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A stratigraphically oriented series of the Miocene foraminiferal species Brizalina mandoroveensis 
from Ikang, Cameroon, was analyzed both by conventional multivariate morphometric 
procedures and by the tensor biometric method of Bookstein (1986; Statist. Sci. 1,181-142), a 
method which analyzes sets of landmark points rather than specific variables of shape or size. 
The conventional analysis used five size-measures upon 170 specimens from five stratigraphic 
levels; the tensor analysis encompassed six landmarks (12 coordinates) upon 50 specimens. 
Whereas certain features appeared in both analyses, such as the separation between levels one 
and five, the techniques did not always agree with respect to the interpretation of those findings 
or about most details in the sequence of mean phenotypes. The canonical variate analysis bases 
its ordination upon a general size factor (the meaning of which is obscured by the foreshortening 
of within-group variation which is built into the technique). The tensor analysis locates a similar 
ordination using mainly features of shape. 

1. Introduction. The data analyzed in this paper come from a borehole drilled 
in Miocene sediments at Ikang, Cameroon, West Africa by the ELF- 
SNEAP(E) Petroleum Company, France. Among the many bolivinids in these 
marine sediments, the species Brizalina mandoroveensis (Graham, DeKlasz, 
R6rat) is particularly informative for the purpose of studying time-correlated 
variation in shape. 

The collection derives from five sampling levels in the borehole. The 
youngest sample was taken from a depth of around 1716 m, the second from 
around 1740 m, the third from around 1763 m, the fourth from around 1787 m, 
and the deepest sample from around 1810 m. The collection was ki.ndly made 
available by Dr L. Brun, Head of the Biostratigraphical Laboratory of ELF- 
SNEAP(E) (Boussens). Microspheric individuals, numbering somewhat less 
than 10% of the collection, were omitted from all analyses. The practically 
important aspect of our pilot study for the petroleum industry is that it offers a 

657 



658 F.L. BOOKSTEIN AND R. A. REYMENT 

new means for obtaining more accurate results in quantitative palaeoecologi- 
cal work. 

The microfossils were first studied by standard methods of multivariate 
morphometric analysis, in particular the methods of principal components and 
canonical variates. These analyses were supplemented by graphical and 
statistical treatments of the coordinates of landmarks measured at strategic 
points around the test. Five "conventional" variables were measured on the 
tests of the foraminifers: the length of the test, its maximum breadth, the lengths 
of the last two chambers, and the diameter of the megalospheric proloculus (see 
Fig. 1). 
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Figure 1. Measurement of Brizalina mandoroveensis. The five size-measures for the 
standard multivariate analyses. Landmark points for Brizalina: (A) aperture; (B) 
proloculus; (C) proximal boundary of the last chamber; (D) bulge of the last 
chamber; (E) bulge of the second last chamber; (F) proximal boundary of the 

second last chamber. 

Time-correlated morphometrical studies require graphical representations 
of the subtle variations of shape and size that occur during the evolutionary 
history of a species. Conventional methods of measuring fossil shells are 
dominated by size-sensitive characters, so that the inclusion of shape- 
determinants occurs mainly by default. It is difficult to design a standard 
multivariate analysis that can adequately account for evolution in shape and 
the manifestations of polymorphism in outline. To a certain extent, this may be 
managed by the various methods of "size correction" and, indirectly, by 
canonical variate analysis, but it is not clear how to select size measures in such 
a pattern that the resulting analysis will be most sensitive to the predominantly 
geometrical aspects of evolution in shape. This is a knotty problem for the 
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Foraminifera, a group well known for the difficulties attached to the study of its 
variability in shape. 

A way out of the difficulty is to use shape-oriented measurements instead of 
sizes. The most accessible approach to such measures involves the recording of 
the coordinates of landmarks, i.e. diagnostic points on the shell, and then 
applying the graphical and statistical analyses of Bookstein et al. (1985) and 
Bookstein (1986) directly to those data. In the following, we shall be concerned 
with weighing the results obtained by conventional multivariate statistical 
methods against those yielded by the tensor-analytical approach of Bookstein 
(1986). 

2. Conventional Multivariate Analysis. The basic descriptive statistics for our 
five samples of Brizalina are displayed in Table I for each of the five measures 
on the text. For length, the coefficient of variation varies little over the 
sequence. For all the other characters, this statistic varies considerably across 
samples. Breadth of the test and length of the last chamber seem to show a 
decrease in variability over time. The remarkably high variability of the 
proloculi from levels 3 and 4 may indicate that the samples contain 
pseudomegalospheres (Nyholm, 1962). 

The within-groups covariance matrix and the corresponding correlation 
matrix are listed in Table II. The correlations among the four dimensions of the 
test are all in the range of 0.60-0.85. These values are rather high and are all 
statistically significant. Proloculus diameter is moderately correlated (about 
0.4) with three of the other four characters. This may be because proloculus size 
influences the geometry of the way in which the subsequent chambers are 
constructed (cf. Reyment, 1982). 

The five samples of Brizalina were analyzed by the method of canonical 
variate analysis in the space of the correlations (i.e. the computations were 
made on the pooled within-groups correlation matrix), using an expanded 
version of the program published in Blackith and Reyment (1971). Our results 
were not easily translatable to the biological problem at hand. Seemingly by 
way of analogy, it has become customary to interpret the coefficients of the 
normalized canonical vectors, or their equivalent, as if they pertained to single- 
sample principal components. Several examples of this attempt are cited in 
Reyment et al. (1984). In some analyses of non-biological materials with 
identically distributed samples, one arrives in this way at a useful interpretation 
of the coefficients of canonical variate analysis. Although some biological data 
are suited to this procedure, especially when the within-group covariance 
matrix is nearly spherical, it is not possible to proceed routinely in this respect; 
rather, each case must be judged on its own merits. 

The canonical variate analysis for separation of our five levels is presented in 
Table III. Figure 2 shows the scatter of our sample in the plane of the first two 
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TABLE II 
Within Groups Covariances and Corresponding 

Correlations 

1 2 3 4 5 
1 6.2818 1.4179 1.1810 1.1068 0.0804 
2 1.4179 0.8603 0.5526 0.4681 0~0897 
3 1.1810 0.5526 0.5393 0.4246 0.0626 
4 1.1068 0.4681 0.4246 0.4686 0.0564 
5 0.0804 0.0897 0.0625 0.0564 0.0477 

1 2 3 4 5 
1 1.00000 0.60994 0.64165 0.64513 0.14695 
2 0.60994 1.00000 0.81125 0.73721 0.44296 
3 0.64165 0.81125 1.00000 0.84468 0.38973 
4 0.64513 0.73721 0.84468 1.00000 0.37741 
5 0.14695 0.44296 0.38973 0.37741 1.00000 

(1) Length of the test; (2) breadth of test; (3) length of last chamber; 
(4) length of second last chamber; (5) diameter of the proloculus. 

canonical variates. The five sample means are indicated, and also the convex 
hulls of samples 1 and 5, the pair of samples found to be most distinctly 
separable. It appears that samples 1, 2, 3, and 5 are approximately ordinated 
along CV1 and that sample 4 diverges from this line. (The latent roots indicate 
that CV's 3 and 4 are of negligible importance.) In understanding these two 
dimensions of principal contrast, the canonical coefficients are of surprisingly 
little use. In particular, the elements of the first normed latent vector--  
approximately (0.3, 0.6, -0 .7 ,  0.2, - 0 .1 ) - -do  not seem to embody an 
interpretable pattern of covariance among the five characters, even though the 
separation of samples 1 and 5 is aligned with it almost perfectly. These groups 
tend to be opposite with respect to some morphological characteristic, but we 
cannot tell which. 

2.1. Interpretation. Canonical variate analysis is relative eigenanalysis of 
two matrices, one representing between-group variation and the other within- 
group variation. The latent vectors account for group separation expressed as a 
ratio to within-group variance. In the present application, both matrices are 
dominated by a single factor which can be seen by inspection to have the 
meaning of general size. In the within-group matrix we saw this clearly in the 
pattern of consistently large correlations among measures 1 through 4. In the 
comparisons between levels, we notice as well a general trend of decrease in size 
from level 5 through level 1, most notably on variables 2 and 1. 

In the presence of such a common principal component, the interpretation of 
the coefficients of the canonical variates is almost impossible. The problem is 
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T A B L E  I I I  

S u m m a r y  of  the Canon ica l  Variate  Analysis  for the Five Levels 
of  Brizalina mandoroveensis (N- -  170). La ten t  roots  and  vectors  

of  the de te rminanta l  equa t ion  o f  canonica l  variate analysis 

Vector 1 Vector 2 Vector 3 Vector 4 

Length 0.6167 --0.7058 0.2431 -0.3089 
Breadth 1.1501 1.1746 0 . 0 9 8 5  0.7439 
Last chamber -1.1772 -0.4383 1.6957 -0.3784 
Second last chamber 0.2980 .-0-3308 -1.6698 -0.3927 
Proloculus -0.2663 0.4373 -0.1084 -0.8034 

Latent roots 0.2655 0.1241 0.0195 0.0178 

The normed latent vectors 

Length 0.3421 -0.4584 0 . 1 0 1 4  -0.2449 
Breadth 0.6381 0.7629 0.0411 0.5897 
Last chamber -0.6532 -0.2847 0 . 7 0 7 5  -0.3000 
Second last chamber 0.1654 -0.2148 -0.6967 -0.3112 
Proloculus - 0.1477 0.2840 - 0.0452 - 0.6368 

2.78 
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Figure 2. Scatter plot of the scores for the first two canonical variates for the set of 
five size variables and 170 specimens. The points for sample 1 (1740 m) are 
indicated by the largest dots of the diagram; the points for sample 5 (1810 m) are 
indicated by middle-sized dots. Points from samples 2, 3 and 4 are represented by 
the smallest dots. The means for the five samples are also indicated. The coefficients 

underlying this canonical variate representation are presented in Table III. 
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the same as th~at induced by multicollinearity in a multiple regression or a two- 
group discrimination (cf. Section 4.3 of Bookstein, 1990). To the extent that all 
variables are strongly positively correlated, a linear combination like v 1 - v  2 
will have little variance, and so a combination like 12v 1 -  10V 2 will have 
covariances about the same as those of v~+v 2 for purposes of group 
separation. In a suggestive geometric terminology, the first principal 
component of the group has been foreshortened--it is rotated away from the 
axis (1, 1, 1, 1, 1) by which we recognize alternate measures of General ~ Size. 
Recognition of these alternate measures is still possible by summing their 
coefficients. The sum is a very crude estimate of covariance with the sum of the 
measured variables, one common proxy for size. 

In the present example, the eigenanalysis foreshortens the between-group 
size factor and scatters its coefficients, but still leaves it as a measure of size. The 
foreshortened coefficients for the first canonical variate total 0.60, much more 
than for any of the other canonical variates. The coefficients appear to 
emphasize the contrast between variable 2, which decreases some 20% over the 
series, and variable 3, which decreases less than 10% in spite of its larger 
variance within groups. An appropriate interpretation would proceed instead 
in terms of the canonical loadings, correlations of the measures with the variate 
to which they all contribute. These are positive for all of the first shape- 
variables, indicating that the diversity of signs of the coefficients is merely an 
outcome of collinearity of measures. The meaning of CV1 here is General Size; 
only its formula is odd, owing to the specific optimization that is incorporated 
in the analysisl 

In addition to the general size-gradient in these data, there is one other 
striking feature in the table of group means: the anomalous drop in variable 1 
for level four. Such an effect involves roughly equal components of "size" (sum 
of the variables) and "shape" (here, the ratio of V1 to the sum of the others). 
Because of this latter aspect, this comparison is not affected quite as much by 
the foreshortening along intragroup size brought about by the latent root 
extraction; indeed, it dominates CV2 (cf. Fig. 2). On this CV, variable 2, which 
does not change in mean value from group 4 to group 2, is assigned a large 
positive coefficient, and variables 1, 3, and 4, middling negative coefficients. 
This separation of variables according to the apparent shape of their time- 
trend--evenly upward (not found here), upward with a plateau (variable 2), or 
upward with a reversal (variables 1, 3, 4)--corresponds to their loadings on a 
secondary factor for timing according to the explanation of Hopkins (1966) (cf. 
p. 195 of Bookstein et al., 1985). Nonetheless, the pattern of coefficients on the 
first canonical variable cannot be interpreted in accordance with the separate 
patterns of group means up the series. We will return to a consideration of the 
canonical analysis after setting out an alternative approach to separating these 
same samples. 



664 F .L .  BOOKSTEIN AND R. A. REYMENT 

3. Analysis of Landmarks. The five length-measures of the multivariate 
analysis just reviewed, like most other sets of morphometric scalars (Reyment 
et al., 1984), are intended as measures of size across regions which are 
homologous according to the usual comparative criteria. In this manner, 
distances measured upon forms separately may also be considered to. be 
homologous quantities, that is, quantities that correspond from form to form. 
The multivariate analysis, then, becomes a study of the set of relationships 
among the forms of a level or the levels of a series. Each such relationship, each 
comparison between profiles of sample means, or each canonical variate, may 
be thought of as a change of form detectable by its effects upon the five distances 
we selected. 

An alternative approach to the description of morphological change was first 
called to the attention of biologists by D'Arcy Thompson (1917). Thompson 
noted that our concept of biological homology, applied to drawings of 
organisms, closely resembles the geometric notion of a smooth plane mappin#. 
For any pair of forms in a study, the homology map is a pairing of their 
infinitely many mathematical "points". It is as if the effect of evolution might be 
traced out, locus by locus, along the path bridged by the ruler in the 
measurement of distances. 

To construe biological homology as a geometric mapping makes possible an 
alternate quantitative approach to the study of change in form. Instead of 
dealing indirectly with homology by the separate measurement of regions, one 
may statistically analyze the mapping function directly, by sampling it at 
particular loci called landmarks. Landmarks are points declared a priori to be 
"homologous" from form to form just as if they were embryonically or 
evolutionarily traceable organs or tissues. In fact, the usual method by which 
landmarks are operationally characterized is by reference to the structures on 
which they lie. A landmark might be, for instance, the point of juxtaposition of 
two adjacent organs or shell-structures, such as point A in Fig. 1, which 
represents the aperture of the foraminifer. In another sort of definition, a 
landmark might be characterized as a point within a single organ at which a 
certain geometric property is distinctive. For instance, our point B, "prolocu- 
lus", is located where the projected curvature of the proximal edge is greatest. 

3.1. Data. From the 170 specimens of Brizalina subjected to conventional 
multivariate analysis of the 5 distances, we selected 50, 10 from each sampling 
level, upon the SEM photographs of which we could confidently locate the 6 
landmarks shown in Fig. 1. These 50 specimens were not the only forms in the 
full data set for which the landmarks could be found, but the smallest borehole 
sample was of 15 specimens only, and we saw little point in oversampling the 
larger collections. The names, letter codes, and operational definitions of the 
landmarks are as follows. 
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Proloculug (B). The point of sharpest curvature around the first 
chamber of the test, at the proximal end. This point, located by one of us 
(FLB) by hand, is near the proximal endpoint of the longest diameter of 
the form, which is measure 1, "length", in the canonical variate analysis 
preceding. 

Proximal boundary ofthefinal chamber (C). The point at the edge of the 
test at which the convexity of the final chamber appears to spring from the 
earlier body wall. This point is sometimes the intersection of two apparent 
curves on the picture and sometimes the terminus of a suture which can 
plainly be seen. When all three features are visible, they agree well. 
Point C is dose to one endpoint of measure 3, "length of final chamber", 
in the canonical variate analysis. 

Aperture (A). The point on or near the edge of the test at which the 
convexity of the final chamber appears to spring from that of the 
penultimate chamber. Point A is located as the intersection of two curves. 
It is near the endpoint of two chamber length measures from the canonical 
variate analysis. 

Proximal boundary of the penultimate chamber (F). The point at the edge 
of the test at which the convexity of the penultimate chamber appears to 
spring from the earlier body wall. 

Bulge of the final chamber (D). The point on the edge of the final 
chamber at the greatest distance from a line connecting the limits of-the 
base of this chamber, points A and C, as previously located. The distance 
to point D from this baseline corresponds to the notion of the height of 
this chamber. This point was located by hand with the aid of a transparent 
Cartesian grid. Point D is near an endpoint of measure 1, "length", in the 
canonical variate analysis. Note that this measure fails to meet the 
criterion in pp. 6-8 of Bookstein et al. (1985) for a good landmark: it is not 
characterized by any anatomical feature in its vicinity. We shall see the 
consequences of this failure as the statistical analysis unrolls. 

Bulge of the penultimate chamber (E). The point on the edge of the 
penultimate chamber at the greatest distance from a line connecting the 
limits of the base of this chamber, points A and F, as previously located. 

3.2. Biometric analysis of landmark locations. Over the last 20 years, several 
statistical methods have been developed for the analysis of two-dimensional 
landmark data (Sneath, 1967; Bookstein, 1978; Brower and Veinus, 1978; 
Bookstein, 1982; Siegel and Benson, 1982; Strauss and Bookstein, 1982; 
Goodall, 1983; Bookstein et al., 1985). A recent synthesis of these methods has 
proved suitable for routine application in quantitative morphological studies. 
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The geometric and statistical theorems underlying these procedures, which 
might conveniently be called tensor biometrics, are summarized in Bookstein 
(1986). Appendix 4 of Bookstein et al. (1985) provides a simplified synopsis for 
the case of a single triangle of landmarks. 

For shape-variations that are not too great, both the analysis and the 
interpretation of changes in landmark locations may proceed by considering 
the landmarks, three at a time, in a set of triangles distributed over the form to 
be studied. (In the example here, we refer to six triangles: ABC, ABD, ABE, 
ABF, ACD and AEF.) For complete coverage of Nlandmarks, there must be at 
least N-2 triangles in a configuration that is rigid. When this requirement is 
satisfied, it does not matter which triangles are studied, as the multivariate 
statistical analysis of any such set is the same to terms of first order in the 
variation of shape (Bookstein, 1986). Any mean differences, trends, or 
statistical components of shape to be found in the landmark data may be 
construed as deformations of their configuration and may be visualized by the 
biorthogonal diagrams of Bookstein (1978). Alternatively, any mean difference 
or trend may be interpreted by way of the conventional distance measures 
which change in the greatest and inthe least ratio across the comparison. These 
distance measures can always be characterized as measurements across 
triangles of landmarks (not necessarily the same triangles used in the statistical 
analysis). That is, they are distances taken from one landmark to the weighted 
average position of two others. Where these distances cross inside the form, 
they will lie at an angle averaging 90 ° . 

The multivariate methods necessary to analyze the shape of a single triangle 
of landmarks are well-known from other biometric applications. The 
morphometric analysis of the shape of the triangle X Y Z  is equivalent to the 
ordinary normal-model analysis of the single complex variable 
( Z - X ) / ( Y - X ) .  (The arithmetic is that of complex numbers.) This is, in turn, 
the same as the ordinary normal-model multivariate analysis of the pair of 
Cartesian coordinates assigned to landmark Z in a Cartesian system for which 
landmark X is always set to location (0, 0) and landmark Y to (1, 0); X Y  is 
referred to as the "baseline". The construction results in what we call the shape 
coordinates of the triangle (cf. pp. 230-232 of Bookstein et al., 1985). Either of 
these statistical anyalyses, properly interpreted, is independent of which of the 
three landmarks is considered to be 2"in the geometry, which Y, and which Z. 
Permutation of the landmarks 2", Y, and Z results, to first order, in mere 
rotation and rescaling of empirical scatters of shape. However these roles are 
assigned, a sample of triangular shapes becomes a scatter of these complex 
numbers or coordinate pairs. They may be analyzed in that form by ordinary 
multivariate methods, such as matched or unmatched T 2 tests, multiple 
regressions, canonical correlation analyses upon exogenous variables, and the 
like. 
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Many statistical findings take the form of a vector of coefficients for the 
coordinates in this shape space: for instance, a mean difference, or an allometric 
dependency of shape upon size. Any such finding, re-interpreted as a 
deformation of the triangle of landmarks, may be immediately characterized by 
its principal directions, the pair of distances across it which increase most, 
respectively, least quickly. This last step, the generation of new variables that 
represent the particular comparison under study, proceeds by the geometrical 
constructions explained in Bookstein (1986) or Bookstein et al. (1985). It is 
these interpretations that are independent of which landmark was chosen to 
play X, which Y, and which Z in the construction of the shape coordinates. 

Size information was deleted from the statistical analysis when we 
standardized all the triangular forms to the same baseline length. The missing 
information on size is restored when that baseline length is included as an 
additional variable in the multivariate procedures. Studies of allometry do 
better if size is restored instead in the form of the root-mean-square of the edge- 
lengths of the triangle. This particular size-measure is approximately 
uncorrelated with shape on a convenient null hypothesis, and so permits a 
single F-test for the existence of allometry whenever the assumptions of that 
null model can be verified. The null hypothesis states that shapes could have 
been derived by independent identically distributed circular normal variation 
about fixed mean locations. The size measures for triangles is a special case of 
the measure serving this function for the general configuration of landmarks, to 
wit, the root-mean-squared distance of all the landmarks from their centroid, 
as computed case by case. 

When the shape coordinates are multiplied by the length of the baseline, they 
become the two Cartesian coordinates of a vector of displacement: the 
separation of landmark Z from landmark X in a coordinate system for which 
the baseline vector X Y  is horizontal. In the course of studying triangle ABD of 
the Brizalina data set, we shall have occasion to restore size information in this 
manner. 

This entire family of statistical methods is independent of the choice of a 
coordinate system for digitizing. It is independent, also, of any a priori selection 
of size and shape variables for analysis. Instead the findings are dependent 
upon the choice of landmarks, the locations of which are the sole information 
about form available, and upon one's a priori notion of biological homology. 

3.3. Findings. In this application of the tensor biometric procedures, we 
shall have no need for analyses of more than three landmarks at a time. Hence, 
all our findings can be presented in scatter-plots and diagrams in the same 
plane as the pictures of the specimens. 

Our shape analysis is summarized in the pattern of mean shapes presented by 
level in Fig. 3. This figure shows the apparent motions of landmarks C, D, E 
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and F in a coordinate system in which the aperture, point A, is permanently 
fixed at location (0, 0) and the proloculus, point B, is permanently fixed at 
(1, 0); only levels 1, 2, 4 and 5 are indicated. For all triangles, the scatter of 
shape for level 3 overlaps scatters for all the other strata, so that its 
relationships to them could not be clarified using these six points. The mean 
position of each landmark in this registered coordinate system is drawn for the 
four remaining levels as a line of three vectors, in the order 5 4 2 1. 

F 

Ao oB 
[o,o] [t,o] 

Figure 3. Trajectories of mean forms in shape-space for sampling levels 5 - - . 4~2-o  1 
(in that order). The baseline is AB. The arrows are located at the highest level, 

namely, level 1. 

Notice that, of the four landmarks considered to be "moving", the mean 
position for level 4 is close to that for level 1 for all but landmark F. Notice, 
too, that the change from level 5 to level 4 is not reliably associated with the 
path from level 4 to level 2 and back. Two landmarks, D and E, go offat a new 
angle to the old trajectory. Point C recapitulates part of the previous change; 
only point F, traversing a triangle, returns to its relative position from level 5. 
Notice that samples 1 and 5 hardly differ at all on any of the shape coordinates; 
their comparison involves mainly General Size, as we have already seen in the 
reinterpretation of Fig. 2. 

Let us study these patterns of change in more detail. Figure 4 shows the 
locations of all 50 specimens in the space of shapes of triangle ABC, and 
outlines the scatters ofsubsamples 1,2, and 4 within that scatter. The scatter, to 
be precise, represents the positions of the proximal limit of the final chamber in 
a coordinate system referred to the standard aperture-proloculus baseline. The 



MICROEVOLUTION IN MIOCENE BRIZALINA (FORAMINIFERA) 669 

specimens in the samples from levels 2 and 4 vary in opposite directions about a 
"core" representing the much lesser variation in level 1. Figure 5 displays the 
mean shapes of triangle ABC for levels 2 and 4, the centroids of the 
corresponding sub-scatters in Fig. 4. Treated now as a deformation, instead of 
as the "motion" of one landmark, this change in shape has two principal 
directions of greatest relative effect. It is clear from the figure that length AC has 
decreased (from level 4 to level 2) relative to length AB, the "baseline" of the 
construction; but the geometry of alternate distance measures indicates that 
other ratios have changed considerably more. The simple ratio most sensitive 
to this particular shape change is the ratio AC: BC, the ratio of legs opposite the 
"hypotenuse" AB of this nearly right triangle. 

-0.24 

-0.32 

13 
-0.40 

-0.48 

-0.56 

• ~ • 
, ~ 

LEVEL I 

LEVEL 2 

LEVEL 3 • 

LEVEL 4 A 

LEVEL 5 Q 

I I I 

-0.12 0.12 0.36 0.6 
6 

Figure 4. Location of 50 specimens in the space of shapes of triangle ABC. The 
convex hulls of the scatters for samples 1, 2, and 4 are indicated. The respective 
levels are shown by means of symbols. The labelling of the axes follows the 
terminology of Bookstein et  al. (1985). The abscissa e is denoted ~/1 in Bookstein 

(1986), and the ordinate v corresponds there to ~/2. 
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The same Fig. 5 indicates the relationship between the mean forms of 
triangle ABF in the two groups; the underlying scatters are presented in Fig. 6. 
In spite of the much greater overlap in this aspect of shape space, we may draw 
descriptive conclusions. Firstly, the difference between levels in the relation of 
the penultimate chamber to the baseline appears not to be the same as the 
difference in the relation of the final chamber to the same baseline. In the 
passage from level 4 to level 2, point F is displaced primarily inward, towards 
the baseline, whereas point C is also displaced distally, along the baseline. 
Secondly, two aspects of the "breadth" of the foraminifer (the distance [-CF]) 
have changed with respect to its "length" (the distance I-AB]). Not only has the 
ratio of these quantities decreased by 32% between level 4 and level 2, but also 
the angle has altered between the directions along which these distances are 
measured. As can be seen in Fig. 3, at level 4, as in the case of level l, "breadth" 
is nearly orthogonal to "length", but at level 2, these distances make an angle 
averaging 77 ° instead. 

Figure 5. The mean shapes of triangle ABC for levels 2 and 4; that is, the centroids of 
the corresponding scatters in Fig. 4. 

In addition to the position of the proximal ends C and F of the chambers, it is 
instructive to consider relations between the shapes of the chambers at these 
sampling levels. Figure 7 supplements the information in Fig. 5 by giving the 
apparent displacements of bulge-points D and E to the usual baseline; it also 
indicates the apparent displacements of points C and F. Figure 8, computed 
separately, shows the relation between the mean shapes of the triangle ACD for 
levels 2 and 4. The construction is by enlarging and rotating the triangle 
AD2C2 so that the edge AC2 aligns with the edge AC4. The shape change from 
level 4 to level 2 is then shown by the straight arrow as the displacement from 
D4 to D2', almost directly away from the edge AC. We see that the contrast is 
primarily one of relative height of the chamber, the ratio of this height to 
measure 3 of the standard set. This will be called the aspect-ratio below; it is 
larger in the sample from level 2 than that from level 4. The penultimate 
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Figure 6. The scatters underlying the relationship between the mean forms of the 
triangle ABF in the samples from levels 2 and 4. 

chamber shows no such difference. Apart from this shape change, it is tempting 
to interpret the reconfiguration of these landmarks between levels 4 and 2 as a 
relative reduction of the final chambers of the foraminifer (by two somewhat 
different factors) together with their rotation with respect to the body axis. 
Such a change could be simply explained as a displacement of point B, at the 
proloculus, a point  which has hitherto been tacitly fixed through this 
discussion. If point  B were to move somewhat with respect to the final 
chamber, then in a presentation with its position artificially fixed, points C, D, 
E and F would seem instead to move together and rotate clockwise about 
point  A, just as we see in these data. Unfortunately, point B has not moved 
away from point A at all (Fig. 9). When size information is restored to the 
baseline, so that we are now plotting the displacement vector from point A to 
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points C, D, E and F according to a horizontal baseline, the two apparent 
changes of scale of the final chambers are found to be real, not merely relative. 

We summarize the transition from level four to level two as follows. There 
has been a decrease in the ratio of "breadth" [-CF] to "length" lAB], and a 
change in the angle between the segments underlying these distance-measures. 
The final chamber has somewhat decreased its diameter (more than has the 
penultimate chamber) but increased its own aspect ratio of height to base. The 
rotation between "breadth" and "length" is associated with the relative 
movement of the proximal end of this chamber distally along the body axis as 
well as toward it. The shape-change from level two to level one is just the 
opposite of this in all essentials. 

3.4. Groups one andfive. Groups one and five separate most in this study, 
but their contrast takes a quite different form from that between levels 2 and 1 
or 4. We see in Fig. 3 that none of the shape differences between groups five and 
one is represented by large displacements on the plot of mean shapes. The 
longest of these displacements, that corresponding to triangle ABC, is not 
associated with any separation of scatters (Fig. 4), owing to the rather large 
scatter of shapes within group five. 

One of the small differences is familiar. As Fig. 10 showsl using triangle 
ACD, the aspect-ratio of the last chamber has increased by a few percent from 
level 5 to level 1. However, there is no apparent change in "breadth" [CF] nor 
in the angulation between "breadth" and "length", the other shape features of 
the transition from level 2 to level 4. 

Nevertheless, this single shape effect, the change of relative position of the 
bulge of the last chamber, generates an almost perfect separation between the 
sampling levels in the shape of triangle ABD (Fig. 11). The long axes of the 
clusters in this figure are aligned in parallel with the segment from landmark A 
to the mean position of landmark C. That is, they parallel the direction of 
greatest indeterminacy in the location of point D (which was characterized, 
you will recall, as the point "farthest from the base of the chamber"). The 
coordinate of point D along this long axis carries no information at all about 
biological homology. We do not know "which point" we have located along the 
boundary curve, so tospeak; we know only how far it is from the base of the 
chamber. 

The separation between mean shapes for triangle ABD at levels 1 and 5 is 
approximately perpendicular to the baseline of the chamber; it lies in the 
direction of which the coordinate is meaningful in spite of the manner in which 
point D was characterized. We may interpret this coordinate, then, as if it were 
the height of the last chamber, analogous to measure 1 of the first set. 

At landmark E, by contrast, the apparent displacement of the "top" of the 
bulge from level 1 to level 5 is directly alon9 the direction of uncertainty of 
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Figure 7. Augmentation of Fig. 5 to include apparent displacements of the bulge- 
points D and E, and points C and F, to the usual baseline AB. 
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Figure 8. Relation between the mean shapes of the triangle ACD for levels 2 and 4. 
The construction is as given in Appendix A2, steps 1 and 3, of Bookstein et al. 

(1985). 

0B 

Figure 9. Mean positions of landmarks D and E, and C and F, when the size of the 
baseline is restored to the analysis. The change in shape from level 4 to level 2 is not 

explained by relative motion of the point B (the proloculus). 
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Figure 10. Tr!angle ACD at levels 1 and 5. The aspect-ratio of the last chamber 
increases from level 5 to level 1. There is no change in "breadth", [CF],  nor in the 
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Figure 11. Scatter for triangle ABD. The long axes of the clusters Parallel the 
segment from landmark A to the mean position of landmark C. 
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location of point E, so that there is no need to invent a biological interpretation 
for this displacement. We may conclude only that the penultimate chamber 
does not bulge out further in the material from level 1. 

In addition to the mean difference in shape between levels 5 and 1, there is a 
considerable difference in average size. In Fig. 12, we take advantage of this 
factor by reverting from the shape coordinates to correctly scaled vectors of 
relative displacement. There is no resulting separation, the size differences 
being manifested in the nesting of sample 1 (the youngest) within the scatter of 
sample 5 (the oldest). Like the shape coordinate underlying it, the mean 
difference of this vector, which is in the direction of "height" of the final 
chamber between the levels, lies perpendicular to the average direction of 
uncertainty of location of point D. 

4. Discussion. We may extract three conclusions from this demonstration: 
about Brizalina (Section 4.1), about morphometric data in general (Sec- 
tion 4.2) and about morphometric statistical method (Section 4.3). 

4.1. Brizalina. Figure 3 suggests that there is randomness in the redirection 
of changes between levels of Brizalina, an impression borne out by the detailed 
analysis immediately above. The difference between levels 1 and 5 bears no 
particular relationship to the difference between levels 2 and 4. We saw this 
indirectly in the canonical variate plot, where the separation between centroids 
of groups one and five made an angle close to 90 ° with the separation between 
the centroids of groups two and four. We saw it more clearly in the analysis of 
triangles of landmarks, where, of three shape descriptors sensitive to the mean 
change in form from level 4 to level 2, only one was found to characterize the 
transition from level 5 to level 1, while the others, aspects of the geometry of 
"length" and "breadth", were replaced by a criterion of global size difference. 
Furthermore, the canonical analysis exaggerates the separation between 
groups one and four, which are almost identical in mean shape. 

We should like to propose the hypothesis that these Brizalina are 
"wandering" in phenotypic space rather than following any sort of controlled 
gradient or trend; a random walk without drift, as it were, so that, for instance, 
after the first return of the organism to the form of level 5, it sets off in an 
unrelated direction. Perhaps this is an example of evolutionary stasis (Eldridge 
and Gould, 1972; Reyment, 1983). Size has changed substantially over this 
series; the aspect ratio of the last chamber has increased over the same span of 
values, but other aspects of shape-change occurred only once, such as the 
rotation of angle between "breadth" and "length". 

Whenever new directions in shape-space are randomly introduced, sample 
after sample, as for these foraminifers, no single canonical analysis nor other 
application of biologging (Reyment, 1980) is likely to be capable of adequately 
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Figure 12. Triangle ABD, with size included. Here the scatter for the points of level 1 
lies within that for level 5. 

following the trajectory. To illustrate this concept, we shall consider a homely 
analogy. Think of an ordinary paperclip which has been partially unbent into a 
non-planar form bearing three successive right angles in three orthogonal 
planes. A canonical analysis will find the diagonal of this construction, the 
"axis" from one end to the other of the wire. This direction is, however, not 
meaningful within morphological space. It is an average of the three random 
directions of morphological variation adopted at the three different "steps" of 
the folding paperclip, and bears no implications about the subspace for 
subsequent changes. 

A great deal of the argument about tempo and mode of evolution is vitiated 
by poverty of variables. When a sufficiently rich representation of morphologi- 
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cal space is available, a representation easiest to generate by means of 
landmarks, it seems to us quite likely that at every epoch something new is being 
attempted, some old experiment abandoned, and some trend continued. The 
artificial restriction of the descriptor space to a number of variables fewer than 
the number of samples conceals the possibility of this renewal from our 
biometric purview. Once again using the analogy of the paperclip, we see that 
every bend of the wire, every succession of levels, is a movement in 
morphospace potentially unrelated to the subspace of the full previous history. 

4.2. Morphometric data. A set of six landmarks, such as we collected here, 
bears nine statistical degrees of freedom: eight for shape (for instance, the eight 
shape coordinates for triangles ABC, ABD, ABE, ABF) together with a single 
additional dimension for size, to be measured only once in any sensible fashion. 
In practice, particular combinations of these degrees of freedom have intuitive 
meanings all their own. For instance, we discovered the apparent rotation of 
"breadth" with respect to "length" between levels while not measuring length, 
breadth, nor this angle in any explicit way. Ordinary ratios, which could have 
been measured, but were not, were instead generated in the course of the data 
analysis as natural interpretations of the coordinate-free findings. In this way, 
we hit upon the aspect ratio involving points A, C and D of the ultimate 
chamber, but also upon the unfamiliar ratio AC: BC which proved the most 
sensitive description of the difference between level 4, or level 1, and level 2. 

By comparison, a set of distance measures, such as the five that were treated 
in the canonical variate analysis, does not seem to expand into such complete 
coverage of the form. The computed contrasts of variables which are the 
canonical variates of Table III, for instance, seem interpretable only in those 
tabulations, as computed contrasts bearing certain properties of optimality. 
Nowhere in the canonical analysis, for instance, do we learn that the first 
canonical variate is almost exactly a combination of scale and shape 
information about the position of one point, the bulge of the last chamber, with 
relation to the aperture and the point at the proloculus. Once scale is divided 
out, along with the rest of the within-groups matrix, the canonical coefficients 
obscure the fact that covariance in size remains substantial. Nor  can we learn 
anything from the conventional character set about measures such as the angle 
between "breadth" and "length", as the information regarding that angle was 
simply not gathered. (A wiser choice of variables is, of course, always possible 
and could lead to a more informative outcome--see Section 4.3.) 

4.3. Morphometric methods. It is possible to ensure the effective coverage of 
landmarks by a conventional character set of distances if the distances are 
measured between landmarks in a determined or overdetermined network 
(Strauss and Bookstein, 1982; Skalak et al., 1982; Section 3.2 of Bookstein et 
al., 1985). In this case, it can be shown that the space spanned by the distance 
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variables, i.e. the statistical space accessed by multivariate methods, is equivalent 
to the statistical spaces of shape and size underlying the analysis of triangles as 
exemplified in this essay. (The theorems supporting this assertion are proved in 
Sections 2 and 3 of Bookstein, 1986.) Nevertheless, after statistical computations 
are completed, the problem of interpretation remains. It is easy to construct 
simple geometric operations (deformation of a region by a tumor, or rigid 
motion of one set of landmarks with respect to another set) which are very well 
hidden by their explicit recording as changes of log-distances. 

The clearest way of interpreting findings from a multivariate analysis of dis- 
tances between landmarks is by reverting to some set of triangles, as demon- 
strated here, then constructing the principal directions corresponding to the 
tensor interpretation of the coefficients computed: the distances that change most 
and least quickly. Theorem 2 of Bookstein (1986) warrants that such triangles can 
always be found. In other words, for any multivariate trend or contrast involving 
distances measured among however many landmarks, the interpretation of mul- 
tivariate analysis by means of triangles is sufficient. In our view, the interpretation 
by triangles or other geometric representations of the data is, as well, necessary. 

In the present example, the choice of baseline was straightforward on biological 
grounds. Point B (proloculus) is laid down once and for all in embryo, and 
point A (aperture) remains homologous over development even as growth is 
repeatedly renaming (C, D) pairs as (F, E) pairs. In other applications of the 
shape coordinates, the biometrician has more freedom in choosing baselines. The 
selection of AB here is consistent with the general advice in Bookstein (1986) 
suggesting the use of the longest diameter of the form. The theorems there 
guarantee that the appropriate (tensor) interpretation of multivariate statistical 
analyses is approximately invariant under change of baseline. 

The form of Brizalina is assembled out of parts, and the description reported 
here describes the parts (chambers) and their assembly (the vertex angle). In 
general, the task of describing the findings of a shape coordinate analysis is 
more fluid than this. A general review of techniques may be found in 
Chapter VII of Bookstein (1990). Typically one turns to one or another 
hierarchy of invariant descriptors of global aspects of these changes. Two 
possibilities are by polynomials of increasing degree (basically an idea of Peter 
Sneath's--see Bookstein and Sampson, 1987; 1989) and by eigenfunctions of 
"bending energy" of varying geometric scale (Bookstein, 1989a; 1989b). These 
two decompositions share their first term, the component of uniform shear, 
about which a small literature of estimation is growing on its own (Rohlf and 
Slice, submitted; Goodall, submitted; Mardia, 1989). 

Preparation of this paper was supported in part by USPHS grant GM-37521 to 
Fred L. Bookstein and by Swedish Natural Science Research Council grants 
G-GF 2320-134 and G-GU 2320-129 to R. A. Reyment. 
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