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Abstract-A method of micromixing parameter estimation is proposed which is convenient and applicable 
to a wide variety of models. One conducts a typical tracer response test, except that in addition to the (time- 
averaged) mean tracer response, the variance of the tracer response is also recorded as a function of time. 
Micromixing parameters for a given model are determined by equating the predicted and measured values 
of the time response of the tracer concentration variance. The predicted tracer concentration fluctuation 
response has been determined for both step and pulse tracer tests, for the IEM model, the coalescence- 
redispersion model, and the two-, three- and four-environment models. Parameter estimates were calculated 
by minimizing the mismatch between predicted and measured concentration fluctuation responses. 
Preliminary numerical results indicate that the method provides satisfactory parameter estimates, even from 
moderately noisy measurements. These results also show that statistical analysis of the fit to measured 
response data can provide discrimination between competing mixing models. 

INTRODUCJ-ION 

Much research has been ,devoted to developing 
methods for predicting the behavior of imperfectly- 
mixed chemical reactors. This research has resulted in 
a number of mathematical models for predicting the 
conversion behavior of imperfectly-mixed reactors. 
Unfortunately, these models are not well utilized in 
industrial practice. One reason is the difficulty of 
estimating mixing parameters. Comparison between 
model and reactor test data is a reliable and widely 
applicable method, but i$ often costly, impractical, or 
comptitationally intensive. The use of a “turbulence 
analogy” provides crude parameter estimates with 
little effort, but this method is applicable to a limited 
number of models. A method of parameter estimation 
is proposed in this paper which is convenient, widely 
applicable, and computationally efficient. 

The method is based upon dynamic tracer response 
testing, and thus requires no effort beyond that re- 
quired to determine the residence time distribution 
alone. Experimentally, one conducts a routine tracer 
response test, except that the tracer concentration 
fluctuation response is recorded as a function of time, 
in addition to (and simultaneously with) the mean 
tracer concentration response. The mixing param- 
eter(s) for a model can then be determined by choosing 
value@) to minimize the mismatch between the meas- 
ured tracer concentration fluctuation response and 
that predicted by the model. 

If one conducted a tracer test and observed the 
reactor exit at time 2, one would observe many concen- 
trations, due to the many turbulent eddies which 
comprise the effluent. If this tracer test were repeated, 
a different set of concentrations would be observed, 
due to the random nature of the turbulence in the 
reactor. If the tracer test were repeated ad infinitum, 

these observed concentrations would form some dis- 
tribution, with a definite mean and variance. By 
definition, the mean tracer concentration at time t is 
the mean of this distribution, and the tracer concentra- 
tion fluctuation at time t is the variance of this 
distribution. When applied for all times, t, this defines 
the tracer concentration mean response and the tracer 
concentration fluctuation response. 

To measure the tracer concentration mean re- 
sponse, it is sufficient to use a low-spatial-resolution 
measurement probe, with a moderately slow response 
time. To measure the tracer concentration fluctuation 
response, one would ideally sample the concentration 
at all points across the exit plane and calculate their 
variance. This, of course, is not possible. Instead, one 
must sample a point (single-eddy) concentration, and 
use the variance of samples at several consecutive 
times to approximate the concentration fluctuation. 
To make such measurements requires the use of high- 
spatial-resolution measurement probes with fast re- 
sponse times. 

McKelvey et al. (1975) used a light probe to measure 
concentration fluctuations by calorimetry. They 
found that noise and lack of spatial resolution were 
serious problems, and recommended that conducti- 
metry be used in future work. Bennani et al: (1985) 
measured concentration fluctuations with a conducti- 
metric microprobe developed by Gibson and Schwarz 
(1963) having a spatial resolution of 2500 pm. Calcu- 
lations showed that some of their measurements were 
significantly in error, presumably due to the low 
spatial resolution. Barthole et al. (1982) made similar 
measurements with a microprobe having a spatial 
resolution of 200 pm and a response time of 5 ms. 
They also concluded that the spatial resolution of their 
probe was inadequate. More recently, Hippler et al. 
(1985) have developed a conductimetric microprobe 
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having a spatial resolution of about 40 pm with a 
response time of about 3 ms. 

Hanley and Mischke (1978) and Hippler et al. (1985) 
used conductimetric microprobes to measure the dy- 
namic tracer response at the outlet of a reactor, and 
were thus able to determine concentration fluctu- 
ations and the residence time distribution simulta- 
neously. This approach has the advantage that infor- 
mation about micromixing is obtained with no exper- 
imental effort beyond that required to obtain informa- 
tion about macromixing alone. 

The concept of using tracer concentration fluctu- 

ations to estimate mixing parameters is not new. 
K&tan and Adler (1967) mentioned the possibility of 
utilizing tracer concentration fluctuations to deter- 
mine the mixing function of their imperfectly-mixed 
plug flow reactor model. Evangelista et al. (1969) 
demonstrated how the tracer concentration fluctu- 
ation response can be used to estimate the mixing 
parameter of the imperfectly-mixed CSTR model of 
Curl (1963). Villermaux and Devillon (1972) and 
Zwietering (1984) both show how tracer concentration 
fluctuation responses can be used to estimate the 
parameters of their imperfectly-mixed CSTR models. 

None of those papers considers the use of tracer 
concentration fluctuation responses for parameter es- 
timation with mixing models applicable to arbitrary 
residence time distributions. This case is considered by 
Hanley and Mischke (1978) and Hippler et al. (19x5). 
However, they use an integral measure based on the 
tracer concentration fluctuation response, and they 
use it purely as a correlative parameter, arriving at no 
theoretical relationship between mixing parameters 
and the tracer concentration fluctuation response. The 
approach of the present paper differs from that of the 
papers cited above in that predicted tracer concentra- 
tion fluctuation responses are determined for mixing 
models applicable to reactors of arbitrary residence 
time distribution, and in that the entire tracer concen- 
tration fluctuation response is utilized in the param- 
eter estimation process. 

MIXING MODELS 

A great number of models have been-developed to 
model the influence of imperfect mixing in chemical 
reactors. + All of these models consider the multiplicity 
of concentrations present in the reactor. Conse- 
quently, all predict a distribution of concentrations in 
the reactor effluent, as is observed in reality. 
Lagrangian mixing models may be broadly classified, 
according to how they handle the approximation of 
the distribution of concentrations, as: 

(1) environment models-where material entering 
the reactor encounters different regions, each 
with either no mixing or complete mixing; 

(2) diffusion-interaction models-where material 
entering the reactor uniformly encounters some 

‘For comprehensive reviews of this subject see, for 
example, Ritchie and Tobgy (197X) or Villermaux:( 1983). 

intermediate level of mixing; or 
(3) composite models-where material entering the 

reactor encounters different regions, each with 
some characteristic intermediate level of mixing. 

Environment models 
The environment models conceptually divide the 

reactor into a number of regions, referred to as 
environments, each of which is in a state of either 
complete segregation or maximum mixedness. Reac- 
tants enter one of the environments, travel through 
one or more of the environments in the reactor, and 
eventually leave the reactor. Various models differ 
principally in the number of environments and in the 
distribution of material between the environments. 

The first such model was developed by Ng and 
Rippin (1965). In this model, material enters into a 
segregated environment corresponding to the per- 
iphery of the reactor, subsequently transfers to a 
maximally-mixed environment corresponding to the 
impeller region of the reactor, and exits the reactor 
from both environm.ents. The rate of transfer of any 
material from the entering (segregated) environment 
to the leaving (maximally-mixed) environment is as- 
sumed to be proportional to the amount of the 
material remaining in the entering environment. This 
assumption roughly corresponds to quasi-random 
turbulent transfer. By varying the transfer constant, R, 
from zero to infinity, the mixing state is systematically 
varied from complete segregation to maximum mixed- 
ness. 

Several other environment models have been devel- 
oped for premixed feed reactors, including the models 
proposed by Weinstein and Adler (1967), Villermaux 
and Zoulalian (1969), Methot and Roy (1971), and 
Valderrama and Gordon (1979). Nishimura and 
Matsubara (1970) developed a generalized two-en- 
vironment model, in which the distribution of material 
between the entering and leaving environments is 
determined by the segregation function s(a, A). It has 
been shown that, with a suitably chosen segregation 
function, all of the above models are special cases of 
the generalized two-environment model. 

Ritchie and Tdbgy (1979) developed a three-en- 
vironment model for unmixed feed reactors. Their 
model was similar to the two-environment model of 
Ng and Rippin (1965), except that it provided a 
separate (segregated) entering environment for each 
feed with subsequent transfer to a single (maximally- 
mixed) leaving _ environment. Mehta and Tarbell 
(1983) later developed a four-environment model. 
Their model is similar to the three-environment 
model, except that material from each entering en- 
vironment transfers to a separate leaving environ- 
ment. The mixing of material from different feed 
streams is provided for by the direct transfer of 
material between the two leaving environments. 

Diflusion-interaction models 
Diffusion-interaction models differ from environ- 

ment models in that some intermediate degree of 
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mixing is presumed to exist throughout the reactor. 
Rather than considering the (uniform) concentrations 
in each of a small number of environments, the 
distribution of concentrations within the reactor is 
addressed directly. Diffusion-interaction models can 
be divided into two categories, based on their pre- 
sumed mixing mechanisms: (1) coalescence-redisper- 
sion (CRD) models, and (2) IEM models. Both of these 
types of models are discussed in more detail below. 

CRD models. CRD models envision the reacting 
fluid as being composed of a large number of small 
packets of fluid. The packets enter the reactor, react, 
mix with other packets, and eventaally exit the reac- 
tor. The mixing process is modeled as the joining 
(coalescence) of two packets, the complete mixing of 
their contents, and the immediate breaking apart 
(redispersion) of the two packets. By varying the rate 
at which these mixing events occur, the state of mixing 
in the reactor can be systematically varied from com- 
plete segregation to maximum mixedness. 

The first CRD model was developed by Curl (1963) 
for dispersed-phase mixing in a CSTR. Using popu- 
lation balance techniques, Curl derived the unsteady- 
state equation of change for the concentration dis- 
tribution, p(C, t), in terms of a partial integro-differ- 
ential equation. 

Unfortunately, the partial integro-differential equa- 
tion can be solved exactly only for the case of a fit-st- 
order reaction, where the degree of mixing does not 
affect the mean conversion. Further, extension of the 
model to multiple reactions gives rise to multiple 
integrals in the mixing term, making even numerical 
solution of the equation untenable. As a result, 
Spielman and Levenspiel (1965) developed a stochas- 
tic method for solving Curl’s CRD model based on 
direct simulation of the flow and mixing events for a 
representative number of packets. Kattan and Adler 
(1967) developed a stochastic CRD model for unmixed 
feed plug flow reactors, using a coalescence rate which 
varied down the length of the reactor. 

The CRD modeling of reactors of arbitrary RTD is 
a more difficult problem than that for CSTRs and 
PFRs, since it is not obvious how to choose the 
packets for mixing and exiting the reactor so as to 
attain the desired RTD. This problem was solved by 
Kattan and Adler (1972) by modelling the reactor as a 
PFR with side inlets (as in the maximum-mixedness 
model), but with incomplete radial mixing occurring 
by a CRD mechanism. They not only derived the 
unsteady-state equation of change for the concentra- 
tion distribution p(C, I, t) but also presented a 
stochastic form of the model which was more suitable 
for numerical solution. 

Treleaven and Tobgy (1972) developed a stochastic 
CRD model for reactors having multiple feed streams 
with distinct RTDs. Their model is similar to that of 
Kattan and Adler (1972), except that there are separ- 
ate source terms for each feed stream in the mass 
balance. 

ZEM models. 1EM models are conceptually similar 
to CRD models, in that they both envision molecular 
mixing as the result of an exchange of material be- 
tween distinct packets of material in the reactor. In the 
IEM description of mixing, however, it is assumed that 
each packet undergoes a great many such collisions, 
each of which results in only a small amount of 
material exchanged. The combined effect of these 
collisions is as if the packet had exchanged part of its 
original contents for material having the mean con- 
centration of all the packets. This is the source of the 
name Interaction by Exchange with the Mean. 

This model was developed for the CSTR indepen- 
dently by Villermaux and Devillon (1972) and Costa 
and Trevissoi (1972). Villermaux (1983) also utilized 
the IEM mixing mechanism to derive models for 
si@e and multiple feed stream reactors of arbitrary 
RTD, analogous to the CRD models of Kattan and 
Adler (1972) and Treleaven and Tobgy (1972). 

Composite models 
Composite models combine aspects of both en- 

vironment models and diffusion-interaction models 
to obtain more complex descriptions of the mixing 
process. They may be thought of as generalizations of 
environment models, where some intermediate degree 
of mixing is provided within each environment. 

Goto and Matsubara (1975) proposed a composite 
model based on the generalized two-environment 
model of Nishimura and Matsubara (1970). In this 
new model, mixing occurs in each environment by a 
CRD mechanism. In the entering environment, mixing 
occurs among packets of equal age, while in the 
leaving environment, mixing occurs among packets of 
equal residual lifetime. Ritchie (1980) developed a 
similar composite model applicable to reactors having 
separate feed streams with distinct residence time 
distributions. 

Klein et al. (1980) developed a model for an ideally- 
macromixed reactor. Like the “shrinking aggregate” 
model of Plasari et al. (1978) the reacting fluid is 
considered as a collection of large and small aggre- 
gates. The material in the entering environment (large 
aggregates) is transferred to the leaving environment 
(small aggregates) by the erosion of the large aggre- 
gates. Klein et al. (1980) assumed that the material in 
the leaving environment was not maximally mixed, 
but instead experienced an intermediate degree of 
mixing, provided by an IEM mixing mechanism. 

The master model 
Much of the analysis that follows is based on a 

single “master” model which assumes the form of 
several previously proposed models as special cases. In 
this master model, fluid from each of two feed streams 
enters into a single entering environment, sub- 
sequently transfers to a single leaving environment, 
and exits the reactor from both the entering and the 
leaving environment. The transfer between the two 
environments is governed by an environment func- 
tion, ~(a, A), such that the fraction of material of age a 
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and residual lifetime ;I which remains in the entering 
environment is s(a, A). In the entering environment, 
mixing takes place among material having a common 
age and common residual lifetime, at a rate which is a 
function of age. In the leaving environment, mixing 
takes place among material having a common residual 
lifetime, at a rate which is a function of residual 
lifetime_ Mixing may be assumed to take place by 
either a CRD mechanism or an exchange-wjth-the- 
mean mechanism. 

The equations of change describing concentration 
distributions in the master model with mixing by a 
CRD mechanism are: 

$ CPdC 511 = - 2 h@j(C) P,(C 431 j=, ac, 

-hOdB--P,(~‘) 
1 

(1) 

P,(C, a, I, t) = P,(Ci 5 = a) (3) 

for the entering environment concentration distribu- 
tion, 

s m 

+ P,tC a, 2, t)f(a+4 
0 

for the leaving environment concentration distribu- 
tion, and‘ 

P,(C t) = II(i = 0) PL(t5, I = 0, t) 

+ 
s 

m PE(G a, I = 0, t)f(a)s(a, A =O) da (5) 
0 

for the reactor effluent concentration distribution, 
where 

II(L) = 
s 

OWf(a+L)[l --~(a, /2)] da. (6) 

Call (1989) has used population balance techniques 
to show that the equations of change describing the 
master model with mixing by an exchange-with-the- 
mean mechanism are 

P,(C ff, R. t) = P,(C t = a) (9) 

for the entering environment concentration distribu- 
tion, 

-II(O?) 5 &&j(,)PL(~, 1, t)] 
j= 1 aC, 

for the leaving environment concentration distribu- 
tion, and 

P,(c?, t) = II(2 = O)P,(C, 2 = 0, t) 

I= .m 
c 

P,(c, a, II = 0, t)f(cc)s(or, A = 0) dor 
cl 

(11) 

for the reactor effluent concentration distribution. 
The master model is not proposed as a practical 

model to be used directly in reactor simulation. It is 
clear that the effort required to estimate three distribu- 
ted parameters could rarely (if ever) be justified, and 
that less complex models would provide adequate 
simulation results. 

Rather, the master model is proposed as a con- 
ceptual tool for the analysis of mixing models. The 
master model assumes the form of 18 previously 
proposed reactor models as special cases, including all 
of the models discussed, except for the four-environ- 
ment model of Mehta and Tarbell (1983). The relation- 
ships between these models and the master model are 
illustrated graphically in Fig. 1. An awareness of these 
relationships is beneficial in that it elucidates the 
assumptions (about the mixing patterns and mechan- 
ism) implicit in selecting a partkular reactor mixing 
model. 

MODEL RESPONSES 

To determine the tracer concentration fluctuation 
response predicted by a model, that reactor model 
must be formulated for unsteady-state application. 
From such a formulation, equations of change can be 
determined for the first two moments of the effluent 
concentration distribution for a single, inert, compo- 
nent. Given appropriate initial conditions, these equa- 
tions can be solved for moment responses, from which 
the tracer concentration fluctuation response follows. 
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Fig. 1. Relationship between the master model and existing reactor models. 

Master model response 
For the master model with mixing by a CRD 

mechanism, the equations of change for the first two 
moments of the reactor effluent concentration dis- 
tribution are: 

$CkAi’)l = 0 W) 

Mt.&-=O)= t c$J.~=M~,,,~(~-EZ) (13) 
j=1 'f(Ct+A) 

and 

M,, .rG, A, r) = M,,,(5 = a) (14) 

for the mean concentration in the entering environ- 
ment, 

for the mean concentration in the leaving environ- 
ment, 

M,,,(t)=II(R=O)M,,,(I=O, t) 

+ 
c 

cc 
M1,E(~, A = 0, t)f(cr)s(a, 1 = 0) dol 

0 

(16) 

for the mean concentration in the reactor effluent, 

$ CMz.&)l =+I&)[% b(l)-Mz.atS)l (17) 

M2_r,(S=O)= 2 &=%&,&-a) (18) 
j=r Jf(a+;l) 

and 

M,, A, 2, t) = M,, b(c = a) (19) 

for the mean squared concentration in the entering 
environment, 

++~,WW.)CM:,,(~, t)-Mu@> t)l (20) 
for the mean squared concentration in the leaving 
environment, and 

M2&) = II(I=O)M2.L(A=0, t) 

+ 
sm 

M,,,(a, A = 0, t)f(a) s(a, I = 0) da (21) 
0 

for the mean squared concentration in the reactor 
effluent. 

Call (1989) has developed analogous equations for 
mixing by an exchange-with-the-mean mechanism 
and has shown that the resulting equations are ident- 
ical to eqs (12H21), provided that the correspondence 
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4/?,(a) = IE(u) and 41JL(R) = l,(A) is maintained_ 
Before the moment response equations can be sol- 

ved, the appropriate boundary conditions must be 
specified. In this paper, boundary conditions corre- 
sponding to step acd finite pulse tracer tests are 
considered. In the step tracer test, it is assumed that no 
tracer is initially present in the reactor, and that for 
times t > 0, a fraction q of the flow into inlet stream 
i (i = f or 2) is replaced by tracer of concentration C,, 
while inlet stream k remains undisturbed. For this 
situation the feed moments are described by 

M n. ,, At) = 4 C; W) and Mm. f, *(t) = 0. (22) 

In the finite pulse tracer test, it is assumed that no 
tracer is initially present in the reactor, and that for 
times 0 < t < 6, a fraction q of the flow into inlet steam 
i is replaced by tracer of concentration C,, while inlet 
stream k remains undisturbed. For this situation, the 
feed moments are described by 

M n,f, At) = &jCW) - u(r - 41 and M,, /, d4 = 0. 
(23) 

The equations of change were solved by first con- 
verting the PDEs in eqs (15) and (20) to ODES by a 
change in the independent variables from I and R to 
T = t + i, and h. Equation (I 7) was solved by using the 
integrating factor method with an integrating factor of 
Xi l(a). Equation (15), after conversion to an ODE, 
was solved by direct integration, with the resulting 
double integral simplified by a change of independent 
variables from CL and i to a and 5 = CL + 1. Equation 
(20), after conversion to an ODE, was solved by the 
integrating factor method with an integrating factor of 
K&Q. These intermediate results were combined ac- 
cording to eq. (21) to yield the mean squared exit 
concentration, and the squared mean exit concentra- 
tion was subtracted to give the tracer concentration 
fluctuation response. 

For the step tracer input, this solution procedure 
gives the tracer concentration fluctuation response as 

s L1=C 

+ 

a=0 
[l-KE(a)]‘gs(a,I=O)da 

a 

[ 
FJt) - Fi(A) - 

s 

a=t-j: 
&(a + ;I)s(cc, A) da 

n=o 1 x [I -F(L)-j~~~f(a+l)s(a, I)da] 2dA 

(24) 

where K, and K, are auxiliary mixing functions 
defined by 

KE(5j=exp[--i/iI,(.)da] and 

For the finite pulse tracer input, the regions 
0 < t d 6 and t > S must be considered separately_ 
When 0 < r c 6, the finite pulse tracer concentration 
fluctuation response is identical to the step response 
given by eq. (24). For t > 6, however, the finite pulse 
tracer concentration fluctuation response is given by 

s cc=, 

[l-&(a)] f$ ~(a, A = 0) da - [F,(I)-F,(I-~)]‘+~ 
f 

A=t. 
+ I,(A)K,(l) 

b=fpd a .i=o 

.Z=t-l 2 

F,(t) - Fi (max (1, f - 6)) - s f;(a + A)s(a, A) da 

X 
.z=max(r--1-6.0) I 

[lr.(l)-~~~~na+i)s(l,l)da] dA 

(26) 
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Although these response equations are quite gen, 
eral, they are not directly useful in parameter estima- 
tion because of their complexity. However, they may 
be simplified to give the response equations for models 
which are special cases of the master model. For 
instance, if the master model is restricted by the 
assumption that s(o1, .J.)= 1 -U(a), then the master 
model with mixing by a CRD mechanism reduces to a 
generalized CRD model similar to that of Treleaven 
and Tobgy (1972). This same assumption, of course, 
reduces the master model with mixing by an exchange- 
with-the-mean mechanism to a generalized IEM 
model similar to that of Villermaux (1983). Substitu- 
tion of 1 -U(a) for ~(a, 2) in eq. (24) immediately 
results in the step tracer concentration fluctuation 
response of either of these models (provided I = 48) as 

*. (27) 

This result is much simpler than eq. (24), yet retains a 
great deal of generality and is applicable to reactor 
models of practical significance_ Further, if the quad- 
ratic in the final integral of eq. (27) is expanded, then 
eq. (27) may be written as 

t 

x 1 z(E)K(C) wi(5) d o  +  s ’ zt5)K(5).w,2 tt) d 5  I _  

0 we, 0 W(5) 
(28) 

In this form, all of the integrands are independent of 
time and all of the integrals have time as their upper 
limit of integration. As shall be seen later, this formula- 
tion allows for very efficient computation of numerical 
results. 

When the residence time distributions of the two 
inlet streams are identical (or there is only one inlet 
stream), eq. (28) may be further simplified. In this case, 
Wi(<) E W(r), and each of the last three integrals can 
be integrated by parts to give the result: 

way. The first term rises monotonically from zero to 
the final (steady-state) value of the response, while the 
second (transient) term rises from zero to some peak 
value, and decays to its final value of zero. 

As another example, consider the case where the 
master model is restricted by the assumptions that 
Z,(a) = 0 and Z,(L) -P CD. In this case, the master model 
reduces to a general three-environment model, anal- 
ogous to the general two-environment model of 
Nishimura and Matsubara (1970). Substitution of 
ZE(~) = 0 and Z,(n) + m into eq. (24) gives the step 
tracer concentration fluctuation response of this gen- 
eral three-environment model as 

CT2 (4 ~ = q+; G&)+(q#Q)z 
G -i 

[F:+;+;)‘2_F:(,) 
> 
(30) 

where GJt) and G(t) are auxiliary integrals defined by 

I 

t 
G,(t) = _&(a) s(a, A = 0) da (31) 

0 

and 

G(t) = 
I 

*f@)s(a, R = 0) da = t dj G,(t). (32) 
0 j=I 

As with the previous special case, al1 of the integrals 
required to evaluate the tracer concentration fluctu- 
ation response have time-independent integrands with 
time as their upper limit of integration. In addition, the 
environment function appears only as ~(a, 1= 0). This 
means that (for this case) the tracer concentration 
fluctuation response is a function of the extent of 
mixing, but not of the timeliness of mixing. Models 
exist which differ in when material ultimately exiting 
from the leaving environment transfers from the enter- 
ing environment to the leaving environment, but 
which have the same tracer concentration fluctuation 
response. Thus, tracer concentration fluctuation re- 
sponse matching has only limited potential for dis- 
crimination between models. 

Four-environment model response 
Although it is not a special case of the master model, 

the four-environment model of Mehta and -Tarbell 
(1983) will be considered because of its practical 
significance. The four-environment model is defined in 
the steady state by 

de, i(k) 
bi LRi tA)- CL, i(~)rrlAn)l + 5 gj(l) LeL. j (A)b cL, i (n)l 

b = - 9 [C&I)] - R j=l 

dl &CA., 
(33) 

o*(t) s f and 

~ = q$i(l_4&i) 
c; 

WW(5) d5 
0 e, = i [C,,j(n = O)g,(A = o)+ tijsj(n = O)] (34) 

I 

t WW(C) 
j=1 

+(HJ2 W’(t) o w2(5) dt. (29) where gi is the solution. to the differential equation 

Aside from the obvious compactness of this expres- dgi(jl) _ 
sion, it also partitions the re.sponse in a very natural dA 

--R+i IIIi(n)-R 5 CS~C~)bSi(~)I (35) 
j=I 
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and the auxiliary integrals III and IV are defined by 

s 

m 
III,(i) = exp ( - Ra)A (a + A) da (36) 

0 

and 

s 

co 
m@) = ~&(LY, C,J exp ( - Ra)_fJa + 1) da (37) 

0 

and where C,,i is the solutiod to the batch kinetics: 

d~.bW ~ = 93 [C,(E)] 
da (38) 

subject to 

zl&l) = C,i. (39) 

In order to determine the tracer concentration 
fluctuation response of this model, the model must be 
formulated for unsteady-state application, and the 
equation for the mean squared concentration of the 
reactor elBuent must be determined. If the model is 
extended to accommodate unsteady-state operation, 
then restricted to the single-component nonreactive 
case one obtains the leaving environments’ equations 
of change as 

ROFJERTH. KADLEC 

solved by direct integration. The equation of change 
for gz-g1 was solved by an integrating factor tech- 
nique. From these, g, and g3 were determined separ- 
ately. Equations of change for g1 C,_.[ + g2CL,z and 
g2C,,,--yi C,,, were formulated based on eq. (40). 
The equations were solved for the cases of step and 
finite pulse tracer inputs to a single inlet, using direct 
integration for the former equation and an integrating 
factor technique for the latter. From these, the first two 
moments of the effluent concentration distribution 
were evaluated as a function of time. For the case of a 
step tracer input, the resulting tracer concentration 
fluctuation response is 

&t) 
~ = (34&Y 

c 

[F,(t)-exp(-RRt) G,(t)-RH,(t)]’ 

c: 9r 

{F,(t)-[2-exp(-RRt)]G,(t)+RHi(t))2 
+- 

81, ) 

- (q&J2 F: (r) + abiGi(0 (44) 

where' G, is given by eq. (3 1) with $a, A) = exp( - Rcr), 
and also 

acL.i(n7 T, 4iC1v?(A, T)- cL.i(Av r)lrli(A)l + i C7jfn)CcL, j(A T)-cC,, i(4 T)l 

a.l =-R 
j=l 

C7iCn) 
(40) 

and the equations for the moments of the reactor 
effluent concentration distribution as 

C,(t) = M,,,(t) = i [C,j(A = 0, t)gj(i = 0) 
j= 1 

and 

+ GjIVf(A = 0, r)] (41) 

gi=g,(2=O)=t{1-G(~)++i[GJm)-RRHi(~)] 

-&CG(~)--ff,d~)lI (45) 

and 

Hi(t) = 
I 

t 
exp ( - Ror) Gi(a) dcr. (46) 

0 

For a finite pulse tracer input, the response is 
identical to the step response for 0 < r < 6. For t>6, 
the tracer concentration fluctuation response becomes 

a20 = (9&4’ {CFi(t)--i(t--6)]-exp(-RRr) Gi(t)+exp C-R (f-a)] Gi(t-a)- R [H,(t)-HH,(t-&6)]jZ 

c: 9i 

with gi(;L) as before and 

+4j C;,j(t-x)exp( -R~~)fj(~)da 
> 

(42) 
Numerical evaluation of response expressions 

Once the tracer concentration fluctuation response 
has been determined, the question arises of how best to 
calculate numerical values of the response. Since par- 
ameter estimation requires repetitive evaluation of the 

C,,i(t -a - 2) exp (~ Ror)f;(a + L) dcr. predicted tracer concentration fluctuation response, it 

(43) 
is important that numerical evaluation of the response 
be performed as efficiency as possible. 

Initially, the quantitative description of tracer con- 
centration fluctuation responses was posed in terms of 

To solve these equations, the following procedure 
was used: the equation of change for gi +g2 was 

+ {[F,(C) - F,(t - S)] - [2 - exp(-Rt)] Gi(t)+[2-exp(-R((t-~))]Gi(t--6)+R[Hi(t)-Hi(t-~)]}Z 

94 > 

-(q&)’ [Fi(t)-~i(r~6)]Z+q~i~G,(t) - G,(t-a)]. (47) 

PARAMETER ESTIMATION 
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partial differential equations, and numerical evalu- 
ation of the response appeared to be a difficult, if not 
intractable problem. In light of the analysis presented 
here, it is apparent that the quantitative description of 
tracer concentration fluctuation responses can gen- 
erally be posed in terms of definite integrals; numerical 
evaluation of the response is reduced to the much 
simpler problem of numerical quadrature. In the case 
of the master model, even this is not an easy task, 
because several of the integrands in eqs (24) and (26) 
themselves require evaluation of definite integrals. 
When the master model is restricted to the generalized 
CRD case or the generalized three-environment case, 
however, the response involves only single integrals 
whose upper limit is the exit time, and whose inte- 
grands are independent of time. This property can be 
exploited to enable more efficient computation of 
tracer concentration fluctuation responses. 

The response can be evaluated by calculating values 

02(t) 
of-- 

c; 
ataseriesoftimest,<t,<...<t,toforma 

table from which the response at any desired time may 
be interpolated. This in turn requires a table ofdefinite 
integral values for each integral term in the expression 
being evaluated. This could be calculated by evalu- 
ating the definite integral from 0 to t,, then the definite 
integral from 0 to t,, .etc., for each term. However, 
when the integrals have the same integrand, the table 
may bc: produced by drst evaluating the definite 
integral from 0 to t,, then evaluating the definite 
integral from t, to t, and adding this to the previous 
result to get the definite integral from 0 to t2, and so 
on. Compared to performing separate integrations, 
use of this incremental integration algorithm provides 

a factor of 
0 

F reduction in the total length of all 

integration intervals, and a corresponding reduction 
in the computational effort required to evaluate the 
tracer concentration fluctuation response. 

Thus, parameter estimation by tracer concentration 
fluctuation response matching requires at each iter- 
ation (of error minimization) calculation of a small 
number of integrals which can be effeciently evaluated 
using an incremental integration algorithm. 

On the other hand, parameter estimation by match- 
ing of steady-state reactor performance requires at 
each iteration a full solution of the reactor model for 
each data point. For the environment models, each 
model solution requires the evaluation of three inte- 
grals (not all amenable to incremental integration), in 
addition to the solution of coupled ODE sets for each 
leaving environment. For the IEM model, each model 
solution requires the solution of a set of non-linear 
equations, which at each iteration of the equation 
solver requires the solution of an ODE and evaluation 
of a definite integral. For the CRD model, the com- 
putational burden is greater still, since each model 
“solution” requires stochastic reactor simulation. 

Such a comparison should make it clear that par- 
ameter estimation by tracer concentration fluctuation 
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response matching is far less computationally inten- 
sive than parameter estimation by steady-state reactor 
performance matching. 

Implementation of algorithms 
A short demonstration program was written to 

determine whether the method of parameter estima- 
tion by tracer concentration fluctuation response 
matching is feasible and whether the method can 
discriminate between competing mixing models. This 
program performed parameter estimation by adjus- 
ting a single model parameter so as to minimize the 
sum of the squared differences between the predicted 
and measured response values. For this demonstra- 
tion, only the two-environment model of Ng and 
Rippin (1967) and the (constant parameter) CRD 
model of Kattan and Adler (1972) were considered, 
and residence time distributions were represented by a 
tanks-in-series distribution. A golden section search 
method was used to find the parameter value minimiz- 
ing the sum of the squared differences, anda packaged 
Gauss-Kronod quadrature routine was used to evalu- 
ate definite integrals_ 

To test the ability of the parameter estimation 
method to discriminate between “correct” and “in- 
correct” models, simulated experimental data was 
used, generated by a separate computer program for 
which the correct reactor model was known. The 
simulated data was generated by stochastic simulation 
of an unsteady-state CSTR undergoing mixing by a 
CRD mechanism. The simulation conditions corre- 
sponded to a step tracer test with a feed fraction tracer 
of 0.8 and a mixing parameter of I = 2. Eight replicate 
simulations were performed, each using an exit popu- 
lation of 300 cells and a reactor population of 3750 
cells. The first simulated data set is based on a single 
simulation, while the second simulated data set is 
based on the averaged results from all eight replicate 
simulations. This second set exhibits less scatter than 
the first due to the larger aggregate exit population 
used in the simulation. However, both sets of simu- 
lated data exhibit a small systematic error (with 
respect to expected values), arising from the discreti- 
zation of the residence time distribution. 

Discussion of results 
The demonstration program was used to determine 

parameter values for the two-environment and CRD 
models which best matched the simulated tracer con- 
centration fluctuation response data. For the first 
simulated data set, it was found that I = 1.952 for the 
CRD model and R = 0.8412 for the two-environment 
model provided the best fit. Comparison of the predic- 
ted tracer concentration fluctuation response and the 
simulated response data is shown in Fig. 2 for the 
CRD model and in Fig. 3 for the two-environment 
model. Plots of the residual errors as a function of time 
are shown in Fig. 4 for the CRD model and Fig. 5 for 
the two-environment model. From visual comparison 
of Figs 2 and 3, it appears that the CRD model 
provides a somewhat better fit than the two-environ- 
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Fig. 2. Comparison between first data set and predicted 
response for CRD model with I = 1.952. 
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Fig. 3. Comparison between first data set and predicted Fig. 6. Comparison between second data set and predicted 
response for two-environmental model with K = 0.8412. response for CRD model with I = 1.965. 
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Fig. 4. Residual errors between first data set and CRD model Fig. 7. Comparison between second data set and predicted 
with I = 1.952. response for two-environment model with R = 0.8463. 

ment model. The two-environment model appears to For the second set of simulated data, parameter 
predict low values for 1.0 < t < 1.75, and high values estimates of I = t.965 for the CRD model and R 
for t > 2.5. The difference in the goodness of fit can be = 0.8463 for the two-environment model were calcu- 
confirmed quantitatively by comparing the sum of the lated. Comparisons of the predicted model tracer 
squared residuals. The CRD model gives a minimum concentration fluctuation response and the simulated 
error of 3.717E -03, while the two-environment data are shown in Fig. 6 for the CRD model and in 
model gives a somewhat larger minimum error of Fig. 7 for the two-environment model. The corre- 
4.532E -03. sponding residual plots are shown in Figs 8 and 9. A, 
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Fig. 5. Residual errors between first data set and two- I 
environment model with R = 0.8412. ’ 
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Fig. 8. Residual errors between second data set and CRD 
model with I = 1.965. 
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Fig. 9. Residual errors between second data set and two- 
environment model with R = 0.8463. 

comparison of Figs 6 and 7 shows that the CRD model 
provides a better fit of the simulated data than the 
two-environment model. As before, the two-environ- 
ment model tends to underpredict the response at 
intermediate times and to overpredict the response at 
large times. However, this trend is more evident with 
this simulated data set than with the previous one 
because of the reduced scatter in the second set. The 
overall curvature of the two-envirqnment residual plot 
of Fig. 9 shows the trending of the residuals very 
clearly. The difference in the goodness of fit can once 
again be confirmed quantitatively by comparing the 
sum of the squared residuals. The CRD model gives a 
minimum error of 4.677E - 04, whereas the two-en- 
vironment model gives a significantly larger minimum 
error of 1_033E--03. 

Another method which can be used for quantitative 
discrimination between models is statistical analysis of 
the residuals. If the model adequately represents the 
data, then the distribution of the residuals between 
positive and negative values should be random. One 
measure of the non-randomness of this distribution is 
the run test (Guttman et al., 1971), in which the 
number of sequences of consecutive residuals above or 
below the median is used as the statistic. For the 

simulated data sets considered here, the number of 
runs has an expected value of 26 with a standard 
deviation of approximately 3.5. Analysis of the resi- 
duals from the first simulated data set shows that the 
number of runs is 29 for the fit by the CRD model and 
26 for the fit by the two-environment model. Since 
both of these values fall within an acceptable range, no 
difference in fit can be detected in this case. For the 
second simulated data set, it was found that the 
number of runs was 31 for the fit by the CRD model 
and 15 for the fit by the two-environment model. The 
statistic for the two-environment model is a more than 
three standard deviations below the expected value. In 
this case, the hypothesis that the residuals are random 
in nature can be rejected at the 99% confidence level, 
and it can be concluded that there is systematic 
mismatch between the two-environment model pre- 
diction and the second simulated data set. 

A second test for discrimination between models is 
the correlation of the residuals. If the model ad- 
equately represents the data, then the residual values 
should be uncorrelated with the time coordinate. 
When the residuals were regressed against time for the 
first simulated data set, the correlation coefficients 
were 0.071 for the CRD model and -0.222 for the 
two-environment model. Although the two-environ- 
ment model shows a stronger correlation, neither 
correlation coefficient is significantly non-zero in the 
statistical sense. For the second simulated data set, the 
residual regression correlation coefficients were 0.076 
for the CRD model and -0.552 for the two-environ- 
ment model. In this case, the hypothesis that residuals 
are uncorrelated can be rejected even at the 99.99% 
confidence level for the two-environment model. On 
this basis, it can be concluded that there are systematic 
differences between the two-environment model pre- 
diction and the second simulated data set, and that the 
two-environment model does not fit the simulated 
data as well as the CRD model. 

Comparison of the parameter estimation results 
using the two simulated data sets shows that the less 
scattered simulated data set tends to highlight the 
differences between how well the two mixing models 
are able to fit the data. It is not surprising that the 
“better” data allows one to discriminate more clearly 
between competing mixing models. The second simu- 
lated data set yields a CRD model parameter estimate 
which differs from the expected value (2.0) by 1.75%, 
while the first simulated data set yields a parameter 
estimate that is in error by 2.4%. Although the 
“better” data set provides the better parameter esti- 
mate, the difference in the estimates is small. This 
suggests that the discrepancy between the parameter 
estimates and the expected value of 2.0 is largely due to 
systematic discretization error in the simulation re- 
sults. This being the case, it appears that the accuracy 
of the parameter estimates is not adversely affected by 
the presence of random errors in the simulated data, 
even for the (more scattered) first data set. For the two- 
environment model, the corresponding expected value 
of R can be shown to be 1.0, by matching the 
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asymptotic response behavior as is done in the “turbu- II(-) auxiliary integral defined by eq. (6) 
lence analogy” approach to parameter estimation IIl( .) auxiliary integral defined by eq. (36) 
[see, for example, Chaing et al. (1986)]. Using this IV(-) auxiliary integral defined by eq. (37), M/L3 
value leads to the result that the estimated values of R K(-) auxiliary integral defined by eq. (25) 
for both simulated data sets are in error by more than m number of chemical species in the reactor 
15%. That the “best fits” to the simulated data provide Mt.1 moment of a concentration distribution 
parameter estimates so far from the expected (turbu- n index of concentration distribution moment 
lence analogy) value indicates that perhaps the param- or number of data points 
eter values predicted by the turbulence analogy ap- PC.1 concentration distribution (probability den- 
proach do not provide the best overall description of sity function) 
reactor behavior. This, of course, is a question which 4 fraction of a feed stream containing tracer 
requires further study. R dimensionless mixing parameter for en- 

vironment models 
CONCLUSIONS w rate (per residence time) of generation of 

A method of micromixing parameter estimation has species due to reaction, M/L3 
been proposed based on matching predicted and a.1 environment (segregation) function for a 
measured tracer concentration fluctuation responses. model 
Analysis is presented in terms of a master model which current dimensionless time 
conceptually ties together several mixing models. This T dimensionless time at which a given popu- 
analysis demonstrates that the tracer concentration lation will exit the reactor 
fluctuation response can be calculated in terms of UC-) heaviside unit step function 
definite integrals For a wide variety of Lagrangian wt.1 reactor washout function, l -F 
mixing models. These predicted responses can be 
calculated very efficiently for several models of prac- Greek letters 
tical significance using an incremental integration age of a given population 
algorithm. As a result, parameter estimation calcu- ; dimensionless rate parameter for mixing by 
lations using the proposed method are potentially far an IEM mechanism 
less computationally intensive than calculations for dummy concentration variable, M/L3 
methods based on steady-state reactor performance : duration of pulse feed disturbance 
matching_ a residual lifetime of a given population 

Preliminary numerical tests indicate that the 5 dimensionless dummy age/time parameter 
method of tracer concentration fluctuation response a(,) standard deviation of reactor effluent con- 
matching is able to determine parameter estimates centration distribution, M/L3 
with reasonable accuracy, even when there is signifi- f$ fraction of total flow entering a given inlet 
cant scatter in the data used for parameter estimation. 
These tests also indicate that discrimination between Superscripts - 
competing models is possible in cases where the refers to a mean value 
predicted tracer concentration fluctuation responses refers to a vector quantity 
for the models differ. Discrimination may be based 
qualitatively on the goodness of fit of the predicted Subscripts 
response to the data, or based quantitatively on b refers to batch reaction conditions 
statistical discrimination tests. 

r” 
refers to entering environment 

The proposed tracer concentration fluctuation re- refers to feed conditions 
sponse matching method shows great promise, and i refers to the perturbed inlet stream 
merits additiona investigation to confirm its com- _i refers to an arbitrary inlet stream 
putational superiority to established param&ter esti- k refers to the unperturbed inlet stream 
mation methods, and to assess the performance of this L refefs to the leaving environment 
new parameter estimation method for a variety of real n refers to the number of a moment M 
and simulated data sets. X refers to exit conditions 
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