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ABSTRACT 

THE PRESENT work is concerned with the bifurcation and postbifurcatio~ analysis of a class of rate 
independent plasticity models obeying Hill’s maximum dissipation principle. A variational inequality 
approach. which differs from the classical formulation of the plastic bifurcation problem. is employed. The 
rate n bifurcation problem is formulated and sufficient conditions for uniqueness of the corresponding 
boundary value problem are given. A connection is made with Hill’s nonbifurcation criterion. In addition. 
the issue of the postbifurcation behavior of the solid is addressed in this more general context showing the 
possibility of angular as well as smooth bifurcations of rate n > 1. 

Finally an example, capab% of exhibiting both an angular as well as a smooth bifurcation is analysed 
using the general fo~uIation derived in this work. The presentation is concluded with some comments 
and comparisons of the present methodology with the classical approach. 

1. INTRODUCTION 

THE PLASTIC buckling of structures is a very interesting topic in mechanics, both for 
its practical importance as well as for its mathematical challenge. Following some 
early work of CONSIDERE (iS91), VON KARMAN (1910) and SHANLEY (1947), HILL 

(1956, 1958) was the first to put the bifurcation instability problem for a rate inde- 
pendent elastoplastic continuum on a sound mathematical basis. 

More specifically Hi1 has addressed the issue of loss of uniqueness in the velocities 
(i.e. displacement increments) for the incremental boundary value problem of an 
elastoplastic solid and gave sufficient conditions for the exclusion of such a bifurcation 
(termed rate one or angular bifurcation in the present work). He then went on to 
generalize the validity of his criterion by postulating the absence of a bifurcated 
branch at a load where a bifurcation in velocity was excluded. Subsequently, and 
based on Hilt’s formulation of the problem, HUTCHJNSON (1973, 1974) has studied in 

considerable generality the postbifurcation and imperfection sensitivity issues for the 
aforementioned (angular) bifurcation problem. His approach is restricted to problems 
with total loading throughout their principal solution. In addition, fractional asymp- 
totic expansions (in terms of the time-like parameter) of the various field quantities 
are required, in contrast to the (now classical) postbifurcation analysis for elastic 
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systems introduced by KOITER (1945) (on this subject see also BUDIANSKY’S. 1974. 
comprehensive review article and references quoted therein). 

The present work is an outgrowth of some initially independent efforts by the 
authors to circumvent the problems of the plastic bifurcation and postbifurcation 
theory mentioned above. A mathematically simpler approach to the plastic bifurcation 
problem (which is also applicable to a wide range of rate independent dissipative 

phenomena, besides plastic stability) has recently been proposed by NGUYEN (1987) 
and is based on the generalized standard material formalism for rate independent 
solids, a concept initially introduced by HALPHEN and NCUVEN (1975). The issue of 
higher order (smooth) bifurcations was initially addressed by TRIANTAFYLLIDIS ( 1983) 
using a somewhat restrictive approach based on a class of CHRISTOFFERSEN and 
HUTCHINSON (1979) type constitutive models (i.e. models with a regularized depen- 
dence of the incremental moduli on the stress or strain rates). The work presented 
here can be viewed as the logical continuation of the aforementioned efforts and has 

the following features. 
The incremental boundary value problem of rate n (with respect to the time-like 

parameter) is formulated and sufficient conditions for its uniqueness are explored (the 
present results generalize some preliminary ones obtained by NGUYEN and STOLZ, 
1985). In addition, a connection is made between an exclusion principle for bifurcation 
of arbitrary rate and Hill’s exclusion of bifurcation principle, which is shown to 
preclude bifurcation of any order (and not merely the first rate as initially proved by 
Hill). The presentation continues with the formulation of the postbifurcation expan- 
sion problem in a unified approach (and in terms of an integral power series with 
respect to the time-like parameter) that is valid for bifurcations at any rate. The 
general theory is followed by a thoroughly analysed example in which both angular 
(rate one) and smooth (higher than rate one) bifurcations occur. Finally some con- 
cluding remarks are made about the advantages and limitations of the proposed 
approach. 

2. GENERAL FORMULATION OF THE BIFURCATION AND POSTBIFURCATION PROBLEM 

The generalized standard material formalism introduced by NGUYEN (1973) (see 
also HALPHEN and NGUYEN, 1975) will be the basis for the stability analysis presented 
here. Accordingly, if $(E, a) is the free energy density function of the solid at a material 
point with strain E and internal variables a, the associated stess s and internal forces 
A are given by 

ad, 
s=,, A= _?!t 

VE da’ 
(2.1) 

In addition, the internal forces A are assumed to lie inside or on the surface of a 
convex set C defined by,f(A) < 0. The evolution law for the internal variables is then 
found from the maximum dissipation principle 
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(A-A*).& > OtVEA*EC, C E {A*lf(A*) < 0} (2.2) 

where a quantity surmounted by a dot (e) denotes differentiation with respect to the 

monotonically increasing time-like parameter 5. 
The majority of the commonly employed small strain, rate independent plasticity 

laws can be cast in the above formalism. The Lagrangian strain E = E(U) is a nonlinear 
operator of the displacement field u while s is the second Piola-Kirchhoff stress and 
4 is the material’s free energy per unit reference volume. 

From (2.2) and assuming thatf(A) is adequately smooth, one obtains 

af 
dr = pZwith 

p=Oiff(A)<O 

,~3Oiff(A)=O. 
(2.3) 

The constitutive equations (2.1), (2.2) (or (2.1) and (2.3)) will be subsequently 
employed in the formulation of the boundary value problem for the rate independent 
elastoplastic materials considered in this work. 

In addition to (2.1)-(2.3) the following useful relations are recorded : by sub- 
sequently taking A* to be A(r) f A(r)Az and assuming a smooth dependence off on 
A, one deduces from (2.2) 

A.h=O~&A+O. (2.4) 

The n rates of (2.4) as well as (2.1)-(2.3) will be required for the determination of the 
solution to the boundary value problem of rate n. 

This section is only meant as a brief reminder for the governing equations of the 
generalized standard model. For a more detailed account of the theory accompanied 
by appropriate illustrative examples, the interested reader is referred to NGUYEN 
(1980). 

2.1. Uniqueness for the boundary value problem of rate n 

Consider a generalized standard solid with free energy (b(e, a) per unit reference 
volume occupying a volume R with boundary X?. Moreover assume that on a part 
of the boundary, say dR,,, the displacements u are prescribed while on the remaining 
part of the boundary. say dR,, surface tractions 1.T’ are applied in proportion to a 
scalar parameter 3.. Neglecting body forces for simplicity and assuming U to be the 
space of all admissible displacement functions u, the solid’s potential energy is given 
by: 

&= 
s 

(P(E, a) d V- A 
s 

T’.udS 
R ?R 

where for simplicity it has been assumed that u = 0 on aR,,. 

(2.5) 

tNo/e : For notational convenience the inner product between tensors of arbitrary order will be denoted 

by (*). 
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The equilibrium equation, i.e. the boundary value problem of rate 0. is given by 
extremizing f: with respect to u. Thus, 

(2.6) 

where &s = E,,(&I) is the first variation of the (nonlinear) strain-displacement operator 
E(U) with respect to u. Assuming at this stage that the displacement II (and hence 
the strain E) and the internal variable a fields are known at an instant T. one is 

interested in determining the rates of the aforementioned fields ir and &, or equivalently 
from (2.3) ri and p. It will be shown that (ir,,~) is the solution to the following 

variational inequality : 

J9 [(~.~~)‘+(8_ii)(-i)]dV-l%~T”.budS 2 0 V(&I,/?), UxK,, 

K, = {P(x)[/l > 0 if xEZy. /l= 0 if xel;), 

z: = a, 

Z: = {x~Qjf(A(x)) = 0}, 

Z; = {x~Qf(A(x)) < 0). (2.7) 

Note that by definition the sets I:, I:, I; are disjoint and that their union gives R. 
i.e. 1: u I: u I; = 0. 

At this point it is tactitly assumed that no moving discontinuities of the quantity 
(84/a&) *& exist. Consequently, the first rate of the equilibrium Eq. (2.6). when 
written out explicitly, does not contain any surface terms. This assumption is satisfied 
in most applications of interest for it corresponds to problems with continuous stress 
(see (2.1)) and strain fields or more generally to problems with stationary stress 
and strain discontinuities. This assumption is no longer valid for the rates of the 
aforementioned quantities, as will be discussed later. 

By taking &I # 0 and /3 = ,u, one recovers the first rate of the equilibrium Eq. 
(2.6). Conversely. for 6u = 0, p # ,U and noting that fl, ,u E K, one has 

= For x EZ~ 
f,<Oif,=O 

j-c 0 if p > 0, (2”) 

exactly as predicted from (2.3) and (2.4). 
Having formulated the rate 1 boundary value problem, attention is focused on the 

uniqueness of its solution (ir. p). To this end, consider the following functional S[[a, 81. 
quadratic in (a, p), defined by : 
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If F[iYi,/?] is positive definite V(ti,/3) E Ux VK, (with VK denoting the linear hull 
of the convex set K), it will be shown that a rate 1 bifurcation is excluded. For if not, 

assume (e,, p ,) and (ti,, pzj to be two different solutions of the variational inequality 
in (2.7). Employing (2.7) and (2.8) in (2.9) one obtains the contradiction 

The positive definiteness of F on U x VK, is a sufficient condition for the uniqueness 
of the rate 1 problem and hence is too restrictive. One expects a unique solution to 
the rate 1 problem in (2.7) under less stringent conditions. 

Once a unique solution to (2.7) is found, i.e. given (u, a), (a. k), the rate 2 problem 
can be formulated. It will be shown that (ii,~i) is the solution to the variational 
inequality : 

K2 = (/3(x)j@R if xel: uZ:, p>,OifxeZ!, p=OifxEZ?uZ;), 

Z; = {x~Z:l~(x) > 0, f(A(x)) = 01, 

1; z {x~I:Ip(x) = 0, f(A(x)) = 0}, 

12 E (x EZ:IC((X) = 0, &A(x)) < O}. (2.11) 

Note also that the sets Z:,Z!,Z: are disjoint and that their union gives Zy. i.e. 

z; u z; v zi = z:. 
Unlike (c_@/&-) * SE its rate 1 derivative with respect to r can have moving dis- 

continuities. Hence the term ((&$/&*&)” in (2.11) has to be interpreted in the 
generalized function sense in order to account for the time-dependent discontinuities 
in this quantity. Had a more explicit notation been adopted, some additional surface 
integrals would have also been included in (2.11). Knowing that the discontinuity in 
the rate of a field quantity, say 4, propagating with velocity 11, in the direction of the 
outward normal n to the discontinuity surface in question satisfies ([gV]-n)r, + [icj] = 0. 

one deduces that the surface discontinuity terms in (2.11) involve field quantities 
up to rate one. This remark is important when considering bifurcation of the rate 
2 problem for only the volume term given in (2.9) appears in the final calculation. 

Similarly to the rate 1 case, by taking 6u # O,b = pi one recovers the second rate 
of the equilibrium equation (2.6). Moreover, for 6u = 0, fl # fi and since 8, ALE K2 
(2.11) yields : 

s Q(~-P)(-.~)dV~O~ 
s 

(b-d)(-jt)dV z 0 
1; u/t v/r 

( ForxeZt uZ:, .y= 0 

y=Oiffi>O 

,T< 0 if jj = 0, (2.12) 

I ForxEZi ul;, p = 0, 
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which can be easily verified by taking rates of (2.2)-(2.4). Notice also that for the rate 
2 problem $= 0 V x ER (compare with (2.4)). 

The natural question arising next pertains to the uniqueness of the solution (ii, pi) 
to the rate 2 boundary value problem. It will be shown that a sufficient condition for 
the uniqueness of a solution to (2.11) is the positive definiteness *;[a, /l] on U x VK:. 
Considering again F[ii,. --ii?, pi,, -,i~?] for the two different solutions (ii,, b,) and 
(ii?, i(J to the rate 2 problem (2.11) (with the tacit assumption that up to the time of 
interest the solutions to the rate 0 and 1 problems are unique) and making use of 
(2.9). (2.11) and (2.12) one has 

which obviously contradicts the assumption about the positive definiteness of 9. 
The rate 3 problem, which will be examined next, suggests the algorithm for the 

generalization to the problem of rate n. Once more, it is assumed that a unique 
solution has been found to the problems of rates 0, I and 2 up to the time of interest. 
The wanted solution (ii, p) is determined from the following variational inequality : 

j&$&)“’ +(/3+)(-y) dV-1 ] :LQTo.a.dS>O V(~U,/?)EUXK~, 

K3 = {P(x)I/?ER if xEZ: uZ+ LJZ:, p 3 0 if xEZP. 

p=OifxEZ; ul~~ul;}, 

Z; = {x~Z;l/i(x)> 0, l(A(x))= O)-, 

Zl: = {x~Z’$/i(x) = 0, r(A(x)) = 01, 

I, = {x~Z$i(x) = 0, y(A(x)) < O}. (2.14) 

As in (2.7) and (2.11) by construction Z:, Ii, I; are disjoint with Z: u I:’ u I< = II. 

Similarly to the rate 2 problem, the rate 3 derivative of (&#~/a&) * & with respect to 
r appearing in (2.14) has to be interpreted in the generalized function sense in view 
of the possible moving discontinuities. In writing (2.14) explicitly, only the volume 
integral contains rate 3 terms while the surface discontinuity integrals contain terms 
up to rate two. Hence in the bifurcation calculation of the rate 3 problem only the 
volume term in (2.9) appears in the final expression. 

Once more the third rate of the equilibrium equation (2.6) is recovered from (2.14) 
by taking 6u # 0, b = fi, while for &I = 0, p # fi and given that p, b E K3 one obtains 

s 
(B-fi)(-,'?‘)dV> Oa 

n s ,;",jv,: ",p+)(-j) 3 O ? 

ForxEZ: LJ It ul:, 7= 0 

(2.15) 

ForxEZi VI? UZ ;, ii =O. 
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which also follows from (2.21, (2.3) and (2.4). As for the previous two cases, one has 
from (2.15) fiJ= 0 VxEQ. 

As expected, a sufficient condition for the uniqueness of the solution (I?, fi) to (2.14) 
is the positive definiteness of the functional 9 in (2.9) over the set U x F’K,. Indeed, 
by a similar construction, if (5 ,, fill and (ii,, fi2) are two different solutions to (2.14), 
from (2.9). (2.14) and (2.15) follows the contradiction 

(2.16) 

The generalization of the above algorithm for the rate n boundary value problem 
can be accomplished as follows: assuming a unique response (ti,~), (ii, $1,. . . , 

(%‘), @i2’) to all the boundary value problems of order 1,2, . . . (n - l), the variational 
inequahty corresponding to the rate n problem is given by :t 

Kn 5 {fi(X)lj?ER if xEL, z:, B>OifxEZz, p=OifxE,e,Zci, 

z,’ 2 {XEZ,O_ , ( (“ji2) (x) > 0, 
(n- 1) 

f (A(x)) = 01, 

z,” e {x E z,“_ ,I (“ji2) (x) = 0, 
tn- I) 

f GW) = 01, 

I, 3 (x EC_, 1 (“ji2) (x) = 0, 
tn- 1) 

f (A(x)) < 0). (2.17) 

Note that Zc , Z,“, I; are disjoint while Z,t u Z,” u Z; = I,“_, . 

As in all the previous cases for 6u # O,p = (“or’ the variational inequality (2.17) 

yields the equiIibrium equation (2.6) of rate n while for 6u = 0, B # @ii) and since 8, 
(n- 1) 

P EK” 

tNote : Of special interest for the uniqueness argument is the term of (2.17), that contains the highest 

order time derivatives (# and “g”, which is 

iO(inii”,tnj22’) terms. 

It is interesting to note that the surface discontinuity terms in the explicitly written out form of (2.17). are 

at most of O(‘“ii”, lo-‘) p ). This property follows from the observation that the normal speed of propagation 

c,,, of a surface discontinuity of the rate M in field quantity g is given by (I[‘“3 “V] * n)v, + ([‘;‘I = 0 where 

n is the outward surface normal in the direction of propagation of the discontinuity jump [ 1. 
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=z 
f‘ = 0 if “‘p” > 0. 

ForxEI,‘: ;,,, 

i 
.f‘ < 0 if “il” = 0. (2.18) 

ForxEkg, I;, (“,u” = 0. 

which similarly follows from (2.2), (2.3) and (2.4) after taking appropriate rates. Also 
(n- I) ‘“’ 

notethat p f=O VxrzR. 

A sufficient condition for the uniqueness of the solution (‘;;‘, ‘,li”) to (2.17) is again 
the positive definiteness of the functional 9 defined in (2.9) over the set U x VKn. For 

if not, assuming the existence of two different solutions (u,, In’ ‘“/&“), (;;. “E2”) and 

making use of (2.9), (2.17) and (2.18) one is lead to the contradiction 

(2.19) 

Note that in the derivation of (2.19) use was made of the previous remark that only 
the volume part in the incremental equilibrium equation of rate n contains terms of 
order n. All surface discontinuity terms are of rate n- 1 or lower and hence do not 
appear in (2.19). 

The development of the variational inequality method for the rate problem of 
order n is a generalization of the recent work by NGUYEN and STOLZ (1985) for 
the problems of rates 1 and 2. Note that in contrast to the aforementioned work, 
in the present development no explicit expression for the nth rate of the virtual work 
is given (see Eqs (2.7). (2.1 I), 2.14), (2.17)) in view of the resulting cumbersome 
expressions. It should also be repeated at this point that special care has to be taken 
when considering the explicit expressions for the rates of the equilibrium Eq (2.6) in 

view of the surfaces of discontinuity in 
(nm I) (nm I) 

E and a ; this difficulty will become 

apparent in the next subsection as well as in the example. The important point to 
retain is that for the reasons given in the discussion note for (2.17). the surface 
discontinuity terms involve rates of order H - 1 and lower, a key property required in 

the derivation of (2.19). 
It is not difficult to see that VK, 2 VK: I . . . I> VK,, . . . Hence positive definiteness 

of .F[ii, /I] V (a, p) E U x VK, and V 1, E [0, 1,) (where .F is evaluated on the principal 

solution &I.). i(i)) implies the impossibility of bifurcation in un~’ order in the load 
parameter interval [0, E.,). If one makes the conjecture that any possible bifurcation 
is amenable to a polynomial type one, i.e. that there exists a parametrization at a 
neighborhood of the critical load i., such that (NGUYEN, 1987) 
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i(5) = L.+~E.,+O(F’) 0 < T cc l,u, # 0, 

U(T) = i(T)+ ;",+O(T'+'), a(T) = i(T)+ $,+O(Tq+'). (2.20) 

where p, qsN\{O). then the positive definiteness of 9 on Ux VK, for a solution 

(i(L), i(J)) on an interval [0, 1.J excludes bifurcation at that interval. 
At this point a connection is made between Hill’s sufficiency criterion for non- 

bifurcation and the one presently proposed. To this end, according to HILL (1958). 

the following functional X[fi] (quadratic in ti) is defined : 

+ ~~a.,,(b.fi) dI’, QEU, (2.21) 
1 

with x,: the characteristic function of Zy (i.e. x(x) = 1 ifx E Z: and x(x) = 0 ifx 4 I:). 

HILL (1958) has shown that positive definiteness of %’ in an interval [0, &.) of the 
load parameter E. excludes the bifurcation in the rate 1 problem there. Without 
addressing the question of any higher order bifurcation, he postulated that bifurcation 
in the interval [0, i.,.) (where Y? is positive definite) is excluded. The result presented 
here provides the justification for Hill’s far sighted intuition. It will be shown that 
positive definiteness of % in [0, i,,) implies (assuming certain additional properties of 
9 which are met in the applications of interest) the positive definiteness of F on the 
same interval and hence bifurcation in any rate is excluded. 

Indeed, had this not been the case, i.e. if 9 is not positive definite at some point 
of [0, &) and given that 9 is positive definite at 2 = 0 (otherwise the problem is ill 
posed since a bifurcation is possible at a vanishing externally applied load) from the 
continuity of .P with respect to 3. there exists j.* E [0, &) such that R* is the point of 
the first loss of positive definiteness of fl as i, increases away from zero. Without loss 
of generality. it can also be assumed that at i. = %*, one can find (ir*, I**) E U x VK, 
such that 

For Q = 0 and /l # 0. from (2.22) follows that 

(2.23) 

since /I(x) = 0 Vx~l;, for )(JE VK,. Substitution of (2.23) into (2.22) and after 
taking Q = 8*, one easily obtains the contradiction that at I* E [0, J.,.), %‘[ri*] = 0. 
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A discussion on why Hill’s uniqueness criterion excludes not only rate 1 bifurcations 
but higher order ones as well. was given in a different setting by TRIANTAFYLLIDIS 
(1983). Some more recent work by PETRYK and THERMANN (1985) has subsequently 
addressed the smooth bifurcation problem but only up to the second rate and by 
employing a completely different approach than the one proposed here. 

2.2. Postbifurcation analJ)sis-smooth cs angular bifurcations 

Having established a sufficient condition for non-bifurcation. attention is next 
focused on its failure and more specifically on the postbifurcation asymptotic expan- 
sions for generalized standard solids. 

Following NGUYEN (1987), a polynomial expansion in terms of integral powers of 
the time-like parameter r is postulated near the critical load i.,. (i.e. the load at which 
the positive definiteness of sis lost for the first time as 1. moves away from zero). as 
indicated by (2.20). A bifurcation is termed “angular” if p = qt and “smooth” if 
p < q the terminology being motivated by the geometry of the corresponding i.-ljuii 

diagram where the bifurcated branch emerges at an angle (lim 11 u-i // i(;. - i,) # 0) 
I - i, 

or tangentially (!im 1) u - $ I/ /(i. - i.,.) = 0) from the principal branch &E.) 
I + ;., 

Unlike the postbifurcation analysis of elastic solids where (in general) adequate 
regularity of the postbifurcation solution is available and permits a straightforward 
and general scheme for the calculation of all the higher order terms as found by 
KOITER (1945) (see also BUDIANSKY’S, 1974 comprehensive review article). no such 
regularity is present even in the simplest meaningful problems in plasticity in view of 

the presence of propagating discontinuities in g. Hence only the first terms (i.e. 
&u,.GL,) in the postbifurcation expansions in (2.20) will be sought via the general 

method proposed here. 
It is not difficult to deduce from (2.20) that Zy = 14 = . . I,“. Indeed. by assuming 

(without loss of generality) (di/di.), # 0, one has in = ii = (‘U” = 0 and hence 

p=jL=... “‘b2’ = O,.f=f‘=j:= . . “7” = 0 on I,” = Zy. At bifurcation noting that 

($ - :I. ‘5,“-‘F?“) E U x VK,, and since 9 is positive semidefinite for all admissible 

functions from (2.19). one obtains 

(P- I)(P) (p- I) (p’ 
* ,u, ,fi = pz f, = 0 v x Ez;; = I:‘. (2.24) 

since (‘i” 3 0 and y? d 0 (from (2.16) IT+, uZj+, uZ;+, = 1;). At this stage, and 

without impairing the problem’s generality it is additionally assumed that the principal 

tNore : The case p > q can be reduced to an angular bifurcation by taking p’ = q with j.,, = 0. In (3.20) 
u4 always # 0 but i, may vanish. 
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solution satisfies I,” = I:+, .$ This assumption, which is equivalent to the statement 
that (in the principal solution) a11 points of the plastic zone--except perhaps the 

boundary points-are plastically loading, i.e. (‘i ‘) > 0 almost everywhere on 1,” = I:, 
is met by the vast majority of application problems. Hence from (2.24) follows : 

(P) f; =Oonl: 
(P- 1) af j pi =--~-* _.-.- 

aA 
(i = 1,2). (2.25) 

Supposing for simplicity that at bifurcation, the eigenmode (ii, ii) of the functional 
9 in (2.9) is unique, and employing (2.20) and (2.25) (note uq = ii), one has for the 
bifurcated solution, assuming at first an angular bifurcation, i.e. p = q, 

+ 

af 824 
aA &as ’ --E&-i) 

since (for the bifurcated sol~tion)~~ Z 0 on I,“. 
Two cases are distinguished. 

(9 min 
..1; 

-.-.- 
. 

(2.27) 

This eventually occurs in structures with no unloading in their principal solution and 
which satisfy the loading criterion everywhere where the yield condition is satisfied. 
Then from (2.26) 

(2.28) 

for x in the set I,“. 
Given that the bifurcated solution exhibits no unloading in Z,“, such a solution can 

be constructed if one introduces a priori the value 

(2.29) 

where the maximum exists and is finite in view of (2.27). 
Since at bifurcation the sign of the eigenmode can be either positive or negative, 

one might expect two different values for &, associated respectively with &ii, one of 
which is necessarily positive. fn most applications, due to the symmetries of the 
structure, both these maxima coincide and are positive. Hence of the two possible 
(corresponding to 56 respectively) branches at R = ,I,, at least one will take place 

:No@: The equality of sets in this case is in the almost everywhere sense, i.e. the two sets differ by a set 
of Lebesque measure zero where i = 1 is the principal and i = 2 is the bifurcated solution. 
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under an increasing applied load, i.e. the corresponding & > 0 as first discussed by 
SHANLEY (1947) for the column case and subsequently generalized by HILL (1958). 

The bifurcation analysis proceeds in the following way : If i-, > &,. then the value 
of iL, is found from the higher order terms expansion of the equilibrium equation 
(2.6). Of course, one has to check the validity of the assumption ;_, > &. For 
additional details in the special case of p = 1, the interested reader is referred to 
HUTCHINSON (1973) (who follows Hill’s approach instead of the generalized standard 
formalism employed here). The other possible alternative is j.,, = &,, which implies the 
existence of a point x” G f,O for which unloading starts in the bifurcated branch of the 
solution, this being the case for the majority of the applications treated to date. 

It should also be remarked here that in most of the applications presented in the 
literature thus far which satisfy (2.27), their principal solutions have the additional 
property 1: = I,” = Z,“, , = R (i.e. the principal solution satisfies everywhere in the 
solid the total loading condition). This property however is not necessary for (2.27) 
to be valid and one can easily find such applications (for example the buckling of a 
tapered column). 

IIence, if at the critical load the principal sotution satisfies (3.27). an angular 
bifurcation is possible (with p = q) and ,$,, the first term in the asymptotic expansion 
for the load parameter i,, has to satisfy (2.28). The value of the integer p, as well as 
the information on whether (2.28) is satisfied as a strict inequality or as an equality. 
depend on considerations from higher order terms. 

The second case of interest is obviously : 

(ii) I = 0, (2.30) 

i.e. there is neutral loading in the principal solution at certain points x~~EZ~. In the 
majority of applications. these points belong to a portion T of the boundary $1:. 

If one continues to adopt the angular bifurcation assumption that p = q as in the 
previous case, the search for a bifurcated branch with the same loading zone Z;j leads 
again to inequality (2.28). which is available V x E I,“. 
If x0 E I. then (2.30) implies that 

O 
’ 

(2.31) 

in view of the denominator’s strict positivity. The inequality (2.28) leads, when 
x -+ X@E I. necessarily to a contradiction if 

-‘-----*E,,(ii)/x # 0, (2.32) 

since the right-hand side of (2.28) is unbounded in Zj. 
in this condition, one concludes that no such A,, can be found; this renders the 

angular bifurcation impossible and hence a tangent bifurcation with p < q has to be 
investigated. 
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Note that for this case (i.e. if (2.30) is satisfied) an angular bifurcation is still 
possible if the eigenmode ii satisfies 

a- 824 ------e,,(ii)l,o = 0 VX,EI- aA aa a& 
(2.33) 

and is such that 

< +co, VX”EI-. (2.34) 

In the interest of simplicity, it will be assumed for the following general discussion 
that p = 1, q = 2. Thus the general methodology for the determination of the post- 
bifurcation expansion, in the case of a tangent bifurcation, as well as the related 
difficulties, will be explained in a simpler context without significant loss of generality. 

In view of the assumption p = 1, q = 2 the solution to the rate 1 problem (see (2.8)) 
is unique, but the solution to the rate 2 problem (see (2.11)) is not unique at il = R,. 
The explicit form of the rate 2 equilibrium equation, i.e. the O(z’) term in the 
expansion of the equilibrium Eq. (2.6) is 

fP# 
+ &c?aa2+aeaaaa aAp (_-- . --. - 

E,,,(~I, h, Su) +E,& &I) 11 dV 

where 

with analogous expressions for b and ii. In addition [[PI denotes the jump in p and t‘ I 
denotes the velocity of the boundary ~9; of 1: in the direction of its outward normal 
II. Note that in the derivation of the rate 2 equilibrium equation, account is taken of 
the fact that in general p(x) is a discontinuous function on the surface aZ; (recall 
from (2.11) that ,D > 0 on 1; and p = 0 on CY,Z:). 
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In the interest of computational simplification and without impairing significantly 
the problem’s generality, it is further assumed that the strain rates Q.O, . . . are con- 
tinuous functions of x. In contrast the rates of the internal variable 2. d,. . . having 
moving discontinuities which are being taken into account. 

Applying successively (2.35) to the principal and the bifurcated solutions respec- 
tively one obtains as expected (recalling that i. = i.,.+i.,r+ .I. .u = u,,(i.)-+- 
U>(T’/2) +U,(T3/6) + . . .) 

with the functional evaluated on the principal branch at 1. = i,. 
The dete~ination of i., will require the 0(r3) term in the expansion of the equi- 

librium equation (2.6). By taking rates in (2.35) and applying the result successively 
to the principal and bifurcated branch of the solution one obtains after some lengthy 
but straightforward calculations (in which 2.36) is also taken into account) 

where Af= b~~(.f~(s)-f,( )) h t w ere subscripts 1 and 2 denote quantities evaluated on 

the principal and bifurcated branch respectively. Obviously the surface integrals also 
depend on L, but in a highiy complicated fashion which requires the details of motion 
near I_ = i., of the principal and bifurcated surfaces 8Z; which separate the plastically 
loading zones from the corresponding elastic ones. 

An application of the analysis to the bifurcation of an elastic-plastic structure will 
be presented in the next section, where the computational complications due to the 
propagating discontinuities become apparent. 

It should also be mentioned here, that for the special case of an angular bifurcation 
(in which also 1: = Q) a comprehensive postbifurcation analysis based on the propa- 
gation of the unloading zone was first presented by HUTCHINSON (1973) using Hill’s 
plasticity formulation and requiring fractional expansions. More recently some of the 
problems treated by HUTCHINSON (1974), were repeated by NGUYEN (1987) using the 
standard generalized material formulation and an integral series expansion of the type 
proposed in (2.20). All the aforementioned work concerned angular bifurcations with 
1: = B, a fact which simplifies the analysis considerably. 
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FIG. 1. A model which exhibits both an angular and a smooth bifurcation. 

While a first attempt to address the problem of smooth bifurcation was made by 
TRIANTAFYLLIDIS (1983) using a different line of attack (i.e. considering a set of rate 
invariant constitutive laws proposed by CHRISTOFFERSEN and HUTCHINSON, 1979) the 
present methodology provides a unified approach for the study of elastic-plastic 
bifurcation problems without any of the restrictive assumptions related to the principal 
solution that have been adopted in the literature thus far. 

3. ILLUSTRATIVE EXAMPLE 

An example is considered which is capable of exhibiting both an angular as well as 
a smooth bifurcation. This example, which is in the spirit of the finite degree of 
freedom models used by SHANLEY (1947) (see also HUTCHINSON, 1974 ; NGUYEN, 

1987) has been employed by TRIANTAFYLLIDIS (1983) to show the possibility of a 
smooth bifurcation in an elastic-plastic solid. 

The model consists of a horizontal rigid rectangular plate of dimensions 2 Ix 2 nzl 
resting on two lines of continuously distributed elastic-plastic springs as shown in 
Fig. 1. A straight rod of length LI is rigidly attached perpendicularly to the plate’s 
center on one end while the other end is attached to two coupled nonlinear springs 
(i.e. such that the displacement in one of them induces a force in the other) one in the 
x’ and the other in the .I” direction as shown in Fig. 1. 

The externally applied vertical load is ,iEl’ where 3. is the load parameter of the 
problem and E is the modulus in the elastic region for the bilinear hardening elastic- 
plastic springs. The structure has three degrees of freedom, namely the two rotations 
8 and $ about the +J“ and -_s’ axes respectively and the vertical displacement ul 
(note that i., u, 0, II/ are dimensionless). Under the action of the vertical load E., the 
structure which initially follows a path u # 0. 8 = 0, t,!~ = 0 bifurcates first at 3. = I(, 
to a solution with u # 0, 0 # 0, tj = 0 and upon a further increase of ,! it bifurcates 
again at i. = i., > i, (it is tacitly assumed that m2 > l/3) to a solution with u # 0, 
8 # 0, 3 # 0. It will be shown that the first bifurcation is an angular one while the 
second one is a smooth bifurcation. 

The total energy stored in the system is 
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f: =; [c$(.~‘,nz/)+~(x’. -m/)]ds’-A!?/” 
s c 

u+ &I’+$‘) -N%YLf+. 1 
, 

$(X’,J”) = ~E~[~‘(x~;.l-‘)-~.(l..?.)l:fh[a~(x~.~~’)l’: , 
E’ 
~ c &(S’,f) = u+ ;e+ +, 
1 

-1 $+$l, -?I, 
1 

j’= im. 

cl’ 
* 

--_=r 
I ’ 

A’ = - tf$ = z!?/[(l +h)cf-_E] = IE,4, 

A’EC’ = [-kEl,kEl]oAEC- [-k,k], (3.1) 

where primed quantities are dimensional ones while unprimed quantities designate 
their dimensionless counterparts. 

The internal variable CC in this case represents the plastic strain in the kinematically 
hardening bilinear model, while the associated force A’ is the corresponding backstress 
which is bounded by the yield stress k’ = Elk, with k the dimensionless yield stress. 
It is also noted that the third term in the expression for the energy of the system is 
due to the coupled nonlinear springs at the end of the vertical rod. 

The constitutive and equilibriums Eqs (2.1), (2.3) and (2.6) employed in (3.1) yield 

i. = 4u- 
S’ 

_ , [4x, 4 + 4x, - 41 day, 

;.Le = _KL!C +4e- ’ 
2 3 s 

_ , [x(x, m) + OL(X, - nj)]x ds. 

i.L$ = -KL$8+4m2$- 
S’ 

[CY(X, m) - CI(X, - m)]m ds. 
-I 

oi = 0 if ](I +h)tx--E] < k, rj 2 0 if ](I +/~)a-cl = k. (3.2) 

In view of the relative analytic simplicity of the problem an exact solution for the 
primary (8) bifurcation (branch u # 0, 8 # 0, $ = 0) is available and a complete 
asymptotic solution for the secondary ($) bifurcation (branch u # 0, 0 # 0. II/ # 0) 
can be constructed. The specialization of the general results presented in Section 2.2 
to the present example will also be discussed. 

3.1. Primar), (0) bifurcation (angular case, p = q = 2) 

The primary (0) bifurcation of the plate is identical to the rigid T bifurcation 
example presented repeatedly in the literature (see for example HUTCHINSON, 1974; 

NGUYEN, 1987). However. only the asymptotic behavior near the critical load i,, was 
of interest and the full solution for the primary (0) branch, which is necessary for 
calculations in the secondary ($) bifurcation has not been presented in the literature 
thus far. For this reason, as well as for the completeness of the presentation the 
primary (8) bifurcation of the studied example will be given here. 
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Starting with the rate form of (3.2) and considering the tilted equilibrium position 
with u # 0, t9 # 0, II/ = 0 for which the length of the unloading zone is r. i.e. E = 0 at 
x, = r- 1 where x, is the coordinate of the neutral loading zone. one deduces 
(assuming for simplicity B to be the time-like parameter for this particular derivation, 
i.e. ( ) ’ E d( )/de), 

1 1 1 . 2 1+2/z 
L(l.e).=3+~--- - 

I+h ‘+? l+h’ 

at 8 = 0, 
1 k I_. 4 h 

U=UH=3L-h) 1. - j.0 = z I+h 5 (3.3) 

assuming, of course, Lk > h/3(1 + h) in order for the ((3) bifurcation to occur in the 
plastic range. The above system can be integrated by considering 8 as the dependent 
variable and 5’ = I- zi as the independent one to give 

e(T) +h(‘-_r)-r’]-‘:’ zr’(2-r’)[4h(l-~‘)-r”]-‘~‘dr’, s 0 

u(r) = & - ; + 
s 
’ (1 -r’) $dr’, 
0 

’ 4h(l-6)-r” S[ 1 de 

0 1 +lr 
GM 

c((x, m) = X(X. -n?) 

[u(l+x)+xfI(l+x)-k]/(l+h) 

= [u(~)fxO(t)-k]/(l+h) 

for r-1 >x(unloadingzone) (34) 

for r-l < x(loadingzone). 

The above equations constitute the full solution for the primary (0) bifurcation of the 
model which occurs at the critical load & = 4h/3L (1 + h). 

Given that the size of the unloading zone r increases with increasing I+ (at least near 
A = AH) and that T = 0 at i. = i,, one can consider T as a new time-like parameter. 
Expanding (3.4) about T = 0 yields 

. . 1 

A = ‘o+ 2L(l -i-h) 
T2+0(t3). (3.5) 

This reconfirms that the primary (0) bifurcation of this example (which coincides 
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with the bifurcation of the literature’s popular rigid T model) is an angular one with 
p = q = 2 (see (2.20)). A different derivation of (3.5) following the general asymptotic 
method in terms of integral powers of r proposed in Section 2.2 has already been given 
in NGUYEN (1987) and hence the higher order terms in (3.5) will not be of concern 
here. Of course, according to the general analysis presented in Section 2. a sufficient 
condition for angular bifurcation (provided that a bifurcated solution exists) is given 
by (2.27). Indeed, using (3.1) and (3.2) in (2.27) one obtains (note also that Zy = 
1: = Q in the principal solution) : 

as expected from (3.5). One can also easily verify in this case that i., = I2 in view of 
the unloading starting at s = - 1 at the onset of the bifurcation. 

Indeed, recalling that the eigenmode iI = II? = (u?. 8:. $?) = (0, (8Lh)- ‘. 0). from 
(2.29). 

1 
- = i2 (3.7) 

2L(l -t/7) 

with the maximum occurring at s = - I, where unloading starts at bifurcation. exactly 
as expected by the general theory since i,> = x2. In the derivation of (3.7) one of the 

two modes was considered (the one with BZ > 0). Had the other eigenmode been used, 
the value of ,?? would have remained the same (obviously in view of the structure’s 
symmetry), but unloading would have started at x = + 1. 

3.2. Secondary ($) bifurcation (smooth case, p = 1, q = 2) 

Next attention is focussed on the secondary (11/) bifurcation of the model. The 
results have already been presented by TRIANTAFYLLIDIS (1983) using a different 
approach but the derivations will be repeated here using the standard generalized 
material formulation. The results will also be compared with those deduced from the 
general analysis in Section 2.2. 

Without loss of generality (in view of the structure’s symmetry) it will be assumed 

that II/ 2 0, in which case from (3.1) follows 

(ti = 0 for -1 <sds_ 

j'= --n7 
i= 

ti+.Ye-n7* 

1 +h 
>O for s_ <s<l. 

C?=o for - I ,< s d s; 

j’ = m ti+xd+m* 
3i=-- >O for s’, <s< 1, 

I+h 

with 
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x_ = (-ti+mlj)/B, x, = (-&ml/J)/8 

563 

and x; (t) the root of the equation 

[u(t)-z4~(l+x:)]+x;[8(t)-8,(1+x;)]+m~(r) = 0, (3.8) 

where x_(r) and x;(t) are the coordinates of the boundaries separating the elastic 
from the plastic zone at y = -m and y = +m respectively, while .Y_ and _Y+ are the 
corresponding coordinates of the points where the strain rate C: = 0. The principal 
solution for the secondary (II/) bifurcation is obviously given by (3.4) and to avoid 
confusion is characterized by a zero subscript in (3.8) and subsequently. To further 
avoid confusion, since the time-like parameter in the angular bifurcation case was 
designated by 7, for this case the time-like parameter is denoted by t and hence 
( ) ’ z d( )/dt in (3.8) and on. 

Combining (3.8) with the rate form of the equilibrium equations (3.2). one obtains 
the following expressions governing the secondary (Ic/) bifurcation of the model : 

IB = 4liB+ j-$ 1 ~(x_-x+)2-(zi+d)2-(mtj)2 , 1 

[(%+Ktl)L$]d = 4m’$B+ & [ c(x$ -x+)*-2mfj(ti+8) . 1 (3.9) 

As explained in Section 3.1, the length of the elastic unloading zone 7 (see Eq. (3.4)) 
can be adopted as the time-like parameter in the principal solution (in reality I is 
controlled but in the vicinity of the critical load 3. = &,d%/dr > 0, and hence 7 can 
be chosen to play the role of the time-like parameter for the principal solution). 

Using the general results obtained in Section 2, it is not difficult to see that an 
angular bifurcation in (\c/) is impossible in this case. Indeed, noticing from (3.4) that 
the ($) bifurcation eigenmode is ii = (0, 0, 1) and that from the principle solution in 
(3.4) I- = {(-l+ 7, m), (- 1 -t 7, -m)} (the set is made up of the two neutral loading 
points separating the loading from the unloading zones), one can easily see that both 
(2.31) and (2.32) are satisfied and hence no angular bifurcation in (tj) is possible. 
Therefore, a tangent bifurcation with p = 1, q = 2 will be adopted, with the following 
asymptotic expansions in t(0 < t << 1) 

7(r)= 7< +r,r+s tf + 2 2 ..'. 

u(rj = uo(7(r))+u_~ +u f'+ q2 36 ..., 
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8(f) = e (z(t))+tl_ !f +e_ t” + 0 ‘2 1 6 . . . . 

4i/(r)=O+$ f+$.i‘+ ?2 16 ‘.‘. 

i(t) = &(7(t)), (3.10) 

where (u2, 0?, 1c/J = (O,O, 1) = u:, is the structure’s normalized eigenmode (see also 
(3.7)). Hence (3.8) is the specialization of (2.20) to the finite degree of freedom 
example treated here with p = 1 and q = 2. 

Employing (3.4), (3.8). and (3.10) into the rate I equilibrium Eq. (3.9) one obtains 
from the O(t) term 

2/l-+ 7, 
[if)(q) + Kfl()(z,)]L = 2d ~ ! ! i+h ’ 

(3.1 I) 

which is the equation providing the critical load %, = &(rc) (or equivalently tc) for 
the secondary (tj) bifurcation of the model. 

For the higher order terms in the asymptotic expansion of the equilibrium equations, 
the following expressions for the boundary coordinates of the plastic zones at J‘ = + m 
will be needed (see (3.8), (3.10)) 

? 
Y+(f) = [z(t)-l]+s;~+s;~-+ “‘; 

2 
s; = - . 

Note that at the principal branch (x?+)O = x”, = X! = T- 1. 
Continuing with the 0(r2) term in the rate equilibrium equation (3.9) one obtains 
(by using also (3.4), (3.8). (3.10~(3.i2)) 

which finally leads to the following expression for 7, 

5, = (~n~~~:2~* i[3(!~*!~)(~ +K~)L4]‘~2rl. (3.14) 

where it is understood that all derivatives of the principal solution are evaluated at 
T = 5,. 

At this point it should also be noted that for adequately large K, (3.11) will admit 
a solution (with r,- -+ 0 as K--3 co) and the expression for rI (3.14) will also make 
sense. Only solutions with T, > 0 are acceptable {in view of the initial assumption that 
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the controlled parameter in the experiment is the external load L which is considered 
to increase monotonically). It appears from (3.14) that for certain values of 7,., instead 
of one, two different secondary (tj) bifurcation branches are possible for $ > 0 (and 
also another two are possible for $ < 0). 

The same results for 7) could have been obtained by a direct application of (2.37) 
to the present model. Noting that 

+(ii+xB’+mlC/)a;] I .X=rC- 1.1= 0’ 
(3.15) 

one recovers (3.14). It should be noted however that the relation between x’, and the 
principal solution depends on the details of the propagating discontinuity of p along 
81: and requires the exploitation of (3.8). The derivation of a general expression in 
terms of the principal solution and the eigenmode for the discontinuity terms in (2.37) 
is not at all easy as this relatively simple example indicates. The independent derivation 
of (3.14) using the general approach developed in the previous section provides an 
additional check for the results obtained in this example. 

4. CONCLUSIONS 

In the present work, the general bifurcation and postbifurcation analysis for gener- 
alized standard continua has been presented. 

Adopting the generalized standard material formalism yields certain advantages 
over Hill’s classical formulation of the problem. More specifically, the issue of bifur- 
cations of rate higher than one can be addressed in a straightforward manner. Hill’s 
bifurcation exclusion criterion is found to be more general than had been proved thus 
far, since it is valid for bifurcations of any rate. In addition, a consistent methodology 
that takes properly into account all the field quantities discontinuities, is given for the 
postbifurcation expansions in boundary value problems, without the restrictions 
of total loading in the principal branch of the solution which have been required 
previously. 

The theory, in its present form, is applicable to small strain and moderate rotations 
of rate independent elastoplastic solids obeying the maximum dissipation principle. 
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The reasons for this limitation is the lack (at least up to the present) of a satisfactory 
generalization of the generalized standard material formulation for the case of finite 
strains. For this case, the Hill-Hutchinson approach still remains the only method 
for analysing the angular bifurcation and postbifurcation problem. Moreover. the 
smooth bifurcation and postbifurcation issue (always in the large strain context) has 
only been addressed via the use of a Christoffersen-Hutchinson type model as dis- 
cussed by TRIANTAFYLLIDIS (1983), an approach that is limited to a particular class 

of constitutive laws that are very difficult to verify experimentally. Once an acceptable 

generalized standard material formalism can be found for rate-independent materials 
in the large strain regime, the present bifurcation and postbifurcation analysis can 
easily be extended using essentially the same approach. 
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