Measurement of ¹³C Spin-Spin Relaxation Times by Two-Dimensional Heteronuclear ¹H-¹³C Correlation Spectroscopy

N. R. NIRMALA AND GERHARD WAGNER*

Biophysics Research Division, Institute of Science and Technology, The University of Michigan, Ann Arbor, Michigan 48109

Received November 28, 1988

We have developed a heteronuclear 1H -detected 2D NMR experiment for measurements of ^{13}C T_2 values. This experiment is suited for measurements of T_2 values in macromolecules, such as proteins, where conventional measurements of ^{13}C T_2 values are not possible because of the low resolution of 1D spectra and the lack of sensitivity of ^{13}C detection. Samples of alanine ^{13}C -enriched either at the C^{α} or at the C^{β} position were used to test whether this technique and direct detection of ^{13}C in a Carr-Purcell experiment (1) yield the same results.

The experiment we propose is shown in Fig. 1. It consists of a 2D double DEPT (2) sequence which is related to a sequence we have used recently (3) to determine spin-lattice relaxation times in basic pancreatic trypsin inhibitor, and for reverse detection 1D NMR experiments proposed for T_1 measurements (4, 5). Longitudinal ¹H magnetization is transferred to transverse ¹³C magnetization by means of a DEPT sequence. This is allowed to undergo spin-spin relaxation during a time τ_2 . A carbon 180° pulse is applied in the middle of this period to refocus chemical-shift precession and dephasing due to magnetic field inhomogeneity. At the end of the τ_2 period, the carbon magnetization is converted to longitudinal magnetization during which time a homospoil pulse (typically of 1 ms duration) is applied along the z direction to randomize magnetization in the transverse plane. The ¹³C z magnetization is now reconverted to transverse magnetization and labeled with carbon frequencies during the t_1 evolution period. Subsequently, it is converted to observable ¹H magnetization by means of an inverse DEPT sequence.

The phase cycles are given in the legend to Fig. 1. Phase cycle ϕ_1 eliminates contributions originating from carbon instead of proton polarization, while ϕ_2 takes care of magnetization not converted to I_zS_y by the θ pulse. It is not necessary if $\theta=90^\circ$. Phase cycles ψ_2 and ψ_3 constitute a z filter; ψ_3 and the receiver phase cycle also eliminate magnetization of protons not coupled to ¹³C. Experiments with τ_2 delays from 1 μ s to 2 s were recorded. The intensities of the resonances were fitted to an exponential curve and the values of the spin-spin relaxation times were determined to be 205 ms for the α -carbon and 457 ms for the methyl carbon (Figs. 2A and 2C). For comparison we have also measured the T_2 values with a Carr-Purcell type sequence with direct detection. The T_2 values measured were 205 and 513 ms for the C^{α} and

^{*} To whom correspondence should be addressed.

the C^{β} , respectively. The data are shown in Figs. 2B and 2D. The agreement between the measured spin-spin relaxation times using the sequence of Fig. 1 and the direct detection method is quite good.

Fig. 2. Exponential decay of transverse magnetization as a function of τ_2 using the sequence shown in Fig. 1 for reverse detection and the Carr-Purcell sequence for direct detection. (A) α -carbon of alanine using reverse direction. (B) α -carbon of alanine using direct detection. (C) β -carbon of alanine using reverse detection. (D) β -carbon of alanine using direct detection.

The purpose of developing the technique described is to measure spin-spin relaxation times of backbone carbons in proteins in 2D heteronuclear correlation experiments. Two-dimensional techniques and reverse detection provide the only means to obtain this information in terms of resolution and sensitivity. Initial measurements of 13 C T_1 values (3) and temperature-dependent changes in 13 C- 1 H COSY spectra (6) indicate a significant variation of the backbone mobility in the protein basic pancreatic trypsin inhibitor. The method for 13 C T_2 measurements described will provide an additional valuable tool to study these dynamic aspects in proteins.

ACKNOWLEDGMENTS

This research was supported by NSF (Projects DMB-8616059 and BBS-8615223) and NIH (Project GM 38608-01A1). We thank Sven Hyberts, Gaetano Montelione, and V. Thanabal for useful discussions.

REFERENCES

- 1. H. Y. CARR AND E. M. PURCELL, Phys. Rev. 94, 630 (1954).
- 2. M. R. BENDALL, D. T. PEGG, D. M. DODDRELL, AND J. FIELD, J. Magn. Reson. 51, 520 (1983).
- 3. N. R. NIRMALA AND G. WAGNER, J. Am. Chem. Soc. 110, 7557 (1988).
- 4. L. E. KAY, T. JUE, B. BANGERTER, AND P. C. DEMOU, J. Magn. Reson. 73, 558 (1987).
- 5. V. SKLENAR, D. TORCHIA, AND A. BAX, J. Magn. Reson. 73, 375 (1987).
- 6. N. R. NIRMALA AND G. WAGNER, Biochemistry, submitted.