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Abstract-A proper evolutionary definition of material symmetry is presented. The evolution of a 
material’s symmetries as the material undergoes a deformation history is followed, and a procedure 
for the identification of those changes which are common to all simple materials is provided. Explicit 
results are presented for initially isotropic, transversely isotropic, and orthotropic materials under- 
going simple deformation histories. 

I. INTRODUCTION 

In this paper, we will follow the evolution of a material’s symmetries as the material 
undergoes a deformation history. The purpose is to identify those changes which are 
common to all simple materials. 

Section 2 covers the preliminaries from continuum mechanics. 
Sections 3 and 4 are devoted to explaining what is meant by material symmetry (MS) and 

material symmetry groups (MSGs). The MS is defined not as an absolute property of a 
material, but as a property associated with the state of the material. This definition allows 
MS to change as the material changes its state. 

Section 5 states the problem and provides its solution. We show that the current MSG of 
the material is obtained as the superset of the intersection of the material’s initial MSG with 
a group of transformations which describe the symmetries of the deformations the material 
has undergone. 

Sections 6-10 confine their attention to materials which are initially in a state such that 
their MS can be associated with a group of orthogonal transformations (i.e. the material’s 
group of MSGs can be generated from an orthogonal generator). In particular, explicit 
results are presented for initially isotropic, transversely isotropic, and orthotropic materials. 
In each case, several different deformation histories are considered. 

There is a general lack of references on the subject of the evolution of anisotropies from a 
continuum point of view. The need for such a study has for some time been expressed in the 
field, and is described by J. L. Erickson Cl] who stated: “For the most part, non-linear 
continuum theory has been based on the premise that the symmetry of a material never 
changes. To analyze common phase transition, we need to revise such a theory of symmetry, 
but this is easier said than done . . .“. 

2. PRELIMINARY DEFINITIONS 

The reference configuration K is a configuration of the material body which is selected as 
a tool for labeling different material points in the body, and which is usually also used as a 
reference for the comparison of the different configurations taken by the material body 
during its motion (see Fig. 1). We note that the reference configuration need not ever be 
taken by the actual material body. 

Let r,(X) denote the position of the material point (particle) X in the reference configur- 
ation K and let x[r,(X), s] denote the position of X in the configuration taken by the body at 
time s. The deformation gradient F,, which compares the configuration of the smallest 
neighborhood of X at time s to its reference configuration, is defined to be F,[r,(X), s] 

l Present address: Department of Engineering Mechanics, University of Nebraska-Lincoln, Lincoln, NB 68588- 
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Fig. 1. Kinematical description of continuum bodies. 
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. At particle X a simple event happening at a time s is represented by 

J’,[r,(X), sj=2($.[r,fx), s]; T[r,(X), s]), where T[r,(X), s] is the temperature of X at time s. 
The history of simple events happening to X starting at time t, and ending at time I, is 
denoted by Z’,[r,(X), f, + tJ and defined by 

x,[r,(X); rl -+fJ = (48 = J,Cr,(X), al for cxa(t,, t,l}. (1) 
The initial (virgin) time, t,[r,(X)], represents the first instant at which the material point 

X is considered as a simple materiaf. In other words, the “simple life” of a material starts at 
the initial time. The initial state of a material point is represented by P’“,,[r,(X)] and 
contains all information pertaining to the influence of events before the initial time on the 
response of the material after this time. 

The state of a simple material point at time s is described by the union of the initial state 
and the history of simple events undergone by the material point from the initial time up to 
time s.’ Letting Y’,Jr,(X), s] represent the state of the material point X at time s then 

(2) 

2.1. Stress in a simple material 
The constitutive equation for the stress response of a simple material is given by 

o Cr, (X), tl = 3, i yspz CMQ tl), (3) 

where a[r,(X), t] is the Cauchy Stress: at the material point X at time t, and 3, is the 
constitutive (or response) functional which relates the state at the material point to the stress 
at that point. 

The starting time, t,[r,(X)J, is selected as any convenient, but otherwise arbitrary, time 
equal or greater than the initial time. The explicit form of 3, will contain all necessary 
information of events happening before this time, and these events will be considered as part 
of the unchangeable past. However, to use the explicit form of 3, in calculation, it is 
necessary to specify simple events occurring after this time. Therefore, the explicit form of 3, 
provides the user with only the means to change the history of events beginning at the 
starting time. An example of a starting time, other than the initial time, is seen when a simple 
material which is a fluid at its initial time is solidified and a seemingly new constitutive 
equation is started at the point of solidification to describe the response of this material in 
its solid “state”. 

T in some uses of the term “state” there is no distinction made between “the state of a material”, ‘the 
representation of the state of the material”, and “equivalent states of the material”. In our usage, we wilf consider 
two states of a material as equivalent if their representations satisfy some equivalence criterion. 

* Up to an undetermined quantity which arises from constraint conditions. 
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The starting time is arbitrary due to the fact that one can always write the representation 
of the state of a material point X at time s as 

% [r,(X), ~1 = 9, MX), 43 u Jcp, k(X); 4 + ~1 (4) 

for any given starting time, t,, such that t, E [t,, s]. This allows us to rewrite equation (3) 
with an explicit starting time as 

oCr,(X), rl = 3, Y,Cr,(X). ~MWII; F,CrAW9 si, JTr,(X), ~1 
i I’,. I 

, (5) 

where the same symbol 3, is used to denote the new constitutive functional. As SPL[r,(X), 
t,] is a never-changing quantity in 3,. we will suppress it in the notation and rewrite 
equation (5) as 

oCr,(X), cl= &(F,Cr,(W, si, TCr,AW, ~1)~ s=t. 05) 

where the same symbol 3, denotes a new constitutive functional. We will use equation (6) in 
most of our work because of the explicit appearance of only the true variables in the 
representation of the response functional; it must be noted that the response functional in 
this equation has implicit in it a fixed unique initial state and also a fixed unique history of 
events going from the initial time to the starting time (i.e. the state at the starting time). 

One restriction which is imposed on the constitutive functional is that of frame 
indifference.’ This restriction allows us to write the constitutive equation (6) as 

oCr,(X), rl = R&(X). tl3, 
I 
UJu&17 TCr,W). ~1 

I 
R~Cr,(W, cl. (7) 

s=1. 

where R,[r,(X), s] and U,[r,(X), s] are the orthogonal and right symmetric parts of 
F,[r,(X), s] in its polar decomposition. 

An alternate form of equation (7) can be obtained by introducing a new functional 8, 
such that 

oCr,(X), cl = F,(t) 8, C, 61 W I ,=I: 1 
F,T(t), (8) 

where reference to the particular material point X is omitted from the notation and 
C,(s)= F,f(s)F,(s). The functional B, is known as the functional for the second 
Piola-Kirchhoff stress tensor, and is defined in terms of the functional 3, as 

(9) 

where C,(s) = U,(s)*. 

3. A MATERIAL’S SYMMETRIES: DEFINITION IN A DETERMINISTIC PROCESS 

As an aid to understanding Material Symmetry (MS) and its relation to the state of a 
material point, let us consider the scheme in Fig. 2. The purpose of this scheme is to show 
the MS transformation M which represents a symmetry of the material associated with its 
state at time r2. For details of how a symmetry is represented by a linear transformation we 
refer the reader to [lo]. The scheme shows the history of events the neighborhood (nbhd) of 
X undergoes from an initial time, t,, to some current time, t. In the scheme, t,, t,, and t, 
represent three intermediate points in time. F, + F, + F, + F, represent the actual history 
of deformations this nbhd undergoes from time t, to r. F, + F, + M + F, --, F, represents 
an alternate history of deformations. The two histories are the same up to an instanta- 
neous reorganization of the nbhd at time t2 (represented by the transformation M in 
F,-rF,+M+F,+F,). 

’ See [Z-S. I I] for more details. 
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Fig. 2. Scheme showing two histories ofevents which differ only by an instantaneous reorganization 
at time I*. 

We will now present a definition of MS which expresses the notion of evolution in MS. If 
M in Fig. 2 represents a symmetry of the material at its state at time t,, the response of the 
material at any time c > t, should be identical for the two histories shown in the scheme, 
irrespective of what F, + F, is. In essence, one could subject the material at time f, to either 
F, + F, or M + F, + F, without seeing any difference in the response of the material at 
time t. On the other hand, if we change the state of the material at time t, (by changing the 
history F, -F2), then it is possible that the symmetries of the material at time c2 will 
change, and M might no longer represent a symmetry of the material at time t,. In other 
words, the symmetries of a material at any instant in time depends on the history of events 
which precede that instant. 

4. MATERIAL SYMMETRY GROUPS 

In Fig. 2, M represented a MS expressed with respect to the configuration of the material 
at time t2, I. This transformation should map the space occupied by the nbhd of the 
particle in configuration K(c~) onto itself. Therefore in the scheme, the history M + F, + F, 
should actually fall right on top of F3+F,. As M represents a symmetry of the material 
with respect to the configuration K(c*), then M will be a member of the mathematical group 
representing the MS of the particle at time t, and written with respect to the configuration 

4r2). 
We will let g,{.Y,[rJX), s]} denote the material symmetry group (MSG) of a material 

point at time s represented with respect to configuration K. As our notation and previous 
presentation suggests, we have assumed that MS depends on the state of the material. That 
is, MS in a material changes as we change the state of the material. To avoid any 
misunderstanding, we remind the reader that we have given a particular definition for the 
term “state”. That is, when we say, “two nbhds of a material are in the same state”, we mean 
that both nbhds have had the same initial state, and they have both undergone the same 
history of events. This particular use of the term “state” should not create any problems as 
long as it is not confused with the idea of “equivalent states”. For more information we refer 
the reader to [l l] and Section 2. 

As mentioned in [lo], Nell’s rule will provide the means for obtaining the MSG of the 
material at time s written with respect to any other configuration [given the MSG with 
respect to K(S)]. That is, 

~r&CCrx(X)r ~11 = F,(s) sKPKCr,W), ~11 WY? WV 

where F,(s) is the deformation gradient comparing the nbhd of the particle at time s to its 
nbhd in any configuration K. In other words, we can represent the symmetries of the 
material at time s in terms of any configuration of the body through an application of Nell’s 
rule. 
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As mentioned above, we consider a material’s symmetries to depend on the state of the 
material point at the time under consideration. Traditionally (see [2,4,7,9]), this depen- 
dence has not been assumed. That is, a material is considered to have a single-non- 
chan~ng-MS. In the classical approach, when one speaks of a material’s MS, one actually 
means its MS at the initial or starting state of the material. In either case, one could not talk 
about a change in MS as there would be no place in the definition which would allow MS to 
change for the material. 

Our definition of MS allows us to avoid defining a material’s symmetries through a 
particular, but otherwise arbitrary, state of the material. Letting MS be a function of the 
state of the material is a generalization of the classical idea of MS which not only reveals the 
arbitrary nature of the traditional definition,’ but also allows us to think of MS as a 
changing property of a material, and therefore allows us to speak of and follow the 
evolution of MS. 

On the other hand, we must pay a price to achieve this generalization. This generalization 
requires that we mention the state of the material every time we speak of its MS. As this is 
usually inconvenient, we will sometimes use the following conventions. When we are 
speaking about a material’s initial state, we will use the notation g_(X) instead of 
s,[P’_(X)]. When we are speaking about a predefined starting state of a constitutive 
equation-where there is no ambiguity about the starting state of the material-we will use 
the notation g,(X) instead of g,[Yx(X, r,)]. When there is a particular process (a history of 
events) in mind-where there is no ambiguity about the state of the material at each instant 
in the process-we will use the notation g.,(X, s) instead of g,[Y,(X, s)]. 

We will call gVI and grx the initial and starting MSGs respectively. As mentioned above, 
traditionally gVK or grK would be taken as the material’s absolute MSG. We will avoid using 
this traditional terminology and will always qualify our statements on MSGs by giving the 
state associated with the MS. 

We call g,,(s) the evolving MSG at time s. This te~inology is only meaningful if the 
reader knows what the state of the material is at time s. If there is any ambiguity about the 
state of the material at time s, this notation will not be meaningful, and therefore will only 
use this terminology when a predefined process is under consideration. 

5. FOLLOWING MATERIAL SYMMETRY IN A PROCESS 

In this section, we will set up the problem of following the evolution of a material’s 
symmetries as we let the material undergo a known history of events. Up to this point, we 
have assumed the existence of a known measure of the response of the material. That is, in 
measuring for the existence of a MS, we have first assumed the existence of a quantity (or 
quantities) which identifies the response of the material. In our case, the “state” of Cauchy 
stress at the material point will be selected as the quantity which measures the response of a 
material to a history of events. We will call the response of a material point identical or 
indistinguishable for two histories of events if the corresponding histories of the Cauchy 
stress tensor are the same. In essence, from now on, we will consider the Cauchy stress 
tensor as the final measure of the response of a material to a history of events.* 

We now will look at how MS can be calculated if we are given the constitutive functional 
for the stress response of the material. As mentioned in Section 2, the stress response of a 
material can be given as 

o(t)=3.{F,j;&,T(s)j. (11) 

For reasons which will shortly become obvious, we will rewrite this equation as 

u(t) = 3, F, (;, T(s); F, (:), T(z) . 
8’8, (I-t* 

(12) 

+ In practice. in the traditional approach, the selection of the starting state dictates the material’s symmetry even 
though the definition gives the false impression that MS is a unique property of the material. 

t Depending on the theory under consideration, one might consider the heat flux vector or any other quantity 
(or combination of quantities) as the measure of the response of the material. 
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where the range of s and a are given as (c,, t2] and (t2, t] respectively. There is no 
approximation implied in rewriting (11) in the form (12). 

The ideas discussed in Section 3 will now be formulated in the following definition. 
Dejnirion. If H is a member of g,[YJX, t2)], then the material’s symmetry at time t, 

requires that 

F, ($ T(S); F,(S) A, T(Z) , (13) 
I’,, 1= 12 

for every possible history of events &‘,(cr --, r) and for every arbitrary time I. Alternately, if 
we can find a transformation H which satisfies (13) for every history of events %‘Jr, -+ c) and 
for every arbitrary time I, then H will be a member of g,[Y,(X, t2)]; that is, H will be a 
member of the MSG of the material point with respect to the given state at time t,. In this 
definition, H is related to ,%I of Fig. 2 by an application of Nell’s rule. 

We can now state the problem of following the evolution of a material’s symmetries as 
the material undergoes a known history of events. 

Problem. Given g,[Y’,(X, t,)], and given a history Z’,(t, +t2), find every H such that 

a(r) = 3, F,(s~T(s); F,(a): T(a) F,(s)yT(s); F,(a) H, T(a) , (14) 
S=l, Q=*l I=l* %=I* 

for every history %‘,(I, -+ t), and for every arbitrary time t. That is, given the MSG at time r, 
and the history of events from time t I to t,, find the MSG at time c,. It is worth mentioning 
that, as the starting time can be taken as any arbitrary time, in (14) we have replaced the 
starting time by time fi. 

There is not enough structure in the functional 3, to solve the restriction given by (14) for 
any H other than obtaining the trivial solution H = I. Imposing the restriction of frame- 
indifference on the functional gives the functional sufficient structure to evaluate nontrivial 
solutions for H in (14). 

Recalling (8), if we impose the constraint of frame indifference on the response functional 
of the Cauchy stress, we will have 

where 8, was the functional for the second Piola-Kirchhoff stress tensor, C,(s) = 
F:(s) F,(s), and the dependence of 8, on temperature is suppressed in the notation. Using 
(15) to represent the stress response of the material, our general problem can be restated as 
follows. 

Problem. Given g,[.Y,(X, r,)], and given a history Z’“,(t, +tZ), find every H such that, 

o(r) = F.(V’.{$): +)} F:(r) 

= F,(t)H B, 
I 

C:;s); H&H 
,=r, Z”IZ 

for every arbitrary history &‘.(tz + t), and for every arbitrary time t. 
Solution. As, for every Hog,[Y,(X, ti)], we know that 

e(r) = F,(r) %{+): t;(;)} F:(r) 

=F,(t)H 5+X H’C;(s)H; H’C:(z) H 
1’1, ==I2 

is true, a comparison of (16) and (17) gives the solution of the problem as follows: 

where 

(16) 

(17) 

(18) 

gd,(t, +tZ)= {H(HrC,(s)H=C,(s) for every SE(C,, t,]}. (19) 
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We will call g,, (tl -+t2) the deformation’s symmetry group (DSG) from r1 to tl. It is easy to 
show that gdK k a group and that DSGs have the same properties as the MSGs with respect 
to changes in the reference configuration K. That is, all properties mentioned in [lo] about 
MSGs will equally apply to DSGs (gdC, = Pg,,. B-l). 

The problem of following a material’s symmetries has reduced, in part, to intersecting the 
deformation’s symmetries (DSs) with the material’s initial symmetries. There is no guaran- 
tee that by going through this process we will find all the symmetries of a particular 
material. That is, even though we are guaranteed that every MS identified by this method 
will be a member of the final MS, there might be certain symmetries which are not identified 
by this procedure. In particular, as we have not assumed any particular form or structure for 
the response functional P,, there might be certain symmetries which are a result of the 
characteristics of the particular material under consideration and which we will not obtain 
by the procedure presented above. The preceding comments are the reason for not using an 
equality in (18). 

Relation (18) identifies the symmetries common to all simple materials which initially 
have a MSG of g,[P’,(X, t,)] at time t, and subsequently undergo a given history of events 
from time t, to time t,. Each particular simple material will most possibly have more 
symmetries in its MSG at time t, than identified by the intersection of g,[Y,(X, r,)] and 
gdK(rl -+ tz). The identification of the symmetries which come from a material’s particular 
characteristics will not be done here. The cases of a particular model of inelasticity and a 
particular model of solid polymer crystallization will be published elsewhere. 

We will proceed in the next section to follow the evolution of MS for materials whose group 
of MSGs at time t, can be generated from an orthogonal generator (see [lo] for definition). 

6. MATERIALS WHICH INITIALLY HAVE ORTHOGONAL GENERATORS 

In this section we will look at the evolution of MS for those materials whose group of 
MSGs at time t, can be generated from orthogonal generators, i.e. there is some configur- 
ation K such that g,[Y,(X, tl)] is a subgroup of the full group of orthogonal trans- 
formations. For these materials, we will consider the evolution of MS for particular histories 
of deformations. In each case, the procedure to evaluate the material’s final MS will be to 
intersect the material’s initial MSG with the DSG associated with the particular deforma- 
tions under consideration. 

As in the previous section, t, will denote the time for which we are given the MSG of the 
material and t, is the time at which we desire to know the material’s MSG. As we will only 
consider states of the material at time cl for which the group of MSGs at time r1 can be 
generated from an orthogonal generator, we can select the configuration K such that 
g,[,Y’“,(X, tl)] c 8, i.e. all the MSG’s members are orthogonal transformations. For such a 
g,[.Y,(X, r,)], which only contains orthogonal members, it is obvious that in calculating 
g,[Y,(X, cl)] n gd,(tl + t2), we need only evaluate the orthogonal members of gd.(tl +t2). 
That is, even though there might be non-orthogonal members in gdK(cl -+t2), only ortho- 
gonal members of gd,(rl + f2) will be in the intersection of gd,(tl +t2) and g,[Y,(X, cl)]. 

An important point to note is that, once we have found gx[9’JX, t,)] n gdK(t, -+t2) for a 
configuration K in which g,[Y.(X, tl)] c 0, then g.,[sPz(X, tl)] A gd.,(tl +t2) for any 
arbitrary K’can be found by applying Nell’s rule to g,[Y,(X, tl)] n gd.(fl + t,).’ Therefore, 
the selection of K such that g,[Y,(X, tl)] c 0 does not introduce any restrictions on the 
results which will be presented, but this selection will simplify the presentation. 

In the following sections, we will separately look at the evolution of initially isotropic, 
transversely isotropic, and orthotropic materials for certain classes of deformation. As we 
will use the anisotropic tensors in the later developments, a short presentation of the subject 
follows. 

7. ANISOTROPIC TENSORS 

In obtaining the results presented later, we have used the results of Rivlin and Smith Cl23 
on anisotropic tensors. The following is a short presentation on anisotropic tensors. The 

’ This follows from the fact that gr, = Fg,T -1 and gd., = Pg,P-’ for P given as the deformation gradient 
comparing the configuration of the nbhd of the material point in K’ with its configuration in K. 
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scope of this presentation is restricted to its particular use in this paper. A more detailed 
presentation can be found in [12,13]. 

Smith and Rivlin Cl23 have shown that for a given group g of orthogonal trans- 
formations, there is a set of anisotropic tensors x{Pf.. i_, for p = 1,2,. . . , with the property 

(20) 
for every H,, E g (the standard summation convention is assumed on repeated indices). This 
set forms a basis for the construction of any tensor Gi, _. . *, that has the property, 

for every H,eg. That is, every G which satisfies (21) for all H,eg can be written as 

G = b, fV” + . , . -I- b,jP’, (22) 

for some scalars b,, . . . , b, and tensors g(l), . . . , ff”’ where each tensor gti’ is either an 
anisotropic tensor of g or the tensor product of anisotropic tensors of g. This implies that 
any G which can be written in the form (22) will satisfy (21) and vice versa. 

As we will only be concerned with the case where G is a second-rank tensor, equation (21) 
can be written as 

G=HGHr. (23) 

We will confine the rest of this presentation to such a G. 
What follows is a presentation of triclinic, monoclinic, orthotropic, and transversely 

isotropic materials. For each case we first define an orthogonal generator and then provide 
the anisotropic tensors associated with this generator. As we only consider those G which 
are second-order symmetric tensors in a three-dimensional space, we will only present the 
anisotropic tensors relevant to this case (see [12] for more details). 

(1) Triclinic material: A material is considered tri~lini~-pinacoidal if its group of MSGs 
can be generated from DIri = _t (I>, where I is the identity. That is, the material is only 
indifferent to a central inversion. There are nine anisotropic tensors associated with D,,i and 
they are given as 

Qf:1’=SilS/l,01!_:2’=ijr*Sf2r.. . , afj3)=Si36j3, (24) 

where b, is the Kronecker delta. All simple materials which satisfy the constraint of frame 
indifference are at least triclinic. 

(2) Monoclinic material: A material is considered monoclinic-prismatic if its group of 
MSGs can be generated from D,, = + {I, R,}, where R, = Diag(- 1, 1, 1). That is, the 
material is indifferent to central inversions and reflections about one plane of symmetry (in 
at least one configuration of the body). There are five anisotropic tensors associated with 
D man and they are given as afil), u122t, afS3), aft3), and a(32t, where a(“) is defined in (24). 

(3) Orthotropic (rhombic) material: A material is considered orthotropic or rhom- 
bic-dipyramidal if its group of MSGs can be generated from DDrth = f (I, R,, R2, R,}, 
where I and R, are the same as given above, and R, = Diag(1, - 1, l), and R, = Diag(1, 1, 
- I). That is, the material is indifferent to central inversion and reflections about three 
perpendicular planes of symmetry (in at least one configuration of the body). There are three 
anisotropic tensors associated with DOrlh and they are given as arl’), a(22), and af33). 

(4) Transversely isotropic material: A material is considered transversely isotropic if its 
group of MSGs can be generated from D,,,, = + {I, R,, M,, R, M,; for all w}, where I and 
R, are given above, and 

cos (w) sin(o) 0 

M o= 

( 

- sin(w) cos(0) 0 , w 

0 0 1 j 

for 0 I;O < 2~. That is, the material is indifferent to central inversions, reflections about any 
plane which passes through a preferred axis of the material, and reflections about a plane 
perpendicular to the preferred axis of the materiai (in at least one configuration of the body). 
There are two anisotropic tensors associated with D,,,, and they are given as af3”, and 
a(1 1) + a(22)_ 
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8. INITIALLY ISOTROPIC MATERIALS 

For initially isotropic materials g.[Y,(X, tt)] is the full group of orthogonal trans- 
formations; that is, g,[.Y”,(X, r,)] = 8. Therefore, the current MSG of the material will 
satisfy 

SKC~K(X9 Ml 1 0 A a& -+M. (26) 
We note that it may be possible for g,[Y,(X, t2)] to contain orthogonal and unimodular 
nonorthogonal transformations not contained in 0 n gd,(rl -+ tS). What follows is the 
evaluation of 0 A gdK(tl + rz) for particular deformation histories. 

8.1. Equal triaxial extension 
For the case where the deformation history from tI to tz only contains equal triaxial 

extensions, 

C,(s) = a(s)I, (27) 

where a(s) is an arbitrary function of SE@, , t2 J, and I is the identity. Such a C,(s) is form- 
invariant to all orthogonal transformations, and therefore gd, = 8. As gd, n 0 = 0, there- 
fore, 

SKCY,(X, h)l 2 0. (28) 
That is, any initially isotropic material which is only subjected to a history of uniform 
triaxial extensions will remain isotropic. 

8.2. Uniaxial (equal biaxial) extensions 
Let us consider the case where the deformation history from t, to t, only contains 

uniaxial extensions along a fixed axis of the material; 

C,(s) = Q[al(s)a(33) + a2(s)(a(11) + a(“))]Q’, (2% 

where a,(s) and a2(s) are arbitrary functions of SE@,, tJ, where Q is a constant orthogonal 
linear transformation, and where a(33) and at1 lb + a(22) are the anisotropic tensors associ- 
ated with the group II,,,,. Such a history of C,(s) is form-invariant to all transformations in 
QD,,., Q’. Because, as long as a,(s) # a2(s) for some s E (f, , t2], QDtranQT will contain all 
the orthogonal transformations which are in gdK, then gdK n 0 = QDtranQT and 

g,CY,(X, Ml 2 QLQT. (30) 

That is, any initially isotropic material which is only subjected to uniaxial extensions along 
a fixed axis of the material will at least be a transversely isotropic material after the 
completion of the deformations. The direction of the preferred axis of transverse isotropy is 
determined by Q. 

8.3. Unequal triaxial extensions 
Consider the case where the deformation history from cl to t, only contains triaxial 

extensions along a set of three fixed orthogonal axes of the material, 

C,(s) = Q[a,(s)a”” + a2(s)a(22) + a3(s)a”“] Qr, (31) 

where a,(s), a,(s), and a3(s) are arbitrary functions of s~(t,, r,], where Q is a constant 
orthogonal linear transformation, and where at1 t), a(22), and a(33) are the anisotropic 
tensors associated with the group Dorlh. Such a history of C,(s) is form-invariant to all 
transformations in QDorlhQT. Because, as long as a,(s) # a2(s) # as(s) # a,(s) for some 
SE(~,, t2], QDorthQT will contain all the orthogonal transformations which are in gdK, then 
gd, n 0 = QLhQT and 

s,CYJX Ml 2 QDor,hQr. (32) 
That is, any initially isotropic material which is only subjected to triaxial extensions along a 
fixed set of orthogonal axes of the material will at least be an orthotropic material after the 
completion of the deformations. The preferred axes of orthotropy are given by Q. 
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8.4. Combined simple shear and triaxial extensions 
For the case where the deformation history from t, to t2 is a combination of triaxial 

extensions along a fixed set of orthogonal axes of the material with simple shear in one 
plane of the triaxial extensions, 

C,(s) = Q[al(s)a”l’ + a2(s)afz2’ + a3(s)a(‘3) + aq(s)(a(23’ + a(32))] QT, (33) 

where a 1 (s), . . . , ad(s) are arbitrary functions of s E (t , , t2], where Q is a constant orthogonal 
linear transformation, and where at1 l), a(22), a(33), a(23) + a(32) are the anisotropic tensors 
associated with D,,,. For such a deformation history, it is simple to show that 

g,CY,(X, Ml 2 QRnonQT. (34) 

That is, the final material will at least be invariant to central inversions and a reflection 
about the plane of simple shear. 

9. INITIALLY TRANSVERSELY ISOTROPIC MATERIAL 

For an initially transversely isotropic material g,[Y,(X, t,)] = PD,,,,PT for some con- 
stant orthogonal transformation P and the group D,,,,. We will select the coordinate axes 
such that P = I. This selection introduces no particular restrictions, but it simplifies the 
presentation. Therefore, we will consider a material for which gK [YJX, t1 )] = D,,,,; that is, 
its preferred axis of transverse isotropy is along’the third coordinate axis. The current MSG 
of the material will satisfy 

What follows is the calculation of D,,,, n gdK(tl + t2) for several particular deformation 
histories. As we have already evaluated 8 n gd,(tl + t2) for these histories in the last section, 
and as D,,,, n g& +t2) = D,,., n [On gd,(tl + t2)], we can use the results of the last 
section. 

The proof of the results presented here are primarily by inspection and are not presented 
in detail. Presentation of the proofs are quite lengthy and are, to a great extent, parallel to 
those in [ 10, 111. Therefore, the reader is referred to [lo, 111 for more details. 

9.1. Equal triaxial extensions 
For this history of deformations, we have shown that, 0 n gd,(tl + t2) = c and therefore 

s,CY,(X, Ml 2 Dtran. (36) 

Therefore, after a history only involving equal triaxial extensions, an initially transversely 
isotropic material will remain at least transversely isotropic. 

9.2. Uniaxidl (equal-biaxial) extensions 
For this history of deformations we have shown that 0 n gd,(tl + t2) = QDllsnQT and 

therefore 

&H’“.(X, t2)l 3 D,,., n QknQf. 
There are three distinct cases: 

(37) 

(1) If the two preferred axes of transverse isotropy (those associated with D,,,, and 
QD ,,.” QT) become aligned, then QD ,,_ Q’ = D (,a” and therefore 

g,CY,(X, Ml 2 D,,.,. (38) 

(2) If the preferred axes of transverse isotropy of D,,,, and QD,_“QT are perpendicular, 

then D,,,, n QDtr_,Qr = M,D,,,M: for some 4, and 

cos (4) 
M, = -sin(4) (39) 

0 
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g,Cy,(X, tr)l 2 M,~,,,,M;. (40) 

(3) If neither of the above is true (i.e. the preferred axes of D,,,, and Q DtrlnQT are neither 
parallel nor perpendicular), then D,,,, A Q DcranQT = lM,D,,,Mf for some 4, and M, givdn 
as above. 

Therefore, depending on the axis of uniaxial extension (given by Q), the final material will 
be transversely isotropic, orthotropic, or monoclinic. 

9.3. Non-equal triaxial extensions 
For this history of deformations, we have shown that G n g&, + I*) = QDorthQr and 

therefore 

s,CY,(X, tdl 2 D,,,, n QDor,t,QT. 
There are three distinct cases: 

(41) 

(1) In the case where the preferred axis of transverse isotropy (represented by the term 
D,,,,) becomes aligned with one of the directions of orthotropy (represented by the term 
QDonhQT) we will have 

g,C.4p,(X, tdl 1 QDorthQT. (42) 

(2) If the preferred axis of transverse isotropy is in one of the planes of symmetry 
associated with QDo,,,,QT and not along any of its axes, then 

s,C~,(Xfz)l 2 kQ(LRdQT. (43) 

or 

s,CY,(X, Ml 2 f Q{I, %) QT, (44 
or 

s,CY,(X, 1211 1 zk Qfk R,} Q’, (45) 

depending on which plane of symmetry of QDorthQr it falls in. 
(3) If neither of the above is true, then 

g,CY,(X, t2)l 1 Dtri. (46) 

Therefore, depending on the axes of the triaxial extensions (which are given by Q), the 
final material will at least be orthotropic, monoclinic, or triclinic. 

10. INITIALLY ORTHOTROPIC MATERIAL 

For an initially orthotropic material g.[.Y,JX, tl)] = PDorlhPT for some orthogonal P. 
As in the last section, we will select the coordinate axes such that P = I, without any loss in 
generality. Therefore, the current MSG of the material will be 

g,Cyx(Xb)l 2 Dorrh~gc,,(~~ +M. (47) 

What follows is the calculation of Dorlb A gds(tl + tr) for several deformation histories. As 

Donhngd,(fl -%)= Dorthni?ng& -$)I. and we have already calculated 
0 n gdz(tl + tz) in the section on lmtially isotropic material, we will use the results and 
notation of that section. 

Most of the proofs in this section are by inspection and will not be presented in detail. 
Similar presentations were done in [ 10, 111. to which we direct the reader for more d&ails. 

10.1. Equal rriaxiaf extensions 
For this history of deformations, we have shown that, 0 n gdK(r, -+ t2) = C; and therefore 

sJYI(X, Ml = L,v (48) 

Therefore, after a history only involving equal triaxial extension, an initially orthotropic 
material will remain at least orthotropic. 
U 2.:~‘ 
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10.2. Uniaxial (equal-biaxial) extensions 
For this history of deformations, we have shown that 0 n gdr(c, -+c2) = QDtrlnQT and 

therefore 

s,C~JX Ml 2 &,nlr n QL,,Q*. (49) 

There are three distinct cases: 

(1) If the preferred axis of Q&Qr is along one of the preferred axes of Dote,, then 

s,C~.tX rr)l 2 &rll- (50) 

(2) If the preferred axis of Q&,,QT is in one of the planes of symmetry of Darth but not 
along any of its axes, then 

5r,LY,(X t,)l =, rk (1, R,}, (51) 
or 

g,CY,(X Ml 2 rt: (4 &It (52) 

or 
g,C.4p,(JC tz)l = + (I, I%), (53) 

depending on which plane of Darth it falls in. 
(3) If neither of the above is true, then 

SXC~,(X tdl = &l- (54) 

Therefore, depending on the axis of uniaxial extension (given by Q), the final material will 
be orthotropic, monoclinic, or triclinic. 

10.3. Non-equal triaxial extensions 
For this history of deformations, we have shown that, 8 n gd,(tt + t2) = QDorthQf and 

therefore 

gK CK(X r2 )I =, Darth n QDorlh Q’. (55) 

There are three distinct cases: 
(1) If all three axes of orthotropy coincide, then 

gJ~,(X> tdl = &co,. (56) 

(2) If only one of the preferred axes of Dot,,, and QDorlhQT coincide, then 

s,f~,(X Ml 2 Z?Z .{I, R,), (57) 

or 
g,CY,(X, Ml = k (1% &I, (58) 

or 

s,CY,(JC tdl 3 zk 11, Wr (59) 

depending on which axes coincide. 
(3) If neither of the above is true, then 

~,C~,AX, Ml 1 Dtri. 03 
Therefore, depending on the axes of the triaxial extension (which are given by Q), the final 

material will at least be orthotropic, monoclinic, or triclinic. 

il. CONCLUDING REMARKS 

There are several points we would like to emphasize. First, to obtain these results, we 
have not assumed any structure, other than that imposed by frame indifference, on the stress 
response functional of the material. That is, if frame indifference is a reasonable restriction 
for al1 simple materials, then these results must be true for all simple materials. 

Second, in each case, we have evaluated the minimum symmetry the material must have 
after the particular deformation; that is, there might be symmetries the material has gained 
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due to its particular structure which are not considered in this paper. Therefore, this 
minimum symmetry the material will finally have is common to all simple materials as it is 
purely due to the deformations the material has undergone. 

Third, as will be shown in later publications on inelasticity and polymer crystallization, 
once one imposes more structure on the constitutive functional, it is possible to predict with 
greater accuracy the evolution of symmetries. 

Finally, we would like to mention that there might be several reasons for a material not to 
have the minimum symmetries predicted here. First, the material might not be a simple 
material. Second, it might be going through a non-continuum transition. That is, the events 
occurring on a molecular level cannot be followed by only measuring the evolution of 
continuum variables. Third, as an MS is an absolute property, small changes in the 
parameters of a problem can totally change the MS. That is, for example, a material cannot 
be both isotropic and orthotropic (it must be one or the other), and therefore a small change 
in the parameters of the problem might make a material which was predicted to become 
isotropic finally become orthotropic (or to have any other acceptable MS). The analysis of 
how sensitive a material’s properties are to changes in the parameters influencing their 
change is a separate issue, which must be addressed separately for each particular material. 
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