is these transition probability rates that 
define the power spectral densities. 

Event 
Capture 
Detection 
Fission 
Source 

where : 

W(N, D I N', D') 
rcN'J(N, N ' -  I)6(D, D')  
rDN'f(N, N ' -  1)6(D, D ' +  !) 
rrN' pr(v)f(N, N" + v - 1)6(O, O')  
Sops (m)f(N, N'  + m)f(O, D') 

rj = probability per unit time of  event " f '  ( j  = C, D, f ) ,  
So = probability per unit time that a source event takes place, 

pr(v) = probability of  v neutrons produced during a fssion event, 
p~(m) = probability of m neutrons produced during a source event 

and 3 is assumed to be the Kronecker delta function, unless otherwise specified. 
The power spectral density, G,(og) (where i(t) = (dD(t)/dt)-(d(D(t)>/dt)  = detector count rate fluctu- 

ations), can be calculated by first determining the following quantities : 
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• Drift vector : 
From equation (4), we find : 

A. Z. AKCASU and A. STOLLE 

u~, o [ N ' - N ] w ( N ' , D ' I N ,  D) t l(N'D)= , D ' - D  

L I+L o j, (30) 

where a = (r¢+rD+rf)--~rr = rt--~rr. We observe that q_(X) is indeed a linear function of X in the form 
q = ~/o-AX with qo = [Sorn, 0] T and 

/ ~  ~ _ r  D • 

Note that A is not  a positive definite matrix when the accumulated counts D(t) are included in the state vector 
as one of its components.  

• Diffusion matrix : 
For  this system, equation (11) reduces to : 

I - N ' - N - ]  , 
D(N,D) = N~D, LD, DI[N - N , D ' - D ] W ( N ' , D ' [ N , D )  

[aN + rfN~v(v- l ) + S o T  --rDN] 
= L --roN roN J" 

(32) 

We observe that D(N, D) is a linear function of N, D. It is, in fact, independent of D. The equations for the 
variances can now be found from equation (12). This gives : 

dff2N 

dt 
2arran +rrNv(v- 1) + S 0 ~  + a f  r, (33) 

d~D 
- 2 2 - rt)N--aaND+rDaNN, (34) 

dt 

da2D -- 2rDa2D +rDN-. (35) 
dt 

When we consider a system that is stationary, d.N/dt = 0 and da2N/dt = 0, and the steady-state neutron 
number  density becomes N" = No = Sorh/a. Thus, the variance of the accumulated counts C~ (t) can be calculated 
from equations (25) and (27) where one finds : 

Cl (t) = roNo~(t) + r2D (a2NN -- NO) e ~1,1 (36) 

and the power spectral density becomes 

Gii(c,o) = roNo l + r D  Noo --1~ ] 
2a 

] a:  + ~o2j, (37) 

where 

~N r~V(V-- 1) + ~ m(m -- 1~ 
N~- - 1 = 2a ' (38) 

which is the usual result for the variance-to-mean ratio. Equation (37) differs from equation (11) of Difilippo 
(1988) in that the constant  term does not  appear in the latter. 

Method 2. The same reactor model is again considered as in Section 5.1.1, Method 1, but  the power spectral 
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density of  the count rate fluctuations is now obtained using the Langevin equation method. We immediately 
write equation (14), the stochastic equations for fluctuations in the state vector, as : 

where 

and 

dfiN(t) 
d ~  + afiN(t) = SN (t), (39a) 

dfiD(t) 
dt rDfiN(t) = SD(t), (39b) 

~(t) = [ f i N ( t ) ]  [- N(t)--No ] 
- L f i D ( t ) J  = ED( t )  - b( t ( t ) j  

S(t) = [- -]/SN(t)/ = noise equivalent source. 
LsD(t)d 

(40) 

(41) 

The fluctuation in the detector count rate is identical to dfiD(t)/dt, and equation (39b) can be rewritten as : 

iD(t) = rDfiN(t) + SD(t). (42) 

so that  

fiN(t) = e-"" sN (t - u) du, (47) 

• ( f iN(t)so(t ' ) ):  
We can write fiN(t) as : 

We can now write the correlat ion function as : 

(io(t)iD(t')) = r~( fN(t) f iN(t ' ) )+ro(f iN(t )sD(t ' ) )+rD(f iN(t ' )sD(t) )+(SD(t)sD(t ' ) ) .  (43) 

Each of  the terms in equation (43) are evaluated by employing the statistical properties of S(t) presented in 
equations (15). The power spectral density matrix for the noise equivalent source in equation (16) becomes:  

Gss = [ Gss --roNo~ 
L-- rDNo roNo j ,  (44) 

where Gss is the PSD of  the noise equivalent source, SN (t), appearing in the neutron balance equation [equation 
(39a)] and is found to be:  

Gss = rc No + roNo + (v -- 1 ) 2rrNo + S o T  

= aNo + v(v - 1)rrN0 + Sore 2 

= v(v-- 1)rrNo+Som(m+ 1) 

= 2aNo + v(v - l)rrN0 + Som(m - 1 ). (45) 

All the forms given for Gss are identical and correct. There is no need to introduce different interpretat ions 
of the Schottky formula as done by Difilippo (1988) [see equations (13) and (14) of  the cited reference]. The 
Schottky formula is defined, in general, by equation (16) in vector form and leaves no room for interpretation. 

• (f iN(t)f iN(t '))  : 
The power spectral density of  3N(t) can simply be written as : 

Gss 
GNN(¢O) = (fim(o~)fim*(¢o)) - a2 +to2 , (46) 

where the different forms of Gss are given in equation (45). 



500 A.Z .  AKCASU and A. STOLLE 

(rN(t)SD(t')) = e -°" (SN(t-- U)SD(t')) du 

= --roN0e a(t-c) for t > t' 

= 0  for t < t ' ,  (48) 

where we have used (SN (t-- U)So (t')) = -- roNof(t-- t'-- u) which follows from equation (44). 

• (6N(t')sD(t)): 
In the same way : 

(rN(t')sD(t)) = --rDNoe -"lt-' 'l for t' > t 

= 0 otherwise. (49) 

• (SD(t)st)(t')) = rDNor(t-- t'). (50) 

The power spectral density for the count rate fluctuations can now be obtained from equation (43) using 
the above results : 

Gi,(o)) = r~GNN (CO) -- r&No ~ -- r2No 1 + roNo 
a+ io9 

r2 Gss 2ar~DNo 
-- Da2d_~  2 a2d_fD 2 FrDNo, (51) 

or finally 

I r f v ( v - - 1 ) + ~ ° ° ~ ]  (52) 
G,,(co) = rDNo 1 +rD ~ - ~  j ,  

which is identical to equation (37). The cancellation of 2aNo in the expression for Gss in equation (45) by the 
terms arising from the negative cross correlation of SN(t) and sD(t) given by equations (48) and (49) [see also 
equation (51)] is to be noted. This cancellation corresponds to detection by removing a neutron. 

We are now in a position to discuss the controversial point of interpreting the Schottky formula in two 
di'Yerent ways. To do so, we first rewrite equation (52) as : 

G,,(o~) = G D (oJ) + G ~ (co), (53) 

where G~(co) = rDNo and accounts for the direct contribution of the detector noise so(t) in equation (39b), 
to Gii(~o). Although this term is not present in the expression for the APSD of the detection rate in equation (12) 
by Difilippo (1988), its absence is not relevant to the controversy. The second term contains the contributions of 
both the detector and neutronic noise, so(t) and SN(t) appearing in equations (39), and is found in the present 
example to be : 

r~ 
N G~s, (54) G~, (~) - a2+co2 

where the first factor is the magnitude of the transfer function from SN (O9) to the detection rate iD(~O). The 
factor G~s reduces to : 

G'ss = Som(m- 1), (55) 

in the absence of fission, as was the case in equation (1 l) by Difilippo. Equation (55) is not equal to the PSD 
of the original neutronic noise equivalent source, which was calculated in equation (45) to be : 

Gss = Som(m + 1), (56) 

in the absence of fission. [Equation (56) is the form appearing in equation (10) by Difilippo when a neutron 
is not removed by detection.] Two different interpretations of the Schottky formula are now introduced by 
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Difilippo (1988) to account for these two different forms in equations (55) and (56). However, there is no need 
for such an interpretation since the form for G~s is obtained directly as : 

G~s = Gss -  2aNo, 

when one accounts for the cross correlation in detector and neutronic noise which arises when a detector 
removes a neutron upon detection. Therefore, resorting to "recipes" for finding the correct form for G~s is 
not necessary and would prove confusing and difficult to do for every mode of detection. Since the Schottky 
formula in equation (16) yields the PSDs of the noise equivalent sources in the stochastic Langevin equations, 
it is not clear how to associate G~s with a noise equivalent source in these equations. The vector Langevin 
equation method, however, can be applied directly once the events and their corresponding transition prob- 
ability rates are correctly identified for a given physical model of detection, as the following examples will 
illustrate. 

5.1.2. Sin9& Out-of-Core Detector 

When the detector is outside of the core, one must first obtain the statistical properties of the leakage current, 
such as its power spectral density, because detectors are driven by the neutrons that escape the core. Since the 
core is assumed to be bare (vacuum), we can no longer use diffusion theory outside the core where the detector 
is assumed to be located. The statistical properties of the fluctuations in the leakage rate can easily be obtained 
from the treatment of in-core detection by simply replacing rD by rL, the probability per unit time that a 
neutron will leak out of the core. Hence, one can now write directly from equation (52) : 

l - So - - - - ]  rrv(v-  1) + A r m ( m -  1) 
1 ,  o 

G,L,L(O)) = rLNo l+rL U + O 2  j .  (57) 

A neutron that leaks out will either be detected instantaneously (ignoring transit times in free streaming) 
with probability p, or will be lost permanently. Therefore, the detection must be treated as a part of the leakage 
event. We shall see that the situation is different when the out-of-core detector is located in a reflector. Before 
we obtain the statistics of the count rates for a single out-of-core detector directly from the statistical properties 
of the leakage current, we shall first present a method which is analogous to the one we used in the case of the 
in-core detector. 

Method 1. We redefine the leakage event in the core as one in which the number of neutrons in the core 
decreases by one and the number of accumulated counts in the out-of-core detector increases by e with 
probability P(0. Here e will have values 0 and 1 and P(e = 1) = p = detection probability. The similarity 
between the treatment of this extended leakage event and a source event is to be noted. We therefore write the 
transition probability per unit time associated with the leakage event as : 

W(N, DIN' ,  O') = rLN'P(~)f(N, N' - 1) 6(O, D' + 0 -  (58) 

The transition probabilities of the other events remain unchanged. The components of the drift vector now 
become : 

r/N = same as in equation (30), (59a) 

where a in this case becomes a = (rc + re + re) -  ~Trr. 

~lo = ~. ( D ' - D ) W ( N ' , D ' [ N , D )  = rLN~e(~)e  
N' ,D '  r 

= rLU[p" 1 + (1 --p) "0] 

= prLN. (59b) 

The elements of the diffusion matrix can be found as : 

DNN = same as in equation (32), 

ANE 16/lO-B 

DND= ~ ( N ' - N ) ( D ' - - D ) W ( N ' , D ' ] N , D )  
N' ,D '  

(60a) 
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= -- rLN~ P(e)e 

= --prLN 

= DDN, (60b) 

DDO= ~ ( D ' - D ) 2 W ( N ' , D ' I N ,  D) 
N ' , D '  

= rLN~ P(e)e 2 
e 

= prLN. (60C) 

The PSD of the detection rate can be written immediately by replacing r E in equation (57) by pr L and hence : 

1 So - - 7  
rrv(v- )+ Nom(m - 1) / 

GioiD(o)) = prLNo 1 +prL a2+(o2 -_], (61) 

for an out-of-core detector. 
Method 2. This method is simpler and yet more physical. It relates the PSD of the detection rate to that of  

the leakage rate. We can visualize the leakage current as a sequence of random points on the time axis and 
express the instantaneous value of the leakage current IL(t) as: 

IL(t) = ~ 6(t-- tk), (62) 
k 

such that (IL(t))  = rLNo is the mean count rate. Equation (62) is nothing more than an expression for the 
instantaneous number  density of points on the time axis. The autocovariance function of Ie(t) is given [see 
equation (57)] by:  

r r v ( v _ 1 ) + ~ o ~ m _ 1 )  J 
(iL(t)iL(t')} = reNo 6(z)+re 2a e ,,~b , (63) 

where z = t - t ' .  The detection rate lo(t) can also be expressed as the sum of delta functions by : 

Io(t) = ~ ekf(t-- tk), (64) 
k 

where the random points tk again represent the instants of time when a neutron escapes the core. The ekS, with 
probability P(ek), indicate whether a neutron that escapes the core at t = tk is detected (~  = 1) or lost (ek = 0). 

NOW the calculation of the power spectral density of the detection rate is reduced to simple manipulations. 
The mean detection rate of equation (64) is just ( ID) = preNo, where we use ( ~ )  = p. The autocorrelation 
function follows as : 

( lo(t)lD(t') } = E (eg~k'6(t-- tk)f(t'-- tk') }. (65) 
k ,k"  

The ensemble average on the right-hand-side can be written as the product of the averages (ek/3k,) and 
( 6 ( t - t  g)6(t '- t~,)} because the random variables {ek} and the point process {tk} are independent of each 
other. Hence, separating the diagonal term with k = k'  and using (e2} = p and (ekek, ~ = p2 for k ~ k', we 
find : 

(Io(t)ID(t')} = p f( t-- t ' )rLN o + p 2 ~  .~ f(t--tk) f ( t ' - -  tk,)~. (66) 
k I 

k ~ k "  

Adding and subtracting when k = k'  in the second term, one obtains an interesting result : 
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( ID(t)Io(t') ) = p( l  --p) 6(t-- t')rL N o + p2 ( IL(t)IL (t') ), (67) 

which relates the autocorrelation functions of the detection rate and the leakage current. The presence of the 
term with 6 ( t - t ' )  and its coefficient p(1 - p )  is particularly to be noted. When p = 1, this term vanishes, as it 
must, because in this case ID(t) -- IL(t). 

The remaining task is to calculate the autocovariance and PSD of the detection rate by first subtracting 
the mean values of IL (t) and ID (t), and working with fluctuations iL (t) = IL (t) -- rLN0 and iD (t) = ID (t) --prL No. 
One finds : 

( iD(t)io(t + r) ) = p(1 --p) 6(Z)rL No + pZ ( iL (t)iL(t + z) ). (68) 

The PSD calculated from equation (68) is identical to equation (61). 

5.1.3. Two Out-of-Core Detectors 

This method is easily extended to calculate the cross power spectral density (CPSD) of two detectors by 
writing the detection rates in detectors 1 and 2 as : 

lol (t) = ~ 6(t-- tk)g~ '), 
k 

ID2(t) = ~6( t - -  tk)~ 2). (69) 
k 

Using (~ '~ )  = p, and (e~ 2)} = p> 

(~o~0) = PiP: k ~ k', 

(e.~i)g(k:~) = pj i = j 

= 0 i 4: j .  (70) 

The last equality indicates that a particular neutron emitted at tk cannot  be detected in both detectors. With 
these observations and with the procedure described above, one finds : 

( io, (t)iD2(t + z) ) = p,p2( iL (t)iL (t + z) ) - -  ptpZrL Nob(Z) (71) 

and 

Gio,io2(o9 ) = P IP2r 2 rrNov(v- 1) + S o m ( m -  1) a2 + °~ 2 (72) 

It is noted that, in this case, the detector noise term is absent. These results have been observed experimentally 
by Nomura  (1965). 

5.2. One-group, reflected, point reactor model without delayed neutrons with a detector in the reflector 

The core is now surrounded by a reflecting medium which contains the neutron detector. Once again we 
seek the expression for the power spectral density of the detector count  rate fluctuations. The situation is 
different from the out-of-core detector case in the bare core model. A neutron, upon leaking out  of the core 
into the reflector, diffuses and may be captured, reflected or detected with a finite probability per unit  time rj, 
where j once again denotes the particular removal event. Its detection or escape is no longer instantaneous. 
In this respect, the present model physically illustrates the opposite extreme of instantaneous detection of 
neutrons leaking out of the core. 

We now write the state of the system as : 

x( t )  = ] N . ( t ) | ,  (73) 
1 1 
LD(t) J 

where 

Nc(t) = number  of neutrons in the core at time t, 

NR(t) = number  of neutrons in the reflector at time t, 

D(t) = number  of neutrons detected in the interval (0, t). 
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The transition probabilities per unit time corresponding to all possible transitional events in this reactor model 
are tabulated below. 

Event 
Core 

Capture 
Fission 
Source 
Leakage 

Reflector 
Reflection 
Capture/loss 
Detection 

W ( N o  NR, DIN'c, NR,D" ' ) 

r¢N'cf(Nc, N ' c -  1)6(NR, N'a)6(D, D') 
rrN'cpr(v)tS( Nc, N'c + v-- 1)6 (NR, N[)6(D, D') 
SoPs(m)f(Nc, N'c + m)f(NR, N~)6( D, D') 
rcRg'c6(Nc, N'c - I)6(NR, N~ + l)6(D, D') 

rRcN~5(Nc, N'c+ 1)6(NR, NR -- 1)5(D, D')  
rRo~N'Rf( Nc, N'c)f( NR, N'R-- 1)6(D, D') 
rDN~(Nc,  N~)f(NR, N~. - 1)~(D, D ' +  1) 

The stochastic equations for the fluctuations in the state vector quantities from their respective equilibrium 
values can now immediately be written as : 

dnc(t) 
dt 

- anc(t) + rRcnR(t) +SN(t) (a = r c +rCR +rf--~rf), (74) 

dnR(t) 
dt - --bnR(t)+rcRnc(t) +SR(t) (b = rRC+rR~ +rD), (75) 

dfD(t) 
dt - rDnR(t)+sD(t), (76) 

where 

rnc(O] [-Nc(t)-No] 
q 

Lt~D(t)/ LD(t) --/)(t)d 

(77) 

[SN(t)] 

s(t) --/s.(t)/= noise equivalent source 
/ / 

Lsg(t)J 

and, from equation (15c), we know (S(t)sT(t ')) = U)~(t))f( t--t ' ) ,  where: 

(78) 

[ 2a-Nc + rfgcv(• - 1) + Som(m - 1) 

D(R(t)) = - (b + rRC)ArR 

0 

--(b+rRc)NR 0 ] 

2b-NR - rDNR • 

--rD/V R rolV R _1 

By following the same procedure as in Section 5.1.1, Method 2, namely, by applying the Langevin equation 
method to this reactor system, we can express the PSD of the detector count rate fluctuations as : 

G.(co) = r2(lnR(O~)lZ)+2rD Re [(nR(Og)S*(~O))] + (IsD(~O)I 2) (79) 

and one finds, through some straightforward manipulations, that the PSD becomes : 

Gii(0)) = rDNR 1 +rcRrDb ~(~3T~ j ,  (80) 



Noise equivalent source in the Langevin technique 505 

where 

A(to) = (a + io9)(b + Ro) - rcRrRc. 

5.3. One-group, bare, point reactor with three detectors 

In this section, we consider two out-of-core detectors and a third in-core detector which exclusively detects 
the occurrence of a source event. The CPSD of these detectors is calculated in order to determine a ratio of 
power spectral densities that has been used for experimental determination of core reactivity in subcritical, 
252Cf source-driven systems (Mihalczo et al., 1987). This ratio is especially ingenious since it is independent of 
the out-of-core detector efficiencies. This application is included here to clear up any controversy that may 
have arisen over the calculation of this CPSD ratio. We consider the simplest reactor model in order to 
demonstrate how the general formulation we presented above can be implemented to calculate the CPSDs. 
We do not  consider such refinements as neutron importance and the transfer functions of the electronic 
components for the sake of clarity, because these refinements are not  controversial (Difilippo, 1988 ; Mihalczo 
et al., 1987). 

For  this reactor system, the state vector is written as : 

I N(t) 
/ D , ( t )  

X ( t ) =  /D2( t )  ' (81) 
! 
lO3(0 

where N(t) and D(t) are defined as before, but now accumulated counts are defined for detectors 1 (in-core 
source detector), 2 and 3 (out-of-core detectors). A source event can now be described as one in which the 
number  of neutrons in the core increases by m and the number  of accumulated counts in detector 1 increases 
by e ~, where e~ assumes values of 1 and 0, depending on whether or not  the source event is detected. As before, 
we define p ( ~  = 1) = p~ = source detection probability. The transition probability rate of the source event 
can then be written as : 

W~ . . . .  (N, DI ,D2 ,DsIN ' ,D ' t ,D '2 ,D '3 )  = Sop~(m)p(~Of(N,N'  +m)f(D~,D'~+et)6(D2,D'2)6(D3,  D'3). (82) 

A leakage event is defined as one in which a neutron leaves the core and is either counted in detector 2, counted 
in detector 3 or not  counted at all. The transition probability rate for this event can be expressed as : 

W~ak,g~ (N, O~, 02,  D3 IN',  D'~, D~, D~) 

= rLN'p(~z ,~3)6(N,N '~I )6(D, ,D 'Of (D2,D'2+e2)6(D3,D'3+e3) .  (83) 

The calculation of the necessary power spectral densities is performed by following the previously outlined 
Langevin method. We can write down the fluctuation v'ector as ~(t) = col [rN(t), 0Dr(t), 6D2(t), 6D3(t)] and 
the noise equivalent source as S(t) = col [sy(t),So~ (t), sm(t),So3(i)]. The appropriate stochastic equations in 
this case are : 

dbN(t) 
dt - a 6N(t) + SN (t), (84a) 

dbD 1 (t) 
- So, (t), (84b) 

dt 

dbD2(t) 
dt - p2rerN(t)  +sin( t ) ,  (84c) 

dbD 3 (t) 
dt - p3rLbN(t) +SD3(t). (84d) 

Here Pl (i = 2, 3) is defined as the probability of  neutron detection for detector i. The diffusion matrix is then 
found to be : 
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-a~:+v(v -  1 ) r r N + S o ~  plr~So 

D(X) = Gss = PithS° plSo 
--p2rLIV 0 

--p3rLIW 0 

The ratio of  power spectral densities to be calculated is defined by : 

G*2(co)G, 3(fo) 
S R - 

Gj~ (co)G23(¢o) ' 

--pRrLIV --p3rL]~ " 

0 0 

p2rL]V 0 

0 p3rL]~ 

(85) 

(86) 

where GI2(Co) and G~3(o9) are the CPSDs for the in-core and each of the out-of-core detectors, G23((.o) is the 
CPSD between the out-of-core detectors, and G ~ ~ (09) is the auto power spectral density (APSD) of the in-core 
source detector. The transition probability rates uniquely define these PSDs to be : 

G~(co) = p~ So, (87a) 

p lp2rLr~So(a-- ico) 
G, 2(~o) = a2 d_ o92 , (87b) 

p iP3rLfflSo (a-- io9) 
G i3(:-o) : a2 + 092 , (87c) 

The ratio SR now becomes : 

p2p3r~[v(v- l)rr~-+ S o m ( m -  1)] 
G23(09) = a 2 +092 (87d) 

plr~2So 
SR - _ _  (88) 

v ( v -  1)rrN+ Sore(m- 1) 

This method for measuring subcriticalities of an assembly of fissile material has been studied and performed 
at ORNL (Mihalczo et al., 1987). We find that the ratio of CPSDs, SR, in a paper by Mihalczo et al. (1987) 
differs from the calculation of our ratio in equation (88). In equation (A.5) of this reference, the denominator  
does not  vanish when v = 1 and m = 1. 

5.4. Bare source with three detectors 

In this section, we calculate the CPSD ratio, SR, for a bare source accounting now for the angular correlation 
of the emitted source neutrons. We define a source event as a sequence of random points on the time axis. At 
each random point  tk, mk neutrons are produced, m2k of which are intercepted by detector 2 and e2k of m2k 
are detected instantaneously. Also, m3k of the mk neutrons are intercepted by detector 3 where e3k of rn3k are 
detected simultaneously. Each source event is either recorded in detector 1 (e ~k = 1) or not  recorded (e ~k = 0). 
The appropriate state vector in this problem is : 

IDa( t ) ]  
X(t) = ]D2( t ) ] .  (89) 

/ / 
LD3(t)I 

The associated transition probability per unit time for this single, extended source event can be written as : 

W(D,, D2, D3 I D ; ,  D L  D%) = Sop(e,, e2, e3, m2, m3, m, O) 6(D~, D'~ + e 1) 6(D2, D'2 +e2) 6(D3, D~ +e3). (90) 

The joint  probability distribution function in equation (90) can be broken up as : 

p(ej,  e2, e3, m2, m 3 ,  m ,  0) = p(el)B(e2 I m 2)B(/~3 ]rn3)p(m2, rn 3, O lm)p(m), (91) 

where B represents the binomial distribution. Here we assume that the detectors are perfect so that neutrons 
impinging on them can be counted independently with the same probability (no dead time, etc.). For  this 
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system, the drift vector simply reduces to r/(X) = qo = Socol [(e ~), (~2), (~3)], SO that the relaxation matrix 
becomes A = 0. The elements of the diffusion matrix can be written as : 

Dij = (ei~j)So, (92) 

so that the solution of this problem reduces to the evaluation of (eie/) for i , j  = 1,2, 3. One could now write 
the stochastic equations for the fluctuations in the state vector and continue with the Langevin equation 
method as discussed above. One finds that the PSD matrix G of the detector rates is simply equal to the 
diffusion matrix. We, however, return to the problem formulation that was originally introduced to calculate 
the CPSD ratio, SR- 

Since the detection rate in all three detectors can be represented as a sequence of random points on the time 
axis, we can define the following detector count rates as : 

Ir),(t) = ~ eik 5(t-- tk), (93) 
k 

where i ( =  1,2, 3) represents the particular detector. As we did in the previous two-detector problem, we now 
apply equation (93) and cross-correlate fluctuations in the detector count rates to determine the desired PSD 
matrix. We find that the APSD for detector 1 becomes : 

G~ ~ = (e.~)So = p,So.  (94) 

In addition, the CPSDs of the in-core and out-of-core detectors are found to be : 

GI2 = (~: lg2)S0,  (95) 

G, 3 = (e I e 3)S0. (96) 

We can determine (ele2) and (ele3~ using the joint probability distribution in equation (91) to obtain the 
following results : 

a l 2 = P lP 2~'~EfflSo, (97) 

GI3 : plP3~)3fflSo, (98) 

where ~ is the probability that an original source neutron will be intercepted by detector i. 
Finally, the CPSD between detectors 2 and 3 was found to be : 

G23 = (g.2~..3)S0 

= p2p3f~2f~3m(m- 1)G(O)So, (99) 

where G(O) is a function which depends on the angle between detectors 2 and 3 as discussed by Difilippo (1988). 
The form of equation (99) can be obtained if: (1) one assumes a binomial distribution for p(m2, m3, O Ira) ; or 
(2) by the argument that (~2~3) depends, in general, on the number of source pairs produced ( r e (m-  1)), the 
probability of source interception by each of the out-of-core detectors, and some function of the angle between 
the two detectors. 

The CPSD ratio immediately reduces to : 

plff /2 
SR -- m(m--  I ~ G ( 0 ) "  (100) 

Although the constant spectrum accounting for detector noise was absent in equation (12) by Difilippo (1988) 
for the APSD, equation (100) is identical to Difilippo's (1988) results in equation (47), since the detector noise 
term vanishes when cross correlations are used. However, this result is at variance with equation (A.5) by 
Mihalczo (1987). 

6. DISCUSSION 

The main idea behind the Langevin equation approach to the calculation of power spectral densities of 
fluctuations of dynamical variables in linear systems is to regard these fluctuations as the response of the 
systems to a set of stochastic inputs, referred to in nuclear engineering as the noise equivalent source (NES). 
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The PSD matrix of the dynamical variables can then be expressed in terms of the transfer matrix of the time- 
invariant linear system and the PSD matrix of the vector NES. We have emphasized in this paper that the 
Langevin equation method and the Master equation approach are equivalent to each other, provided the 
fluctuations in the dynamical variables can be considered to be a vector Markov process. Then the PSD matrix 
of the NES in the stochastic Langevin equations is unambiguously determined in terms of the transition 
probability rates of the underlying vector Markov process. The relationship between the PSD of the NES and 
the transition probability rates has been customarily referred to in nuclear engineering as the Schottky formula. 
Its 1-D form was used by Cohn (1960) to calculate the PSD of the fluctuations in the number of neutrons N(t) 
in a point reactor.t We think that the ambiguity of having to introduce two different interpretations of the 
Schottky formula depending on the mode of detection or the location of the detector might have arisen from 
trying to express the PSD of the detection rates in terms of the PSD of a fictitious NES in the neutron balance 
equation, rather than using the multi-component (N(t) and D(t)) Langevin description. The examples we have 
considered have hopefully demonstrated that the Schottky formula (if one wishes to give a name to it) in vector 
form can be used for all modes of detection and detector locations. Some of the examples we considered were 
chosen to point out the subtleties involved in calculating the PSD of the detection rate when the detector is 
outside of the core. The distinction between the in-core and out-of-core detector cases arises only in the 
diffusion approximation. If one uses the stochastic transport equation to describe the fluctuations in the space- 
and velocity-dependent neutron density, this distinction becomes moot, because one can always define the 
outer boundary of the reactor to include the detectors. The PSD of the noise equivalent source in the stochastic 
Boltzmann equation with and without delayed neutrons is available in the early literature on reactor noise 
analysis (Matthes, 1962; Natelson et al., 1966; Sheff and Albrecht, 1966; Akcasu and Osborn, 1966; Saito, 
1967). However, the calculation of the PSD of the detection rate at the transport level is complicated, and 
therefore simple reactor models are often preferable and in fact often sufficient to interpret the noise experiments 
if high numerical accuracy is not an issue. 
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