
Inr. J .Von.L~ruw .Uecknrcs. Vol. 2% No. 6. pp. 521-536. 1989 OOW74662 89 5100 .-0.00 
Printed m Cire~t Bci~atn. Perpmon Press pk 

MATERIAL SYMMETRY AND THE EVOLUTION OF 
ANISOTROPIES IN A SIMPLE MATERIAL-I. CHANGE 

OF REFERENCE CONFIGURATION 

MEHRDAD NEGAHEAN* and ALAN S. WINEMAN 
Department of Mechanical Engineering and Applied Mechanics. The University of Michigan, 

Ann Arbor, MI 48109, U.S.A. 

(Receired 18 October 1988; in rerisedform 10 March 1989) 

Abstract-Nell’s rule is used to determine the structure of a material symmetry group written with 
respect to one reference configuration when the rep~sentation of the symmetry with respect to 
another configuration is the traditional material symmetry group associated with isotropy, trans- 
verse isotropy or orthotropy, and for an arbitrary deformation gradient relating the two configur- 
ations. It is shown that the former symmetry group can contain an orthogonal subgroup. It is 
determined whether this subgroup is that for isotropic, transversely isotropic. orthotropic, mono- 
clinic, or triclinic response. and the preferred directions of the symmetry are determined. 

1. INTRODUCTION 

In the theory of constitutive equations, a material’s symmetry properties are described by 
specifying a reference configuration and a set of linear transformations which map the 
reference configuration onto mechanically equivalent configurations. This set of trans- 
formations forms a material symmetry group. If the reference configuration is changed, 
there will be a different material symmetry group representing the same material symmetry. 
No11 [i) has presented a rule which expresses the second material symmetry group in terms 
of the first and in terms of the deformation gradient of the mapping between the two 
reference configurations. 

Though Noll’s rule has long been available, it has not been gainfully exploited in 
determining the properties of the second material symmetry group. For instance, consider a 
material whose symmetry group with respect to some configuration is the full orthogonal 
group, i.e. that for isotropy. Let a new reference configuration be introduced by a mapping 
corresponding to that of uniaxial extension. It is commonly assumed that the material 
symmetry group for this new reference configuration is that for transverse isotropy. This 
common perception is incorrect. An application of Noll’s rule shows that the new symmetry 
group contains those orthogonal transformations which describe transverse isotropy, and 
also unimodular non-orthogonal transfo~ations. A detailed discussion of this case, as well 
as the corresponding implications for representations of constitutive equations has been 
given by Wineman et al. [2]. 

In the present work, we use Noll’s rule to determine the structure of the material 
symmetry group associated with a new reference configuration when the original material 
symmetry group is that for isotropy, transverse isotropy or orthotropy, and for an arbitrary 
deformation gradient relating the two configurations. In particular, we show that the new 
symmetry group contains an orthogonal subgroup, determine whether it is that for 
isotropic, transversely isotropic, orthotropic, monoclinic, or triclinic response, and deter- 
mine the preferred directions of the symmetry. 

Fundamental remarks and terminology are introduced in Section 2, Nell’s rule in 
Section 3. A property of material symmetry groups is discussed in Section 4. In Section 5 we 
introduce the notion of the apparent material symmetry group, i.e. the orthogonal sub- 
group. In Section 6 we establish a property satisfied by the transformations of this apparent 
material symmetry group. This property is exploited by the use of anisotropic tensors, 
which are reviewed in Section 7. We also present symmetry transformations and anisotropic 
tensors for triclinic, monoclinic, orthotropic, and transversely isotropic materials. In 
Section 8, a method is established for solving for the transformations which satisfy the 
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above-mentioned property. These results are applied, in Sections 9-l 1, to the determination 
of the apparent material symmetry groups for isotropic materials, transversely isotropic 
materials, and orthotropic materials, respectively. 

2. FUNDAMENTAL REMARKS AND TERMINOLOGY 

This section is devoted to the development of the idea of material symmetry (MS), which 
is a statement on the mechanical equivalence of neighborhoods (nbhds) of a material point. 

The nbhd of influence of a particle X is an ordered set which contains all material points 
which directly influence the response at particle X. We will denote the nbhd of influence of 
particle X in configuration K by N,(X). ,VK(X) is ordered by how these material points 
appear in configuration K. Figure 1 shows two representations of the nbhd of influence of 
particle X. 

For a simple material,’ the nbhd of influence is defined to be the smallest nbhd of the 
particle under consideration. From this point on we will use the term nbhd when we 
actually mean the nbhd of influence in a simple material. We shall also cease all reference to 
the particular material point under consideration, although there is always a single material 
point under consideration. 

An MS represents a reorganization of the nbhd which leaves the reorganized nbhd 
mechanically indistinguishable from the original nbhd. MS can be seen in a crystalline 
material where a well-defined symmetry exists between the arrangement of the molecules on 
a molecular level, or it can be seen in an amorphous polymer on a macromolecular level- 
even without a molecular level structure-due to the random orientation of long-chain 
molecules. In a continuum model, we are strictly concerned with the macroscopic response 
of the material and we will define MS strictly in regards to this macroscopic response; that 
is, an MS represents a reorganization of the nbhd which leaves the reorganized nbhd 
indistinguishable from the original nbhd in its macroscopic response to all possible histories 
of events. We will consider these two nbhds-the original nbhd and its reorganization-to 
be two materially equivalent nbhds. This definition of MS allows the consideration of all 
different levels of symmetry-from the microscopic to the macroscopic-without ignoring 
the influence of interaction between different levels of structure-or lack of structure-in 
the actual material. 

To represent an MS, one needs to have at least one representation of the nbhd under 
consideration which will be used as reference, and a linear transformation which takes this 

Fig. I. 

N,,(X) 
N,,(X) 

A single nbhd of influence of particle X represented with respect to two different configura- 
tions K,, and h’,. A. B, C, and D are four particles of the nbhd of influence of X. 

’ A material whose response at any material point can be modeled by a functional of the history of the first 
deformation gradient at that point. 
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Fig. 2. The same reorganization represented with respect to two different configurations me and K~ 
taken as reference. H, is the transformation representing the MS with respect to K,, and H, is the 
transfo~ation representing the same MS with respect to K>. A, B, C, and D are four particles of the 

nbhd of influence of X. 

representation into a materially equivalent representation. In Fig. 2 we show two nbhds of 
particle X and how the same MS is represented by different transformations He and H,, 
depending on the choice of the configuration used as reference for the representation of the 
MS. This MS allows the replacement of particle A by D, B by A, C by B, and D by C. 

To avoid repetition, we assume all linear transformations to be non-singular (in the sense 
that their determinants are not equal to zero). 

All members of an MS group must be unimodular (volume preserving) transformations. 
We have introduced the notion of representing an MS by a linear transformation Ho of a 
pre-selected reference nbhd represented by N,,(X) (see Fig. 2). The transfo~ation Ho 
represented a reorganization of the nbhd of particle X. That is, He replaces each member of 
UjC*,, by either itself or another member of xx,. As each material point in Jv,, is represented 
by its location in the configuration K~, He is a one-to-one mapping of the space occupied by 
,t x0 onto itself. This can only happen if He preserves volume.t 

3. NOLL’S RULE 

No11 [l] has described the relation between any two transformations which are descrig 
tions of the same MS with respect to two different configurations. The following is a 
presentation of this rule. 

We have already shown that, given two different representations N_,(X) and &“_(X) of a 
nbhd, the same MS is represented by two different transfo~ations He and H, (see Fig. 2f. 
Figure 3 shows the nbhd of particle X represented in two different configurations K~ and rci. 
F is the deformation gradient which compares the nbhd of X in configuration ret to its 
configuration in kg. H, is the MS transformation which takes NW0 to the materially 
equivalent nbhd N,. H, is the MS transformation which which takes Jy”“i to the materially 
equivalent nbhd .K,t. In Fig. 3, the transformations He and H, are mappmgs of the nbhd of 
X onto itself, and therefore .N,_ actually overlaps .NK; and N_ actually overlaps Jy,;. 

We will show that 

H, =FH,F-‘. (1) 

Consider particles P and Q in the nbhd of X. In xx,,, the positions of P and Q with respect 
to the position of X are given by the vectors dp and dq respectively. If the MS trans- 
formation H, represents a reorganization which replaces particle Q by P, then He must 

’ Requiring Ha to map the space occupied by A’-,,, onto itself might have other implications which are out of the 
scope of this work. 
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Fig. 3. Relation between two representations H, and H, of the same MS. 

map P onto Q which means H, dp=dq. In J”_, the positions of particles P and Q with 
respect to the positions of X are given by the vectors Fdp and Fdq respectively. If Hi is 
supposed to represent the same reorganization as H, represents, then Hi should map P 
onto Q which means that H,Fdp= Fdq; but, as H,dp=dq, we will have H,Fdp= Fdq 
=FH,dp which, considering that this relation should hold for all vectors dp, yields 
equation (1). 

The set of all .transformations representing the material’s different symmetries with 
respect to JV,., forms a mathematical group. We will call this group the material symmetry 
group (MSG) with respect to XI, and denote it by gro. The same group of symmetries 
represented with respect to Jv,, will be denoted by gr,. As (1) is true for every two MS 
transformations HO E gro and H, E gx, which describe the same MS, (1) defines a one-to-one 
mapping of gKO onto g,,. This mapping was introduced by No11 [l] and will be referred to as 
Noll’s rule. Remark 1 is a restatement of this rule. 

Remark 1 (No/l’s rule). Given two configurations K~ and pi of a material body, the two 
MSGs g,_ and gx, are related by 

gr,=Fg,,C (2) 

where F is the deformation gradient comparing, JV_ to N,_. 

4. THE GROUP OF MATERIAL SYMMETRY GROUPS 

Up to this point we have assumed the existence of a set of reorganizations which describes 
a material’s symmetries, and that g,_, g.,, g.,, . . . , are different explicit representations of 
this set. Let B be the set containing all these explicit representations of a material’s 
symmetries. That is, 

9 = {& &,9 CL,9 . . .I. (3) 

It is simple to show that Y is a mathematical group (see [3]). Y will be called the group of 
MSGs (representing a particular MS). This group has the property that each member of it 
can be derived from every other member by a transformation of the form (2). This allows us 
to select one member of 9 as a representative member, and to generate all other members by 
transformations of the form (2). This is reflected in Remark 2 as follows. 
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Remark 2. The group of MSGs, ‘3, can always be generated from any one of its 
members. Given any member g*, 48 will be given as 

Y = (gig = Fg,F- t for every Ff, (4) 

where F is any arbitrary deformation gradient. We will call gr, in (4), the generator of 3. 

5. APPARENT MATERIAL SYMMETRY GROUPS 

Next, we will look at the nature of the individual members of each MSG. As we have 
stated before, the members of each MSG are unimodular (volume preserving) transform- 
ations. Some of these members can be orthogonal and others might be unimodular but non- 
orthogonal. It is important to note that, even though the generator of ‘3 might contain only 
orthogonal members, other members of ‘3 will probably contain both orthogonal and 
unimodular non-orthogonal members. The reason for this is that the transformation given 
in (1) in general does not preserve orthogonaIity (see [2] for examples). 

We will give particular importance to the orthogonal members of the MSG. There are 
two reasons for this special consideration. First, the orthogonal members are equivalent to 
central inversions and rigid body rotations, and therefore are both mathematically and 
experimentally simpler to work with. Second, we will show that these members are 
responsible for the establishment of a certain type of structure on ail MSGs. 

Given a MSG. we will define its associated apparent MSG to be its subset of orthogonal 
members. Therefore, if-d, is the apparent MSG of gX, then 

d,={HIHEg, and HEO}, (5) 

where 0 denotes the full group of orthogonal transformations. It is simple to show that ,d, 
is a mathematical group. 

6. THE IMAGE OF AN APPARENT MATERIAL SYMMETRY GROUP AND ITS 
PROPERTIES 

Next, we will show how the apparent MSG of one MSG imposes a structure on other 
MSGs in Y. Let us say that we are given the apparent MSG .&X0. associated with the MSG 
gx,. Let a,,(&,J be the image of &_, on g.,. That is, 

~B,,(d,~={H,IH,=FH,P-’ for every H,,E.IYJ~,}, (6) 
which can also be written as 

a,,(.&,)=RCrQ-‘, (7) 

where F is the deformation gradient comparing XC, with ./y,, (see Fig. 4). We intend to 
show that all members of 9#,,(srf,,) have an exclusive common property. This will then 
allow us to say that there is a structure imposed on gl(, by the apparent MSG g,,. The 
common property of all members of 3?_(&.,,) comes from the fact that these members are 
images of orthogonal members. It is important to remind the reader that the transformation 
(1) does not, in general, preserve orthogonality and therefore the members of W,,(Sg,J need 
not be orthogonal. Every H, o@&,(&,J is the image of some HOG&,_, which has the 
property given by 

HoH; = H;Ho = I. (8) 

Substitution of Ho by Ho = F- ‘H,F in (8) from NoUs rule yields the following iemark 
(see C31). 

Remark 3. If B = FF’ for F given as the deformation gradient comparing XX, with X,_, 
then 

93,,(d,,)={H, [H, og,, and H,BHf=Bj. (9) 

Similarly, if we introduce the apparent MSG of g,_ and its image in gr,, as I,, and 
~da,,(~,J, respectively, then we can aIso show the following. 
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Fig. 4. The image of ,Sr__ on g.,. 

Remark 4. If c = FTP for F given as the deformation gradient comparing _VKl with .XKO, 
then 

a,,(~!~,) = {He ( H, E gro and H,TcH, = C}. (LO) 

The selections of Kc, and K~ in the preceding discussion were totally arbitrary. Let us select 
K~ to be a fixed configuration and ~~ as any other configuration. Equation (9) shows that the 
apparent MSG of gKO imposes a structure on g., [i.e. each member of BK,(d,,) has the 
exclusive property that HI BH T=fi]. As K~ is an arbitrary configuration, this states that the 
apparent MSG of each member in ‘3 separates g,,_ into two subsets: those members which 
have the property H,BHT= i$ for the given B= FFr, and those which do not. This can be 
restated as follows. 

Remark 5. A structure is imposed on each member of 9 by the apparent MSGs of other 
members of 9. 

Up to this point, we have not assumed the existence of any particular relation between 
XI, and X,,. We will now look at the situation where Jv,, can be obtained from Jy;, by a 
uniform triaxial extension superimposed on a rigid body rotation (i.e. F=&, for some 
scalar non-zero a and orthogonal ii). In this case we will show that aX, (d,,) = d,, and that 
BK,(.&X,) = d,,. That is, symmetries which are represented by orthogonal transformations 
in gr, will also be represented by orthogonal transformations in gr, and vice versa. If we are 
given d,,, then W,,(&,J is given by 

aK, (dK,) = ii&$r. (11) 

As &,, only contains orthogonal transformations, it is obvious from (11) that a,, (&,J can 
only contain orthogonal members, which means W,,(&,J c &,,. Similarly, we will have 

(12) 

which means that 6&?,,,(&,,) only contains orthogonal transformations, and therefore 
B,J&,J c d,,. The one-to-one mapping in No113 rule, the fact that the image of &,, is 
contained in ,cal,,, and the fact that the image of .!zI,, is contained in d,,,, lead to the 
conclusion that 

%,wK,)=JffK,, (13) 

and that 

%,Wx,)= d,,- (14) 

Remark 6 summarizes these results. 
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Remark 6. If XX, is obtained from JyX, by a uniform triaxial extension superimposed 
upon a rigid body rotation, then Nell’s rule maps &x0 onto d,, and vice versa. In this case, 
each member of .&,, is obtained from its corresponding member in d,, by a pure rotation 
[see equation (1 l)].’ 

7. ANISOTROPIC TENSORS 

In obtaining the results presented later, we have used the results of Rivlin and Smith [S] 
on anisotropic tensors. The following is a short presentation on anisotropic tensors. The 
scope of this presentation is restricted to its particular use in this paper. A more detailed 
presentation can be found in [S, 63. 

Smith and Rivlin [S] have shown that for a given group g of orthogonal transformations, 
there is a set of anisotropic tensors al:!. . in, for p= 1, 2, . . . , with the property 

(15) 

for every H, E g (the standard summation convention is assumed on repeated indices). This 
set forms a basis for the construction of any tensor Gi, . . . i, that has the property 

Gi, . . . i.=HiijI . . * HI./. G,, . . . in* WI 

for every H,,E~. That is, every G which satisfies (16) for all H,jEg can be written as 

G=b,/?“‘+ . . . +bqjVq), (17) 

for some scalars b,, . . . , b, and tensors j?(l), . . . , /lJfq) where each tensor /It’) is either an 
anisotropic tensor of g or the tensor product of anisotropic tensors of g. This implies that 
any G which can be written in the form (17) will satisfy (16) and vice versa. 

As we will only be concerned with the case where G is a second-rank tensor, equation (16) 
can be written as 

G = HGHT. (18) 

We will confine the rest of this presentation to such a G. 
It is simple to show the following. First, each /I”’ in (17) commutes with the members of g. 

Second, if we are given a G which can be written in terms of the anisotropic tensors of either 
group g or group g+. then we are assured that (18) holds for at least every HE g u g*. Third, 
if G can be written in terms of the sum of the anisotropic tensors of g plus those of g*, then 
we are assured that (18) holds for at least every H EQ n g*. 

Finally, for those cases where g is the orthogonal generator associated with either 
transverse isotropy or orthotropy (see below), equation (18) holds for only H EQ if the 
following conditions exist: 

(1) /3(l), . . . , p in (17) include every possible second-rank tensor which is either an 
anisotropic tensor of g or the outer product of anisotropic tensors of g. 

(2) No bi in (17) is equal to zero. 
(3) NO two bi in (17) are equal. 
(4) We are only looking for orthogonal H. 
The fourth constraint, HE 0, is not restrictive for our work, but implies that there might 

exist non-orthogonal H which satisfy (18).* 
What follows is a presentation of triclinic, monoclinic, orthotropic, and transversely 

isotropic materials. For each case we first define an orthogonal generator and then provide 
the anisotropic tensors associated with this generator. As we only consider those G which 
are second-order symmetric tensors in a three-dimensional space, we will present only the 
anisotropic tensors relevant to this case (see [S] for more details). 

7.1. Triclinic material 
A material is considered triclinic-pinacoidal if its group of MSGs can be generated from 

4, = + {I}, (19) 

’ This remark is identical to Theorem 2 on p. 200 of [S]. 
* This would be important if we had not restricted the types of MS under consideration to those which can be 

generated from a generator which only contains orthogonal members. 
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where I is the identity. That is, the material is only indifferent to a central inversion. There 
are nine anisotropic tensors associated with Dfri and they are given as 

#1)x6 6 
SJ 

&2f=& 6 
ll j1* if af33)= S13Sj3, il jz** -** if (20) 

where 6, is the Kroneclcer delta. All simple materials which satisfy the constraint of frame 
indifference are at least tticlinic. D,, is the only member in the group of MSGs of a triclinic 
material as FD,,,IEj;- 1 = FF- lD,,, = Dt,, for every F. 

7.2. monoclinic rnat~iu~ 
A material is considered monoclinic-p~smatic if its group of MSGs can be generated 

from 
D men = Z!I {I, R,}, (21) 

where I is the identity, and 

R,= (22) 

That is, the material is indifferent to central inversions and reflections about one plane of 
symmetry (in at least one configuration of the body). There are five anisotropic tensors 
associated with D,,,, and they are given as 

(pl), $22), ao3), @31, =t32t 
, (23) 

where e(‘fi is defined in the previous section. 

7.3. Urr~otropic (rhombic) material 
A materiaf is considered orthotropic or rhombic~ipyramidal if its group of MSGs can be 

generated from 

D orth = f {I, R,, R,, R,), (24) 

where I and R, are the same as given above, and 

(25) 

and 

(26) 

That is, the material is indifferent to central inversion and reflections about three perpen- 
dicular planes of symmetry (in at least one configuration of the body). There are three 
anisotropic tensors associated with &,,, and they are given as 

eUl)* (&22f, (433) (27) 

7.4. Transversely isotropic material 
A material is considered transversely isotropic if its group of MSGs can be generated 

from 
D W.” = + {I, R,, M,, R,M,, for all 01, (2% 

where I and Ri are given above, and 

cos(0) sin(o) 0 

M o)= i -sin(w) cos(0) 0 1 , 
0 0 1 

(29) 
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for 0 < w -c 2x. That is, the material is indifferent to central inversions, reflections about 
any plane which passes through a preferred axis of the material, and reflections about a 
plane perpendicular to the preferred axis of the material (in at least one configuration of the 
body). There are two anisotropic tensors associated with D,,,, and they are given as 

@3), ,(11,+($22)* (30) 

8. SYMMETRIES WITH ORTHOGONAL GENERATORS, METHOD FOR FINDING 

ALL APPARENT MATERIAL SYMMETRY GROUPS 

In the earlier sections, we looked at how the members in a group of MSGs are related, 
and showed that a particular structure is imposed on each MSG by the apparent MSG of 
another member. Up to this point, we have been looking at the case of a general MS. 

In this section we will restrict our attention to those MS which can be represented, in at 
least one configuration, by a MSG which contains only orthogonal members. That is, the 
MS can be represented by an orthogonal generator (one which only contains orthogonal 
members). The aim of this section is to determine the apparent MSGs of all possible 
representations of such a MS. We will develop a method for solving for the apparent MSG 
of one MSG given another MSG and will also find all possible apparent MSGs of an 
isotropic, transversely isotropic, and orthotropic material.’ 

For the remainder of this section, we will always select ~~ to be a configuration in which 
g.,, only contains orthogonal members. We will take gKO as the generator of the group of 
MSGs. The configuration K~ will be any arbitrary configuration. F will denote the 
deformation gradient comparing XK, to ,t*,_. The polar decomposition of F will give R for 
its orthogonal part, u for its right symmetric part, and i’ for its left symmetric part. 

A restatement of our problem can be written as follows. 
Problem. Given g,., c 0, find .al,, for all possible F. 
The problem will be solved in two parts. First we will find 9I,#/,,) and then we will use 

Noll’s rule to find d,,. 
According to Remark 4 

where 

%,(d,,)=gro n D, (31) 

D={HIH’cH=c for HE&}, (32) 

As gLg is known, we will proceed to find D for all possible F. 
To find D, we must find all orthogonal H under which c is form-invariant (i.e. H’CH 

=e). As c is a symmetric positive definite tensor, it can always be written as 

c = QcdQT, (33) 

for some orthogonal Q and diagonal c,,. Let cd be given by 

(34) 

where j.:, i.:, j.: are the eigenvalues of c. We can therefore write e,, as 

C,=].~a(“)+ j.:a(22)+j.:a(33) (35) 

where atin is defined in (20). As a result of the decomposition (33), we can therefore always 
write C as 

c = Q[ j.:a(' l) + j.ia(22) + j.:a(33)]Qr. 

t To some extent, this work picks up at the point where Theorem 3 on p. 201 of [43 leaves OK 
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Depending on the eigenvalues of c’, there will be three distinct cases: 
(1) If i., # i., # i, # L, (three distinct eigenvalues), then 

H’C,H = c, (37) 

for only H E Dorlb, and therefore 

MTCM = c (38) 

for only MEQ Dorlb Q’. This follows directly from (36) and the results presented for the 
anisotropic tensors of Dorlti 

(2) If i., = i., # 1, # L, (only two distinct eigenvalues), then (37) holds for only HE D,,,,, 
and therefore (38) holds for MEQD,,.“Q~. This follows from the fact that c,, =>.:(a” ” 
+a(22’)+l.:a(33) and that a(ll)+a(**) and a(33) exhaust all possible second-order tensors 
which can be obtained from the anisotropic tensors of D,,,,. 

(3) If i, = i., = 1.,, then (37) is true for every HEC, and therefore (38) is true for every 
MEC. 

We will summarize the preceding discussion in the following remark. 
Remark 7. Given any arbitrary F, such that det(F) # 0, depending on the eigenvalues of 

c = FT F, D will be only one of three distinct cases: 

(a) D = QDorchQr if i.: # ii # j.i#j.:, 

(b) D=QDtrsnQr if j.t = j.i # j.:, 

(c) D=O if 1: = i-i = i.& 

for i.:, i.:, and 1: being the eigenvalues of c and Q given by e = Qc,Q’ for the diagonal c’d 
given in (34). 

In the following three sections, we shall find all apparent MSGs of an isotropic, 
transversely isotropic, and orthotropic material. The procedure in each case would be to 
find B,,(.&K,) by intersecting-g,, and the appropriate D, from Remark 7, and then obtain 
,E9,, from ,sl,, = FL@~,,(JX!,J F-l. 

9. ISOTROPIC MATERIAL 

In the case of an isotropic material gXO = d,, = C. As $?,#,,) = gK,, n D and D c Lf, 
then 

%,(d,,) = D. (39) 

As dK, = F?+Y,,(d,,)F- i, then 

d,, = FDF-‘. 

As F = iin and 0 = Qfr,Q’ for a diagonal n,, given by 

(40) 

, (41) 

then (40) will be 

&K, = RQU,Qr~QO - 1QW. d 

Remark 7 identifies the following three distinct cases: 
(1) If i., # A2 # 1, # ).i (three distinct eigenvalues). This results in 

(42) 

which gives 

d L, = iiQu Q’QD d orth QrQij-‘Qriir d . (43) 

& 
KI 

= RQfj D 8-‘Q’p. d orth d (44) 

Since u, can be written in terms of the anisotropic tensors of Darth and by (18) the 
anisotropic tensors COnXIIUte with the transformations of their associated group, ~dD,,,,h 
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i& t = D,,,,~,,~; t = Do,,,,. This gives 

531 

&K, = RQD onh @iiT 9 (45) 

which means that the material will appear to be orthotropic. The preferred axes of 
orthotropy are parallel to the principal axes of B, which results from comparing 

(46) 

with (45). 
(2) If 1, = I., # 1., (only two distinct eigenvalucs). Through the same procedure as above, 

it follows that 

d XI = RQD wan qT’RT. (47) 

Therefore, the material will appear to be transversely isotropic with the preferred axis of 
transverse isotropy along the principle axis of B associated with the eigenvalue i,. 

(3) If i., = il, = i.,. In this case 

Jd,, = e. (48) 

The following remark summarizes these results. 
Remark 8. The apparent MSG .!a/,, of an isotropic material with gK, = 0: is given by one 

of the following: 

(a) d,, = SD,,,S if i., # E., # i., # i.,, 

(b) ,al,, = SD,,,,ST if i., = i., # i.,, 

(c) &,, = 0 if i., = i., = i.,, 

where i-f, # and i-i are the eigenvalues of B = FPT and S = iiQ is an orthogonal linear 
transformation, and comes from the decomposition B = SedST. 

10. TRANSVERSELY ISOTROPIC MATERIAL 

In the case of a transversely isotropic material, gKo = PD,,,,P’, for some orthogonal 
transformation P which determines the direction of the preferred axis of transverse isotropy 
of the material. The results of this section are summarized in the following remark. The 
proof follows the remark and contains some of the details omitted in the statement of the 
remark. 

Remark 9. For a given-but otherwise arbitrary--F, the apparent MSG LX?,, of a 
transversely isotropic material is given by the transformations associated with one of the 
following material symmetry types: 

(a) transversely isotropic, 
(b) orthotropic, 
(c) monoclinic, 
(d) triclinic. 

The choice between these cases depends on 
(a) the eigenvalues of C = F*F, 
(b) the material’s preferred directions (given through P), 
(c) the principle directions of n = i% 
Proof. As in the section for an isotropic material, we can write u = Qo,,Q’ for some 

orthogonal Q and diagonal nJd, and therefore c = Qi5,Q’. Three cases will arise depending 
on the three eigenvalues of u given by i.,, i.,, and 1.s. 

(1) If i., # A2 # i, # 1.,, then 

D = QDorthQr (4% 

As 

%,WJ = gKO n D. (50) 

then 

%,WJ = PD,,,,P’ n QDOrthQT. (51) 
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Q’%,W,,)Q = QTWrJTQ n Dorlht (52) 

we will have the following subcases: 
(a) In the cases where the preferred axis of transverse isotropy (represented by the term 

PD,,,,P’) becomes aligned with one of the directions of orthotropy (represented by the term 
QD,,,,,Qr) we will have 

%,WJ = QL,,Q’. (53) 

(b) If the preferred axis of transverse isotropy (represented by the term PD,,,,P’) is in one 
of the planes of symmetry associated with the orthotropy (given by the term QD,,,,,Q’) but 
is not along any of the axes of orthotropy, then we will obtain one of the three results 

W,,WJ = + Q{L RAQ’, (54) 

or 
= +_ Q{L RJQ’, (55) 

or 
= + Q{L R,}Q’. (56) 

The choice between these three cases is made by the determination of the plane of 
orthotropy which the preferred axis of transverse isotropy falls within. Each of these results 
represents a reflection about one of the three planes of symmetry associated with the 
orthotropy (represented by the term QD,,,,Q’). 

(c) If neither of the above occurs, then 

%,WK,) = Ik {Il. (57) 

In each case above we will have 
-- 

d,, = &S,,(~X,)~-’ = RUS?K,(~K,)U-lRr (58) 

= RQU,Q~~,,(~,,)QO; lQrRr. (59) 

As, in each case, QrBK,(&X,)Q is a subset of Dorthr U, is describable in terms of the 
anisotropic tensors of Dorlh, and the anisotropic tensors of Dorlh commute with the members 

of Dor,hr we will have the apparent material symmetry group of the material given as: 
(a) orthotropy along the principle direction of R = RQRdQrRr given by 

d KI = RQD orth QrRr. 9 (60) 

(b) a reflection about a principle plane of R = RQRdQrRr given by 

,al,, = + RQ{I, R,jQrRr, (61) 

or 
= + RQ{I, R,}Q’R’, (62) 

or 
= f RQ{l, R,)QrRr; (63) 

(c) or a lack of any symmetry given by 

,cQ,, = f {I}. (64) 

(2) If ).i = J2 # i.,, then 

D = Q&.,Qr (65) 

and similar to the first part, we will have 

%,W,,) = PD,,,,P’ n QDtranQr9 (66) 

which gives 

Qr%,WK,)Q = Qr~~tra.~rQ n D,,., (67) 
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and results in the following subcases: 

(a) If QTp~ban9 then QrPD,,,,PTQ = D,,,, and 

%,(-pr,,) = Q4r.nQTv (68) 
which corresponds to the alignment of the preferred axes of transverse isotropy associated 
with the two terms in equation (66). 

(b) If the two preferred axes of transverse isotropy (associated with the two terms 
Q’PD,,,,P’Q and D,,,,) are perpendicular, then 

%,W,,) = QM,R,,,,M;Qr (69) 
for some angle 4 and M, given as 

( 

cos(& sin(+) 0 

M, = -sin(4) cos(4) 0 . 

! 

(70) 
0 0 1 

(c) If neither of the above is true, then 

%,W,,) = + Q&II, RI M;Q (71) 

for some angle #I and M, given by equation (70). This last case corresponds to a reflection 
about the plane passing through both axes of transverse isotropy (associated with the two 
terms PD,,,,P’ and QDtranQr respectively). 

In each subcase above, as in equation (59) of the first part, we will have 

d,, = RQ&Q~BJ~,,)Q~~; i~riir. (72) 

As, for each one of the three cases above, Q’B,,(d,,)Q is a subset of D,,,, and u,, is 
constructed from the anisotropic tensors of D,,,,, we will have the apparent material 
symmetry group of the material given as 

(a) transverse isotropy with preferred direction along one of the principle directions of R 
= RQ&,QrRr given by 

d =RQD Kl van QT, (73) 

(b) orthotropy along one.of the principle axes of 

B = RQB~Q~V = RQM,&M;Q~R~ (74) 

given by 

-rul,, = RQM,D,,,,WQ~~V *, ’ (75) 

(c) or a reflection about one principle plane of 

B = RQB~Q~IV = RQM~&M;.Q~R~ (76) 

given by 

&K, = + RQM,{I, R,}M;QrRr. (77) 

(3) If i., = i., = i.,, then by Remark 6 we will have 

& XI = RPD tran PrRr, (78) 

which corresponds, by default, to transverse isotropy with preferred direction along one of 
the preferred directions of R = i.1 and completes the proof. 

1 I. ORTHOTROPIC MATERIAL 

Using the same notation and procedure as in the last section, for an orthogonal material, 
we will have gXO = JZ!,,, = PD,,,P’ for some orthogonal P which gives the preferred 
directions of the material. 
Remark 10. For a given-but otherwise arbitrary-F, the apparent MSG PI_ of an 

orthotropic material is given by the transformations associated with one of the following 
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material types: 
(a) orthotropic, 
(b) monoclinic, 
(c) or triclinic. 

The choice between these cases depends on 
(a) the eigenvalues of c = FTF, 
(b) the material’s preferred directions (given through P), 
(c) the principle directions of B = RF’. 
Proof: As in the last section we can write Ij = Qa,Qr for some orthogonal Q and 

diagonal od, and therefore e = Qe6QT. Three cases will arise depending on the three 
eigenvalues of 0 given by A,, A,, and 1, (see Remark 7). 

(1) If i., # A2 # 1, # 1,. then 

D = Qkt,,QT (79) 

and, as 

%,,WJ = 9.0 n D. (80) 

then 

QT%,(4,)Q = QT%,,hPTQ n Donb. 91) 

Depending on the values of P and Q we will obtain one of the three following subcases: 
(a) In the case where all three preferred axes of orthotropy (associated with the two terms 

PD,,,,PT and QDo,,,QT) coincide we will have 

%,WJ = Qkt,,Q’. (82, 

(b) If only one of the axes of orthotropy (associated with the two terms QTPD,,,PTQ and 
Dar,,,) coincides, then 

%&‘,J = z!z QU, WQT. (83) 

or 

= zb Q{I, R,}Q=, (84) 

or 

= f Q{I, R,}Q’. (83 

(c) If none of the axes of orthotropy (associated with the two terms QTPD,,,,PTQ and 
Don,,) coincide, then 

%,WK,) = f {IL (86) 

which corresponds to triclinic symmetry. 
For each subcase above, as in the proof of Remark 9, we will have the apparent material 

symmetry group given by 
(a) orthotropy along the principle directions of R = RQi&QTRT, given by 

d II = RQD ortb QTRT , 

(b) a reflection about a principle plane of R = RQ&QTRr, given by 

Jrf,, = f RQ{L R,}QTRT, 

or 
= rt RQ{I, R2}QTRT, 

or 
= f RQ{I, R,}QTRT, 

(c) or a total lack of symmetry, given by 

d,, = + {I}. 

(2) If i., = A2 # &, then 

D = Q4,..QT 

(87) 

(88) 

(89) 

(90) 

(91) 

(92) 
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Qf%,W,,)Q = Q’PLPrQ n &an, (93) 

which gives us the three following subcases: 
(a) the case where an axis of orthotropy (given by the term QfPD,,bPrQ) coincides with 

the preferred axis of transverse isotropy (given by the term D,,,,) we will have 

?,,(a.,) = PDOflhPT. (94) 

(b) If the preferred axis of transverse isotropy (associated with the term Dtran) is in a plane 
of orthotropy (associated with the term Q’PD,,,, P’Q) but it does not coincide with any of 
the preferred axes of orthotropy, then 

%“(d,,) = + Q&P. R,WfQr (95) 

for some angle C$ and M, given by equation (70). 
(c) If neither of the two above cases occurs, then there is a lack of symmetry, given by 

%@K,) = f 10. (96) 

As in the proof of Remark 9, we will have the three cases for the apparent material 
symmetry group, given as 

(a) orthotropy with one of the preferred axes of the material along the principle direction 
of B = RQ&Q’R’ associated with i., and given by 

d K1 = iiPD orlh priir , 

(b) a reflection about a principle plane of B = ~Q&Q’ii’, given by 

(97) 

d,, = f RQM,{I, R,}MfQrRr, (98) 

(c) or a lack of symmetry, given by 

dX, = * {I}. (99) 

(3) If i, = i., = A,, then by Remark 6 

d - RPD 111 - orth Priir , (1W 

which corresponds to a set associated with orthotropy and completes the proof. 

12. SUMMARY 

We started by presenting the basic properties of MSGs. We showed that a MS is 
represented by a group of MSGs, Y, where each member of 48 is an explicit representation of 
the MS: and where every two members of 3 are related by Nell’s rule. Nell’s rule allowed 
the generation of Y from any of its members. The chosen, but otherwise arbitrary, member 
was called the generator of 48. 

We next defined the apparent MSG of a MSG as its subgroup of orthogonal transforma- 
tions. We showed that the apparent MSG of one MSG in Y imposes a structure on all other 
MSGs of Y. We used this property to identify all possible apparent MSGs realized in 9. 
Finally, we provided particular results for the cases of an isotropic, orthotropic, and 
transversely isotropic material. 

This work, for the most part, was centered on the identification of apparent MSGs. The 
importance of this identification was primarily to better understand MS, MSGs, and Noll’s 
rule. In particular, as the orthogonal members of a MSG are the most simply identified 
members of the MSG, the members of the apparent MSG are the most simply id&tified 
members of a MSG. 
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