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Abstract--An efficient procedure for solving the fully linearized form of the boundary-layer equations is 
described for turbulent flows. The procedure makes use of the so-called bordering algorithm and is 
applicable to problems in which the structure of the linearized system of equations deviates from the block 
triagonal matrix form which may be caused by boundary conditions. 

1. I N T R O D U C T I O N  

The solution of the two-dimensional boundary-layer equations for a laminar flow involves 
linearization of all terms by Newton's method and can lead to a set of three first-order equations [1]. 
The same approach to the corresponding turbulent form of the boundary-layer equations, with an 
eddy-viscosity representation of the turbulent diffusion term, leads to incomplete linearization as 
in Ref. [1] or to complete linearization with five first-order equations as in Ref. [2]. Important 
consequences of the former approach are slow convergence, with increased computing times and 
on occasion, an inability to converge to a specified criterion. While the approach of Ref. [2] 
provides quadratic convergence of the solutions as in laminar flows, the need to increase the system 
of equations from 3 to 5 makes it difficult to apply to the more complex problems, and particularly 
those involving three independent variables. The algorithm described and applied in this paper, is 
designed to achieve complete linearization of the turbulent boundary-layer equations, without 
increase in the number of first-order equations, and greater generality of application. 

The present method is based on the bordering algorithm of Keller [3, 4], and is applied to the 
boundary-layer equations of Section 2 with the eddy-viscosity formulation of Cebeci and 
Smith [1]. The finite-difference representation of the equations is described briefly in Section 3, 
and the present form of the bordering algorithm in Section 4. Sample results are presented in 
Section 5. 

2. BASIC E Q U A T I O N S  

The boundary-layer equations and their boundary conditions for 2-D incompressible laminar 
and turbulent flows are well known and, with the concept of eddy viscosity, era, and introducing 
b = l + Era~V, they can be written as: 

~u ~v (1) 

(2) 

(3) 

due 
b 

y=O,  u = v = O ;  y--*6, u=ue. 

The presence of the eddy viscosity Cm in b requires a turbulence model, and the algebraic 
eddy-viscosity formulation of Cebeci and Smith [1] is used here. According to this formulation, E., 
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is defined by two separate formulas given by: 

where: 

f 2 c3 u 

0.0168j0 ( u ~ - u )  dy Yc~<Y~<3 

N=( l_ l l . 8p+) - - , . ' 2 ,  u =(Zw) ''2, p+ = - - - -  A =26vuUIN, 
\ P /  

(4a) 

(4b) 

vue due 
<5) 

u~ dx" 

The condition used in the determination of Yc is the continuity of the eddy viscosity so that eqn 
(4a) is applied from the wall outwards until its value is equal to that given for the outer region 
by eqn (4b). 

For external flows, it is convenient to solve (1) and (2) in transformed variables, and the 
Faikner-Skan transformation [1] is used for this purpose. The result, with m = (X/Ue) due/dx and 
with primes denoting differentiation with respect to the similarity variable q, is: 

m + l  , (f .~?f'_.f , ,~?J') (bf")' + -~---ff' + m[1 - (f.)2] = x ~x- ~ , (6) 

r / = 0 ,  f ' = f = 0 ;  r/--*q~, f ' -- ,1.  (7) 

In terms of transformed variables, the b term in eqn (6) can be written as: 

b = i + a,f"[1 - exp( - a2N-~f"'/2)]:k, + a3(tle -Je)22, (8) 

where )., and 22 are determined by the continuity of the eddy-viscosity formulas with 2, = 1 and 
~.z = 0 in the inner region and 2, = 0 and 22 = 1 in the outer region. To ensure a smoother result, 
values of 2~ = 2z = 1/2 were used near the interface of both regions. The terms a~, az, a3, and N 
are defined by: 

a, = 0.16Rt('2q z, a2 = (R~¢'4/26)t/, as = 0.0168R~( z 

a4=ll.8mRTl/4, N=[l_a4(f],)-3/2] 1/2, Rx=uex/v  (9) 

3. SOLUTION PROCEDURE 

The solution of eqns (6) and (7) is obtained by Keller's box method [1, 5] for which the new 
variables u and v, defined by: 

f ' = u ,  u '=v ,  (10a) 

allow eqn (6) to be written as the first-order system (10a) and: 

m + 1 c~u _ v ~x (10b) (bv)' + - - - ~ f v  + m ( 1 - u 2 )  = x  U~x 

Next, on a finite-difference net denoted by: 

x~=0,  x , = x , _ ~ + k , _ l ,  n = 2  . . . . .  N 

q l = 0 ,  tlj=qj_~+hj_ ~, j = 2  . . . . .  J; qJ=qe (11) 

we approximate the quantities (f, u, v) at points (x,, qi) by (f],  uy, vT). The finite-difference 
approximations for eqn (10a) are then written using centered difference quotients and averaged 
about the midpoint (x,, qj_,/z) of a mesh interval and those for eqn (10b) are written at the midpoint 
(x,_,/:, t/;_~/2) of a mesh rectangle to obtain: 

f ]  - f~_ ,  - (hj_~/2)(u] + u~_~) = 0 (lZa) 
n n _ _  uj - u"j_ ~ - (hj_l/2)(v~ + vj_,) - 0 (lZb) 

n ~ n __ ~en-1 Vn "~ R n - I  h]-_'l[(bv);- (by);_,] + ,(fv)j_,/2 ~2(u2)~_,/2 + ~r ,-1 ¢, = (12c) \ V j - I / 2 J j - I / 2 - - J j - 1 1 2  d -  1 / 2  ] j - I / 2 ,  
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where: 
R . - I  n - I  n - I  j-I~2 = - - L j - 1 / 2  + o[ [(f /)) ;- i /2 - -  (u2);-1~2] - -  m" 

L"-'/_,/2 = {hf-_',(b/vj- bj_,vj_t) + m,(fv)j_,/2 + m[1 - (u2)j_,/2]} n-~ 

oq = ot + m l ,  0~2 = o~ + m ,  ot = (xn_ t /2 /k~_ , ) ,  m l  = ( m  + 1)/2. 

With the application of Newton's method, the linearized equations and boundary conditions 
become at the advanced x-location, x = x..  on suppression of the subscript n: 

6f  - ffj_, - ~ 2  (6u/ + fuj_,) = (r,) s (13a) 

fu j  - -  fUj_,  - -  ~ . !  ( f ry  + fv /_  ,) = (r  3 )j_ 1 ( 1 3 b )  

(s,)j f~, + (s,)j fvj + (&)j fvj_, + (s~)j ffj + (s,)j ffj_, + (s~)j fuj 

+(s,)jfuj_~ +(s~)jff,=(r~)j (130 

~ft=O, fu ,=O and 3 u j = 0 ,  (14) 

where the coefficients (s,)j (k = 1-8) and (r,)j (s = 1-3) are given in Ref. [6]. 
Introducing appropriate vectors and matrices the linear system given by eqns (13) and (14) can 

be written in the following matrix-vector form: 

A6 = r, 

A = 

where 

AI I I I C i , 0  . . . . .  0 i DI  

E 

_ m  

a D 

O, . Bj A • " ~ I - - J  

a ~  

E2--- , D ~  

IL,l 

A2 C 2 

B3 A3 C3 

a j A j C j  

0 Bj_2 

(15) 

J - |  

0 

A.I-2 C j - 2  

Bj_, A j_, 

(16a) 

(16b) 

6 -  

6j 

, A=- 

~2 

~ J -  I 

9 

11j 
I 

(r~)t 

R =  

(rt)j 
11j- (r,)j 

(r~)j 
2 ~ < j ~ < J - 1 ,  rs =- 

l<~j<~J 

!12 

rj 

11j- 1 

(rl)j 

(r0)J 

(10c) 

(16d) 
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Here each of As, B/, Cj, Dj, Ef is a 3 × 3 matrix given by: 

A I -  

1 0 0 

0 1 0 

0 - 1 hi 

, A j  = 

hj-i 
1 

2 

(s,), (&)j 

0 - 1  

0 

(Sl)~ 
h, 
2 

2 ~<j ~<j - 1 

(17a) 

A s = 

1 

(83)S + (S7)s 
0 

h j _  1 

2 

(&)s 
1 

0 

~ =  

hj-i - 1  0 
2 

(S4)j (S6)j (S2)j 

0 0 0 

3 ~ j ~ J ,  c,=_ 

0 0 

0 0 

0 1 

0 

0 

2 

l ~ j ~ J - 2  (17b) 

i°i DI = 0 , 

0 

0 

0 

0 

2 < j < J - 2  07c) 

O s _  1 

0 

(S7)s- i 

0 

0 

0 

h j _  I 

2 

& -  
hi 

- 1  0 
2 

(&): (S6)2 (&h + (&)2 
0 0 0 

, g -  
0 0 0 

0 0 ($8): 3<~j<<.J 

o 0 0 

(17d) 

Note that the first two rows of  At, Ct, Dt and rl and the last rows of  Es, Bs, As and rs correspond 
to the boundary conditions. 

For convenience, the D and E matrices can also be written as: 

D = (Dl, D> D3) (18a) 

E = (El, E> E3) (18b) 
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where 

D I = 

0 

( 8 7 ) 2  

0 

0 

( 8 7 ) 3  

0 

0 

($7)1- i 

0 

0 2 = 

II 

II 

II 

II 

II 

II 

D 3 ~-~ 

0 

0 

0 

0 

0 

0 

0 

0 

- l  
p 

h j _  I 

2 _ _ _  0 2  (19a) 

E l =  

- l  

( 8 4 ) 2  

0 

0 

0 

0 

--hi~2 

($6)2 
0 

0 

0 

0 
E 2 = 

0 

0 

0 

E 3 = 

0 

( & h  + (82)2 

0 

0 

(&)3 

0 

0 

(S,b-, 

0 

(19b) 

It is useful to compare the coefficient matrix of eqn (15) with that which stems from the approach 
in which the turbulent diffusion term is not linearized. Equation (15) applies in both cases but here 
the linearization of the diffusion term leads to additional matrices Dj and Ej, which make the 
coefficient matrix A differ from that without linearization. In the absence of Dj and Ej, eqn 05) 
can be solved by the block elimination method described in Ref. [l] but their presence requires a 
different solution algorithm which is described in the following section• 

4. FULL BORDERING ALGORITHM 

The need to overcome problems such as that described above was recognized by Keller [3, 4] who 
devised an efficient algorithm which involved additional arithmetic operations so that the resulting 
system could be expressed in the tridiagonal matrix form required by the block-elimination method• 
Problems in which Ej or Dj are absent were formulated by an algorithm referred to as half-bordering 
and those in which both were present made use of the full bordering algorithm. It is possible by 
reordering the equations and the variables to transform the full bordering case to a half bordering 
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case. 
variables. 

The full-bordering algorithm used here writes eqn (15) as: 

Atlil + [ C 1 , 0  . . . .  0] A + D j 6 j  = rl 

E f t +  aA + Dfij = R 

Ej6, + [0 . . . .  O, Bj]A + A j 6 j  -- rj 

and introduces U and V such that: 

aU =E,  

a V = D .  

HONG-MING JANG et al. 

We do not do that here as the codes and algorithms are simpler in the untransformed 

(20a) 

(20b) 

(20c) 

(21a) 

(21b) 

From the definitions of D and E given by eqn (18), U has the same form as E and V has the same 
form as D, so that: 

U = (U,, U2, U3) 

V = (Vl, V2, V3) 

Substituting eqn (21) into eqn (20b), we get: 

a W = R  

where 

W =  U6~ + A +  V6j. 

With eqn (24), the system (20a) and (20c) can be written as: 

I 
where 

(22a) 

(22b) 

(23) 

(24) 

(25) 

A, - Al - [C1,0, • . . 0]U 

/5, = D, - [C,, 0 , . . .  0]V, 

J r  = A ~ -  [o . . . .  o, sA  v, 

~ j - E ~ - [ 0  . . . .  0, BAU, 

L = rl - [Ci, 0, . . . 0]W, 

i% - rs - [0 . . . .  0,  Bj]W. 

(26) 

The sequence of the solution procedure is as follows. We first solve eqns (21a), (21b) and (23) to 
yield U, V and W, which are required in the solution of eqn (26). The resulting values of .4~,/5~, 
A j, Ej, l~ and i% are used in eqn (25), which is solved to obtain 6~ and 6j. Thus eqn (15) can be 
solved since A follows from eqn (24), with W, U, 6j, V and 6j all known. 

The solution of eqns (21) and (23) is obtained by the block-elimination method described in 
Ref. [1] and its application to eqn (23) is straightforward since W and R involve three-component 
vectors as in Ref. [1]. In contrast, eqn (21) involves 3 x 3 matrices for each of U, V, E and D. 
However, with the definitions of U and V, as given by eqn (22), and with the definitions of E and 
D given by eqns (18), eqns (21a) and (21b) can be cast in the same form as eqn (23). For example, 
(21a) becomes 

aUi = El (27a) 

aU2 = E2 (27b) 

aU 3 = E3, (27c) 
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Fig. 1. Rate of convergence of three linearization schemes for two Ax-spacings. 

where: 

U2,k 

Uk - Uj.k 

UJ- l,k ! 
k = 1,2,3;  Uj.k= 

Ulyk 

U2j, 

U3jk 

Further details of this procedure can be found in Ref. [6]• 

2 ~<j ~< J -  1 (28) 

5. R E S U L T S  A N D  D I S C U S S I O N  

Calculations have been performed for a zero pressure gradient flow in which the flow is laminar 
at the leading edge of the plate with a unit Reynolds number of 106/ft; transition was specified very 
close to the leading edge and, as in Ref. [2], approximately eight x-stations were taken in the region 
0 < x < 1'. Between x = 1' and x = 10', two different Ax-spacings corresponding to Ax = 0.25 and 
1 were used to study the rate of convergence of the solutions• 

Figure 1 shows the results together with those of Ref. [2] at the last x-station corresponding to 
x = 10'. Scheme 1 corresponds to those obtained with the usual procedure in which the b term in 
eqn (6) is assumed to be known from a previous iteration; scheme 2 corresponds to the scheme 
in which all the terms are linearized fully by Newton's method and solved by the procedure 
described in Ref. [2]: and scheme 3 corresponds to the present method which is the same as scheme 
2 except that the solution procedure makes use of the full-bordering algorithm. It is evident that 
schemes 2 and 3 converge quadratically at a similar rate to any specified convergence criterion. In 
contrast, scheme 1 converges much more slowly and is limited to convergence criterion, which 
experience has shown to be around 1%. Scheme 3 offers, therefore, the advantages of quadratic 
convergence expected from the application of Newton's method, together with the flexibility 
required to deal with complex boundary conditions and three-dimensional equations with minor 
modifications to the basic block-elimination method• 

R E F E R E N C E S  

I. T. Cebeci and P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer. Springer, New York 
(1984). 



578 HONG-MING JANG et al. 

2. T. Cebeci, K. C. Chang and D. P. Mack, Linearization of turbulent boundary-layer equations. A IAA J. 22, 1919 1821 
(1984). 

3. H. B. Keller, Practical procedures in path following near limit points. Computing Methods in Applied Sciences and 
Engineering (Edited by Glowinski and Lions), pp. 177 183. North Holland, Amsterdam (1982). 

4. H. B. Keller, The bordering algorithm and path following near singular points of higher nullity. SIAM J. Sci. stati,st 
Comput. 4, 573 582 (1983). 

5. H. B. Keller, A new difference scheme for parabolic problems. Numerical Solution ~[ Partial-D(fferential Equations 
(Edited by J. Bramble), Vol. II. Academic Press, New York (1970). 

6. H. M. Jang and T. Cebeci, A preferred approach to the linearization of turbulent boundary-layer equations. 
California State University, Long Beach, Aerospace Eng. Rept. AE-TR-89-1 (1989). 


