
I~~orrnafia~ Processing & ~anagerne~t Vol. 25, No. 6, pp. 629-M. 1989 03~.4573/89 $3.00 + .oo 
Printed in Great Britain. Copyright 0 1989 Pergamon Press plc 

NOVEL APPLICATIONS OF INFORMATION RETRIEVAL 
TO THE STORAGE AND MANAGEMENT 

OF COMPUTER MODELS 

MICHAEL D. GORDON* and JAMES P. FRY 
Computer and Information Systems, Graduate School of Business, University of Michigan, 

Ann Arbor, MI 48109-1234, U.S.A. 

(Received 29 August 1988; accepted in finai form 15 March 1989) 

Abstract-Decision-making is often supported by computer-based models. To become 
a truly valuable corporate resource, such models must be easy to locate, share, and reuse. 
We describe a technical approach to model management aimed at establishing a data- 
base of computer models which can either be reused without modification or modified 
and composed with other models to assist with novel decisions. 

We describe a formalism for representing models and discuss various types of que- 
ries supported by the formalism. We discuss important research issues that must be 
addressed for successfu1 application of the formalism to model management. Further, 
we argue that the field of information retrieval is the natural referent discipline for the 
study of model storage and retrieval and advance the argument that retrieving computer- 
based models has an important connection to text retrieval based on documents’ 
structure. 

1. INTRODUCTION 

Decision making in business and government is often supported by computer-based models 
which offer convenient abstractions of the real world. However, to make such models a 
truly valuable corporate resource, two efforts must be made: To assure that they are con- 
ceptually valid and free from programming errors (i.e., verified), and to share these valid, 
verified models among decision makers with simiIar needs in order to contain development 
costs and avoid the penalties of basing decisions on flawed models. This paper addresses 
the second of these efforts. 

Computer models range in complexity from fairly simple “spread-sheet” models to 
very complex models programmed in languages such as Fortran and GPSS. Properly used, 
computer-based models provide enormous benefits for managerial decision making. For 
example, General ~otors/Electronic Data Systems has documented over $1 billion in cost 
savings from the use of their multi-national planning system, PLANETS [I]. However, the 
creation of useful models is a complex task and the literature is replete with examples of 
multi-million dollar mistakes in planning and decision-making arising from “bad” computer 
models [2]. 

Like other software, computer models follow a life cycle. Useful models require sub- 
stantial effort from requirements analysis through coding, testing, and m~ntenance. Com- 
plex models are expensive to build, hard for the non-developer to understand, and often 
only used once [3]. Even in an end-user modeling environment, not sharing models can 
result in significant duplication of effort by the constant re-invention of the wheel. Worse, 
errors invade models which are built by those without the patience or aptitude to test them 
thoroughly. Conceptual mistakes are introduced by failing to capture properly the real- 
world phenomena being modeled. For instance, models may oversimplify by omitting cer- 
tain influences or their interactions or rest on assumptions (perhaps about interest rates) 
that are not borne out. “Programming” errors, such as data entry errors and subtler mis- 
takes in formulas or statements, can further reduce the confidence one places in a modei. 
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In fact, estimates suggest that at least one model in three contains some kind of error. 
Nonetheless, there is an increasing use of models for decision support at all organizational 
levels [4]. 

We describe a technical approach to the problem of model sharing based on the results 
of information retrieval research and theory. We describe a formalism for model descrip- 
tion that holds particular promise for model sharing, and we discuss efforts to extend it 
by artificial intelligence methods. As a result, powerful methods are presented for repre- 
senting and locating models, including methods exploiting their semantic structure and 
methods permitting graphical searching. We discuss both the benefits of these methods as 
well as important research questions which must be addressed to exploit them fully. 

Importantly, this paper argues that the field of information retrieval is the natural 
referent discipline for the study of model storage and retrieval. We discuss both difficul- 
ties that have ch~lenged information retrieval as well as principles and techniques for com- 
batting them. Thus, we hope to provide guidance for others who are attempting to design 
systems for storing and retrieving models (or model sub-components). In addition, we feel, 
our efforts will help answer an important question for information retrieval, namely: How 
effective can “structured” information retrieval be? 

2. AN INFORMATION RETRIEVAL APPROACH TO MODEL SHARING 

We envision the day when a member of an organization can retrieve from a large 
“model base” a pre-defined and tested model that perfectly represents the situation he or 
she needs to study. More ambitious still, a modeler should be able to retrieve and splice 
together parts of several existing models to obtain a ready-to-use, verified, and validated 
model which applies to a novel modeling need [S]. This is not so far fetched as it may seem, 
Japan’s Ministry for International Trade and Industry has sponsored a major national 
project, Sigma, to create a national software library from which Japanese companies can 
obtain free subroutines together with guidelines telling how these can be combined with 
other subroutines to create usable programs [6]. As Sprague and Carlson point out, “a 
comprehensive set of integrated models for decision support becomes a major corporate 
resource just as the database” 131. 

To provide the ability to share and re-use models, it is necessary to provide means for 
cataloging, storing, and retrieving them. The field of information retrieval addresses these 
issues. The three fundamental processes in information retrieval are: querying, i.e., spec- 
ifying a searcher’s information need with a machine processable query; indexing, i.e., 
describing the subject content of documents in a format which the computer can process 
for making retrieval decisions; and matching the searcher’s query and the indexed represen- 
tations of documents to determine which documents to present to the searcher. 

Information retrieval can involve objects of various types-documents, images, pho- 
tographs, or computer models. In practice, models are catalogued and stored in libraries 
of computer subroutines or modeling source statements. Such storage allows for keyword- 
based access supported by file systems working with the computer operating system. Sug- 
gestions in the scientific literature have also been made for more sophisticated methods for 
storage and retrieval of models. 

To date, no studies have been conducted which measure the retrieval effectiveness of 
model-based retrieval. But, effective information retrieval is known to be a difficult, some- 
times deceiving, problem 171. 

However, there is a “structure” embedded in computer models that presents special 
opportunity for using advanced retrieval methods with a high likelihood of success. This 
is a very attractive consideration in view of the growing need to retrieve relevant models. 
This paper will explore how structure leads to advanced retrieval. First, however, we exam- 
ine other research suggestions for retrieving stored computer models, and other methods 
for using “structure” to assist in retrieving documents. 

3. RELATED RESEARCH 

In this section we consider the previous work that has been done in model manage- 
ment (storage and retrieval) as well as research directed at using the structure of text to 
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improve retrieval. We also comment on the similarities between model retrieval and soft- 
ware reuse. 

3.1 Model management: knowledge representation and other approaches 
Computer science (artificial intelligence) provides four widely accepted knowledge rep- 

resentation schemes [8,9]: production systems, semantic networks, frames, and first order 
logic. These knowledge representation schemes, in addition to relational database manage- 
ment methods, serve as a basis for classifying the approaches to model management 
research [lo]. 

Elam, Henderson and Miller use semantic networks to represent four “nets” of knowl- 
edge [l 11. A technical net represents the technical information about each model stored. 
A model net contains the objective function values for a specific model derived from net- 
work optimization routines. A language net contains user defined labels delineating access 
to common concepts. And an application net stores problem-specific information. Model 
selection is accomplished through an interrogation component which selects, classifies, and 
builds models. One advantage of the inheritance property of semantic networks is that the 
relationship among the concepts is preserved, making it relatively easy to categorize and 
classify knowledge. One major limitation is that it is difficult to represent a wide range of 
conditions found in a complex problem. 

Bonczek, Holsapple, and Winston have proposed a model management architecture 
in which application-specific modeling knowledge is represented in the form of axioms, 
clauses, and well-formed expressions [12]. Reasoning is carried out using the predicate cal- 
culus. The major advantage of this approach is that it employs a well-researched and 
powerful reasoning process, and many successful examples of artificial intelligence systems 
use this technology. The major disadvantage is that the use of formal logic usually results 
in a large search space of rules unless a powerful organizing framework is used. Another 
drawback is that formal logic often results in the loss of relationships among concepts by 
focusing on independent facts. 

Konsynski and Dolk propose a representation for model abstraction which closely 
resembles a frame-based knowledge representation [13]. Such abstraction is analogous to 
data abstraction in programming languages, involving data objects, procedures, and asser- 
tions expressed in the first-order calculus. Data objects and types are used to describe 
model variables, and assertions specify information about-and the relationships among - 
data objects and procedures (functions). Data items, data types, and procedures are 
assumed to be predicates, while assertions are well-formed functions. The advantage of this 
approach is that it combines the positive aspects of formal logic and semantic nets. The 
major disadvantage is that the frames must be narrowly pre-defined for the context of the 
problems in which they are needed. 

Blanning’s work uses the representation capabilities of the relational data model [14]. 
The decision model is represented as a set of relations which include the input and output 
criteria for the model. The “rows” of the relation do not exist in stored form. Rather, they 
are generated dynamically on demand, based upon the input and output attributes which 
are required to answer an interrogation. Model manipulation is performed using an 
extended query language similar to SQL which relies mainly on the selection function. 
(Blanning claims the join and projection operations are not needed because model instances 
are not stored within the system.) Models are instantiated by a “join process” of submodels 
in which the order of calculation directs the output of one submodel to be the input of the 
next submodel. A major advantage of this approach is its ability to couple the data stor- 
age component with the model representation component. In addition, it utilizes the full 
power of the relational model and its processing languages. A disadvantage of this 
approach is that the relationship between the problem and model are difficult to describe 
completely, since tabular representations are not well suited to problem descriptions. 

Another recent effort in model management research, structured modeling, follows 
the data modeling paradigm and borrows from the software engineering discipline. 
Geoffrion’s structured modeling provides a formal mathematical framework for represent- 
ing a wide range of computer based models [ 151. This framework is hierarchically orga- 
nized and represented in the form of an acyclic graph which implements model semantics 
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and represents its mathematical structure. Geoffrion’s work is quite broad, serving to “inte- 
grate” various paradigms: MS/OR, database management, programming languages, and 
artificial intelligence. As a consequence, it is difficult to master and not natural to the 
modeler. 

As we have mentioned, none of these approaches has led to an implemented model 
base on which retrieval experiments have been performed. Thus, based on empirical results, 
the question of how models should be stored and retrieved is completely open. Since the 
benefits from solving this difficult question are so great, the accumulation of results, meth- 
ods, and insights about storage and retrieval from the field of information retrieval ought 
to be exploited in making informed decisions about model retrieval. We begin to explore 
this referent discipline by next examining previous work concerned with two aspects of 
“structure”: the structure of concepts within a given text, and the semantic structure of a 
literature as a whole. 

3.2 Structure in text retrieval 
Recent research suggests that the performance of information retrieval systems can be 

improved by taking advantage of structured information. As a highly stylized example, a 
history document may be structured with three fields representing, respectively, who con- 
quered, whom and when. So structured, people in need of relevant history, documents may 
improve their chances of retrieving them by being able to search using any of these fields. 
In general, a structured document representation improves the chances for successful 
retrieval by allowing the searcher to ask more specific, more knowledgeable queries by 
exploiting a known organizational structure of documents. We now describe actual infor- 

mation retrieval research performed to take advantage of structure. 
Croft and Lewis [16] are developing case frame representations for expressing 

searchers’ information needs as well as for representing documents. Their effort is special- 
ized to the domain of science and technology, for which they have established appropri- 
ate structures for representation. “Understanding” of documents is guided by structured 

models of searchers’ requests. 
Chi et al. [17] have developed structured representations of doctors’ progress notes. 

Instances of the resulting structures are of a certain type: medical treatment, non-medical 
treatment, patient state, etc. With these methods, it is hoped that better medical care can 
be rendered by permitting better retrieval of this medical information, especially for 
patients whose records have become quite extensive over time. 

Somerville and Wood [18] have argued that software reuse reduces development costs 
and testing costs (sentiments we share with respect to reusing model components rather 
than always building models from scratch). As a step in this direction, these authors cap- 
ture knowledge about specific UNIX TM commands in structures they refer to as “software 
function frames.” Like artificial intelligence frames, these structures specify templates ready 
to be filled in. (For instance, the software function frame for the action “search” desig- 
nates that specific searching commands are differentiated based on their name, where they 
search, and what they search for. The command “grep” searches files for patterns, for 
example.) 

The RUBRIC system [19,20] operates on the full text of a document to determine 
whether it should be presented to a specific user who repeatedly queries the system with 
known, relatively stable, needs for political information. It uses rules designed by that user. 
Some rules help define highly specific concepts the user is interested in, and others help 
indicate how specific words in document texts should serve as evidence for the occurrence 
of a topic. The rules rely on there being consistent structure in the domain of political 
events under consideration. 

A domain independent system is Malone et al.5 [21] LENS system, which serves as 
a communication medium in addition to providing a strict information retrieval capabil- 
ity. This prototype system allows various forms of “semi-structured” messages to be created 
and sent. Although, in principle, there can be any number of different kinds of semi- 
structured messages, it is only by agreeing to use common structures that sophisticated mes- 
sage sending and retrieval is facilitated. For instance, LENS’ production rule (IF . . . 
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THEN. . .) component allows messages to be routed, categorized, and assigned various 
priorities based on structure. 

Each of the above systems is built upon the principle that there is structure to a par- 
ticular field of study (science and technology, medicine, software functions, politics) that 
can be examined, modeled, and exploited for better retrieval. We will argue (section 4) that 
the same principle holds even more strongly with respect to computer models for business 
decision making. 

Next, we consider some examples of classification structures such as thesauruses, dic- 
tionaries, and semantic “road maps.” Each of these techniques suggests that establishing 
interrelationships among concepts offers opportunity for improved retrieval. 

The MeSH classification structure is an important organizational technique used by 
the National Library of Medicine’s online medical information retrieval system, MED- 
LINE. MeSH implements an 8-level “tree” covering approximately 14,000 terms [22]. It 
is used by manual indexers in conjunction with a set of rules to describe the medical peri- 
odical literature and also supports the formation and expression of queries by trained and 
untrained searchers. Using an algorithm to merge the MeSH thesaurus with the ACM 
Computing Reviews classification, Rada confirmed the usefulness of a merged thesaurus 
in improving retrieval by improving the conceptual organization of information [23]. 

Humphrey [24], also working at the National Library of Medicine, is conducting an 
investigation directed at knowledge-based indexing to improve the consistency in keyword 
phrases that are applied to documents. The system suggests, restricts, and automatically 
supplies certain index phrases based on other phrases applied already. The system makes 
use of inherited knowledge. 

A more general view of classification was presented by Doyle [25], who argued long 
ago that associations among subject terms could be profitably exploited in retrieval. At that 
time, powerful computers and software were not available to test such ideas. Today we see 
ambitious projects that are taking advantage of current technology, such as Fox’s efforts 
to build an enormous semantic net out of several online dictionaries [26,27]. 

3.3 Software reuse 
Software reuse provides another perspective from which to examine the problem of 

model retrieval. We consider here the task of locating relevant software components (pro- 
gram designs, coded functions or procedures, entire programs, etc.). We ignore the other 
important software reuse tasks of comprehending, modifying, and composing software 
components. 

Burton et al. [28] establish a database of reuse components (segments of code mostly 
written in Ada). To permit their retrieval, the following material is stored in a database: 
the machine running the code, the language in which the code is written, its documenta- 
tion, hierarchically arranged category codes describing functionality, and five or fewer user- 
assigned keywords. Queries allowing specification of the type of component needed (e.g., 
components involving “stacks”) and the relative importance of various aspects of compo- 
nents (code length, code readability, etc.) are input into a “scoring” algorithm which 
returns to searchers a set of components ordered by their predicted usefulness. 

Prieto-Diaz and Freeman [29] search a library of reuse components classified on sev- 
eral dimensions including: component function, type of software in which the component 
would be used (e.g. compiler), functional area to which the component applies (e.g. CAD 
or auditing). The matching function ranks components by estimating how much effort 
would be required to reuse them for a particular query that supplies values for the same 
dimensions. 

Other software retrieval methods resemble those used for model retrieval. The Paris 
system [30] uses theorem proving to derive a list of candidate components from their prop- 
erties. A frame-based system revealing both default and exceptional values for different 
classes of code assists with software design, construction, and maintenance [31]. 

For two decades, the idea that new programs ought to take advantage of existing ones 
has excited software developers. Though newer programming techniques, including object 
oriented programming and data type abstraction, make it easier to design and reuse soft- 
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ware components, concomitant increases in the ability to locate code for reuse have not 
occurred. Biggerstaff and Richter [32] suggest that, for software reuse to deliver on its 
promise, breakthroughs in representation must allow the clear expression of what a soft- 
ware component does, how it does it, and how it is to be connected to other software 
components. 

Similarly, we feel that the appropriate theoretical basis for model retrieval begins with 
an appropriate representation: a model skeleton (i.e., an augmented “influence diagram”- 

which Howard [33] has described as the “greatest advance . . . in the communication, elic- 
itation, and detailed representation of knowledge”). We speculate that advances in model 
retrieval can shed light on software reuse and vice versa. At present, the means for selecting 
relevant software components from a software inventory remains a difficult problem for 
software reuse. 

4. MODEL RETRIEVAL BASED ON “STRUCTURED” INFORMATION RETRIEVAL 

The three fundamental processes of information retrieval provide a foundation for 
sharing and reusing computer models. We first discuss the indexing of computer models 
by means of a formal representation of their structure. We show, too, how a “concept 
base” can augment this representation by accounting for semantic difficulties lying outside 
the formalism. We next discuss querying for stored models in conjunction with the for- 
mal model representation. Finally, we describe important matching questions demanding 
additional research. 

4.1 Formal theory for the representation of models 
The results of Spiguel suggest that deterministic, discrete-time models can be precisely 

represented by a mathematical formalism based on set-theory [34]. Specifically, by describ- 
ing the following sets, any model of this important class can be described completely and 

unambiguously: 

1. 
2. 

3. 

4. 

The set of variables employed in the model; 
The set of structural relationships that exist among variables (these designate which 
model variables influence the values of which other model variables); 
The set of temporal relationships included in a programmed model (these designate 
how the values of model variables interact with each other over time); and 
The set of mathematical equations which specify precisely how model variables 
interact. 

For example, a very small programmed model which describes activity for a savings 
account might be expressed in a computer modeling language (pseudo-IFPS) as follows: 

MODEL 

Years 1988-1989 
Balance = 50, Previous Total 
Deposit = 10 
Total = Compounds (Balance + Deposit, 10%) 

When executed, this non-procedural language would produce output similar to: 

OUTPUT 

1988 1989 

Balance 50 66 
Deposit 10 10 

Total 66 83.6 
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Fig. 1. Skeleton of programmed model. 

This model shows what happens when, on January 1, 1988, and January 1, 1989, a 
depositor adds $10 to a savings account with a closing balance of $50 on the last day of 
1987, at a bank which gives 10% interest each December 31st to any deposit in the bank 
for the last 365 days. 

Using Spiguel’s formalism, a skeleton of this programmed model is shown in Fig. 1. 
This skeleton shows: 

l Model variables are the set (Balance, Deposit, Total]. 
l The structural relationship S2 involves the joint influence of variables Balance and 

Deposit on the value of Total. 
l The beginning Balance in a model year is equal to the value of the Total in the PRE- 

VIOUS year, as reflected by the temporal relationship T,. 

The formal specification of the model also includes the fact that: 

l The mathematical relationship between Total and the variables Balance and Deposit 
involves the functional relationship Compounds. 

It has been proven that a deterministic, discrete-time programmed model, as expressed 
in some modeling source code, is isomorphic to its representation expressed by its skele- 
ton and functional relationships [34]. That is, the formalism and the programmed model 
contain the exact same information. (In addition to the mathematical proofs document- 
ing this equivalence, LISP encodings of programmed models expressed by the formalism 
have been used as the input to a compiler which produces IFPS code.) 

This isomorphism between computer models and their formal representation means 
the formalism is an extremely powerful means for representing computer models for pur- 
poses of storage and retrieval. In essence, this equivalence means that a computer model 
is completely and perfectly represented by the formalism. Thus, in our approach, the set 
of model variables and the structural, temporal, and functional relationships associated 
with a model are encoded and stored in the model base to represent the model. 

In this way, half the problem of retrieval by “structure” is solved-namely the problem 
of how to devise a structure which represents some object of retrieval (computer model or 
text) without loss of information. In contrast, previous efforts involving structured retrieval 
have been forced to choose a less-than-complete, and therefore somewhat arbitrary, means 
of representing a text. 

4.2 Semantic problems in representation: the “Concept Base” 
We must recognize that any formalism is built of primitive constructs which require 

“correspondence rules” to explain their application to the real world [35]. For instance, our 
formalism defines a representation for describing models in terms of sets of variables and 
sets of relationships. But it does not prescribe which models will be built, what their vari- 
able names will be, or what relationships will exist among these variables. In fact, retrieval 
will always be beset by linguistic and semantic problems that lie outside any formalism. 
We make provision for these difficulties by augmenting the formalism for model represen- 
tation with a “concept base.” 

One of the problems lying outside our formal treatment is naming inconsistency. That 
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is, it is impossible to know the vocabulary that will be used to describe a model that per- 
forms a given task. For instance, the term “income” can be a synonym for “profit.” But, 
in other contexts, its meaning is closer to “revenues.” This is problematic for a modeler 

trying to retrieve models using the variable “income.” Similarly, a modeler wishing to 

retrieve models dealing with “assets” will find the formalism incapable of recognizing mod- 
els involving “real assets” as possibly being relevant. 

Swanson provides insightful examples further portraying the semantic difficulties that 
beset those who wish to retrieve stored information [36]: 

1. Different people have very different opinions about whether a given document is 
relevant to a (supposedly) identical need for information. 

2. There are seemingly countless subject terms that individuals will select to charac- 
terize a document’s subject contents. Even so, they will rarely select the same terms 
used to describe it in an official card catalog. 

3. Documents appropriately described by certain keywords often fail to use that key- 
word (or lexical variations) in their text. 

To mitigate these retrieval problems, we look to enhance the formal representation of 
models. The work of Fox [26,27], Humphrey [24], and the foundational work of Doyle 
[25] motivate our construction of a “concept base” for describing the semantic relation- 
ships among standard business concepts. The concept base can account for both general- 
ization and specialization among terms (“IS A” relationships) as well as part-constituent 
(aggregation/disaggregation) relationships. The concept base, similar to a thesaurus, allows 
for browsing of concepts in search of relevant models, enables “knowledge based index- 
ing” which can suggest or preclude the use of certain combinations of keywords for 
describing models, and links specific model variables to standard business concepts to mit- 
igate problems arising from inconsistent naming of model variables. An example demon- 
strates the use of the concept base to augment indexing. 

Example I. Model Entry into the Model Base. A modeler builds a small model to help 
her account for her expenses during the last year. Figure 2 shows a model skeleton repre- 
senting the basic model. After model validation and testing, the model and its formal rep- 
resentation are entered into the model base. The concept base is used to provide additional 
indexing support: 

Fig. 2.. The “Expenses” mode] skeleton. 
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1. The “concept base” is graphically presented to the user so she can catalog her work 
(see Fig. 3). By using a mouse, she traverses this structure, encountering “Finan- 
cial Concepts,” then “Income Statement,” then “Expenses,” then some specific 
expenses such as “Cost of Sales.” Each of these terms is a “controlled’‘-i.e. 
official-vocabulary term used to help provide naming consistency. 

2. Database links are established between the modeler’s chosen variable names and 
the official vocabulary maintained in the “concept base.” For instance, what the 
modeler calls “sales costs” the system calls “cost of sales,” and what she calls “com- 
mission and office,” the system calls “selling, and general administrative expenses.” 
Pointing and mouse-clicking establishes these associations. The database links 
established from standard vocabulary to model variables are one-to-many, meaning 
that all model variables (in any stored model) related to a standard vocabulary item 
are linked to that item. 

Information retrieval research suggests that several representations of a document are 
better than one for increasing the probability of retrieving all relevant documents [37,38]. 

( Fixed Costs 

Fig. 3. Controlled vocabulary in Concept Base. 
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Since the cost of failing to retrieve a relevant model may be enormous due to either the 
effort required to rebuild it or to the consequences of basing a decision on a faulty model, 
it is extremely important that modelers retrieve all existing models of potential relevance. 
So, in addition to the indexing we have described, and using the concept base for 
assistance, 

3. The model builder is prompted for a textual abstract. 
4. The model builder is prompted for a keyword description of her model. 

Note: This example shows the use of a concept base to help in naming consistency as 
well as the use of multiple representations (including keywords, abstracts, and labeling of 
modeling variables) to support improved retrieval by future model builders. We are per- 
forming experiments to test the effectiveness of each model representation separately as 
well as in combination. 

4.3 Model retrieval: querying 
The methods of model representation we have discussed, together with the semantic 

extensions offered by the concept base, provide several powerful methods of retrieval. We 
show by example how querying is performed using keyword-based and graphical methods. 

Example 2: Retrieval from the Model Base by Concept: Keyword querying. A second 
model builder needs a model of an income statement. Though there is no such model in 
the model base, the system possesses some useful knowledge. It knows that the keyword 
description of the last model was “Expenses,” (a controlled vocabulary term contained in 
the concept base), and that expenses and revenues are the two constituents of income state- 
ments. (Note the “AND” in Fig. 3 between “Expenses” and “Revenues” depicted by the 
arc connecting them.) Thus the system suggests that the modeler consider whether the last 
model can be of use. 

Note: There are five potential ways the second modeler can use official vocabulary in 
the concept base to learn about the existence of the Expenses model component that he 
needs in building an income statement: 

1. 
2. 

3. 

4. 

5. 

By choosing the controlled vocabulary term “Expenses” directly. 
By choosing the controlled vocabulary term “Income statement.” From this, he 
would be led to “Expenses,” one of the two constituent parts of the Income 
Statement. 
By choosing “Cost of Sales,” an element under Expenses. The system would notify 
him about models involving Expenses in an attempt to generalize from a particu- 
lar term to a broader modeling topic. 
By performing a Boolean search on model abstracts, looking, for instance, for 
models about “Income statements” or “Revenues” or “Expenses.” 
By performing a Boolean search on the keyword descriptions maintained with 
models. 

Fig. 4. The “Income Statement” model skeleton. 
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Once the modeler’s Income Statement model is created (using the “Expenses” model 
as one of its sub-components; see Fig. 4), it will be catalogued in a fashion similar to the 
“Expenses” model. That is, its variables will be linked to official vocabulary in the con- 
cept base and it will receive a keyword description and an abstract. Also, its formal rep- 
resentation will be stored in the model base. Subsequent modelers will be able to retrieve 
it in its entirety, or retrieve just its “Revenues” or “Expenses” subcomponents. 

This example has shown how the concept base also assists in retrieval. In general, it 
supports concept generalization, specialization, and aggregation/disaggregation (part- 
whole) relationships during retrieval. As Example 1 showed, the concept base can also help 
the model builder with indexing by offering her a “map” of concepts which she uses both 
for vocabulary control for model variables and for use in assigning keywords descriptions 
of models and in writing model abstracts. As Example 2 has suggested, the grain of 
retrieval can support location of complete, ready-to-use models or model sub-components 
which can be spliced together to form complete models. 

The fact is that not only is there exploitable structure in the world of business, but 
model retrieval offers demonstrated opportunities for taking advantage of structure [l]. 

Example 3: Retrieval from the Model Base by Structure: Graphical Retrieval. Based 
on research suggesting that an improved graphical interface can enhance retrieval of doc- 
uments [39,40,41,42], we allow the model retriever to use a mouse-with-windows interface 
to easily create graphical relationships that describe his or her modeling needs. For 
instance, using an interface similar to that used by the simulation tool STELLA [43], one 
can easily create the query below 

which shows an unspecified relationship between variables A and B. 
We support this form of graphical representation of queries for three reasons. It is 

easy to use, supports the expression of complex modeling queries (involving relationships 
among variables), and is the most natural form of querying given the underlying stored rep- 
resentation of models. 

In response to the query (A) -+ (B) the system will retrieve for the user models con- 
taining the two variables A and B with any kind of influence relationship between them. 
(“Influence” suggests there is a structural, temporal, or functional relationship.) Just as 
easily, the searcher can specify a particular relationship that must be present for retrieval. 
Thus, we provide such a facility by allowing searching based on: 

1. changes to a variable over time, 
2. standard business functions, or 
3. other mathematical relationships. 

Fl -Compounds 
Fig. 5. Model skeleton fragment showing function “compounds”. 

IPII 25:6-D 
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Consider the model skeleton fragment in Fig. 5 which includes the functional relation- 
ship “compounds.” This skeleton fragment indicates two things: a) The variable “balance” 
changes over time as a function of its previous value. (More generally, a variable may 
exhibit a temporal relationship to the previous value of any variable.) b) The model is con- 
cerned with the (presumed to be standard) function “compounds.” Standard modeling 
functions we might wish to use for model retrieval purposes include: net present value, 
internal rate of return, etc. Functional relationships are also defined by arithmetic operators. 

The temporal and functional information associated with this fragment would be 
stored in the Model Base. Their storage will permit modelers to retrieve the model when 
they issue queries of the following sort: 

l “find models showing a change of balance over time” or 
l “find models involving compounding.” 

These queries can be posed graphically or by use of keywords. 

4.4 Research on matching in structure-based retrieval 
The heart of our research concerns retrieval using graphical (structure-based) query- 

ing. Again suppose a user specifies her model retrieval need by (A) -+ (B). Even if there 
is no model with direct influence from (A) to (B), there may be models exhibiting influ- 
ence close to this. For instance, (A) might influence (C), and (C) influence (B). These types 
of syntactic transitivities can be recognized following relational database theory [44]. “Con- 
ceptual” relationships are also very important. For instance, a good target for retrieval 
would be a model exhibiting 

(A’) --+ 0% 

where A’ is the “father” concept of B in the concept base. 
We conclude this section, by describing some of the important issues concerning 

matching in supporting graphical, structure-based retrieval. We consider it essential to pro- 
vide such retrieval support, and feel these issues are crucial to the success of “structured 
retrieval.” We look to both information retrieval and artificial intelligence to help us solve 
these problems. 

4.4.1 Context. Consider a modeler looking for models in which the variables “Income” 
and “Expenses” jointly influence the variable “Net Income.” This is, suppose the modeler 
expresses his need for models as in Fig. 6. The problem of context is: Should any model 
which satisfies these influence requirements be automatically retrieved? Or, does the con- 

Fig. 6. Graphical query relating “income” “expenses” and “net income.” 
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( Broker Foes )\ ( Net Incc 

Fig. 7. Models involving “income,” “expenses,” and “net income.” 

text in which it is embedded in some way invalidate (or reduce the likelihood) of its rele- 
vance to the modeler? 

Consider the models represented in Figs. 7a and 7b. (Here and elsewhere, arcs indi- 
cate structural, temporal, or functional relationships.) Though they both satisfy the 
modeler’s specification, they seem to represent quite different modeling situations. The 
modeler, in specifying his need, will try to depict essential relationships. Context problems 
arise if there are ambiguous settings supporting these relationships, only some of which are 
appropriate to the modeler’s need. 

4.4.2 Completeness. Completeness is the problem of partial matching considered for 
structured retrieval. That is, when is there enough essential detail between the influence 
structure of a query and the influence structure of a model to constitute a “match,” and 
when isn’t there? 

Consider a searcher in need of models in which stock prices are influenced by divi- 
dends, price-earnings ratios, and the stock’s Beta (its volatility compared to the market as 
a whole). Figure 8 shows the skeleton of a model in which all the requisite variables and 
influences are present except the Beta (indicated by the fuzzy oval and arrow). It is plau- 
sible for the searcher to react in either of these ways to the model in the figure: “The model 
seems promising since dividends and the price-earnings ratio are much more important any- 
way.” Or, “A stock’s Beta is crucial in economic times like these. The model won’t do.” 

In comparing a model to a query, either variables, or structural, temporal, or func- 
tional relationships may be missing. Most generally, the problem of completeness addresses 
how a machine can make guesses about model relevance or rank models by degree of sim- 
ilarity to a searcher’s query. 

4.4.3 Naming. Naming consistency poses considerable difficulties for retrieval of mod- 
els or other objects. We have discussed already our attempts to control vocabulary by link- 
ing freely chosen model variables to official terms in the concept base. We have discussed, 
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Fig. 8. Skeleton of a model partially matching a query. 

too, how generalization, specialization, and aggregation/disaggregation are important 
mechanisms for considering differences between names used in a query and names asso- 
ciated with a model. 

The most important naming problem is the degree of similarity among names. For 
instance (see Fig. 3), how similar are each of the following terms to the controlled term 
“Cost of Sales”: Fixed Costs (a constituent of Cost of Sales); Expenses (a generalization); 
Other Income Deductions (a sibling)? Of course, other relationships within a network of 
concepts are possible, too, such as “grand child,” “uncle,” etc. Ultimately naming prob- 
lems must be addressed by algorithms which select as relevant (or rank order) models in 
light of a query. It is not at all clear how algorithms can best perform this function in as- 
sessing the similarity between names used in queries and names used in model descriptions. 

4.4.4 Scale. Problems of scale arise when there is a discrepancy between the detail 
included in a query and the detail included in a model. Consider the query depicted in Fig. 
9a. It expresses a need for models in which inflation rate and amount of investment 
together have influence on internal rate of return. The influence structure of the model in 
Fig. 9b involves the three requisite variables, “Investment,” “Inflation,” and “IRR,” and 
even has the appropriate (transitive) linkages. (For example, Inflation influences IRR 
through C.P.I. and Discount Rate.) Syntactically, such transitivities can be detected. 

Semantically, however, one must consider whether (or to what degree) the query and 
the model skeleton stand for similar models. The model may, for instance, contain so 
much irrelevant detail that, in actuality, it has nothing to do with the modeler’s needs. 

Problems of scale involve: 

1. 

2. 

3. 

decisions by the modeler concerning numbers of variables and amount of influence 
structure to include in a query; 
decisions in representing a model about whether it should be represented in com- 
plete or partial detail; and 
decisions in matching concerning similarity between model and query. 

4.4.5 Analogy. Analogy offers great retrieval potential but more difficulty still in 
determining similarity between models and queries. Analogy seeks essential similarity in 
the face of apparent difference. It sacrifices surface similarity for deeper similarity. 

Figure 10a represents a model which calculates the distance a plane flies as determined 
by its time in flight, its “wind-less speed,” and the speed of the head wind into which it 

is flying. Figure lob represents a drainage model, in which a pool has simultaneous inflow 
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(a) 

R/D investment 

Interest Rates 

(b) 

Fig. 9. Problems of scale in a model. 

and outflow. In these models, “net rate” is analogous to “net speed,” and “inflow rate” 
and “drainage” are analogous to “wind-less speed” and “wind speed,” respectively. In prin- 
ciple, we can solve drainage problems with our airplane model. 

The literature on analogy bears on four of the problems we have described: context, 
completeness, scale, and analogy (see, for example, [45,46,47]. The relevance of this liter- 
ature stems from its concerns with distinguishing central and non-central components of 
a representation, developing transformations from one representation into another, and 
using learning together with analogy formation. We are exploring these ideas in our work. 

5. CONCLUSION 

Model sharing is necessary to contain the costs of model development and reduce the 
likelihood of basing decisions on faulty models. We have described a technical approach 
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(b) 

Fig. 10. Models demonstrating analogy. 

to model sharing based on the idea of “structured” information retrieval. The structure we 
use for representing models is a set-theoretic formalism which provides a complete, accu- 
rate description of a model. We have discussed both the power of the formalism as well 
as the need to use semantic information to augment it. 

Of course, the formalism for model representation cannot be used outside the domain 
of computer-models. But it provides an important context in which to address the second 
half of the “structured” retrieval problem. That is, given a representation which enables 
one to store complete and totally accurate information about all aspects of a model-its 
variables and all structural, temporal, and functional relationships among them- what is 
the most effective means of retrieval? 

In fact, finding optimal retrieval methods which are based on this formalism is equiv- 
alent to answering: How effective can retrieval based on structure be? We are suggesting 
that “structured” retrieval depending on imperfect and incomplete methods of represent- 
ing models or text can never be as effective in promoting retrieval as methods which are 
based on an isomorphic (perfect and complete) structured representation. And, if we 
believe that structured retrieval is inherently more powerful than retrieval not allowing 
structure (a hypothesis we plan to test, and as work on structured retrieval of text would 
suggest), answering the questions we have raised may give an indication of how effective 
retrieval may ultimately be. In this sense, we view this research as being as important for 
information retrieval as for model management. 

A great deal of research needs to be done in order to determine the optimal methods 
for “structured” retrieval. Since a searcher’s query rarely coincides completely with a doc- 
ument description (structured or not), matching algorithms for retrieving documents may 
allow for “partial matching,” using various matching methods described in the literature 
(see, for example, [48] or [49]. These tend to be ad hoc and, for structured representations, 
quite specific to the type of structure being employed. 
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By developing an information retrieval-based approach to model storage and retrieval, 
we are attacking a problem of significant and increasing importance from the vantage of 
a strong referent discipline. Following this referent discipline, this paper has presented our 
technical approach to model indexing, querying, and matching. Important work remains 
to be done-work that can lead to both practical solutions for model retrieval as well as 
deep insights into structure-based information retrieval. 
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