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Abstract We have utilized Monte Carlo methods to study the kinetics of a generic heterogeneous catalytic 
reaction, A + B 4 AR This reaction includes the elementary steps of adsorption and desorption of reactants 
A and B, surface reaction through the Langmuir-Hinshelwood mechanism, and desorption of product AB. 
It is shown that this model is capable of producing self-sustained oscillations in the rate of reaction. The 
oscillations are dependent on the rate of desorption and exhibit a time scale much greater than those of the 
adsorption and surface reaction steps in the model. We analyze the dvnamic aualitv of the oscillations and 
discern that they stem from chaos. To our best knowledge, -this is thk first st;dy in which chaos has bein 
observed and characterized through a Monte Carlo simulation. With the results of this work. we have been 
able to analyze the fundamental components responsible for producing the chaos in our simulations. We 
discuss the implications of our results for actual catalytic systems with oscillatory behavior. 

INTRODUCTION 

In the recent literature, there has been considerable 
interest in catalytic systems with self-sustained oscil- 
lations in the rate of reaction. Oscillations have been 
found in several systems, the most notable of which is 
the CO oxidation reaction on platinum. The academic 
interest in such exotic phenomena is perhaps apparent 
from the voluminous theoretical and experimental 
literature on the oscillations (Razon and Schmitz, 
1986; Sheintuch and Schmitz, 1977). Numerous mech- 
anisms have been proposed to explain this behavior: 
however, at present, no single mechanism has been 
accepted unequivocally. At present, oscillations are 
generally attributed to a surface mechanism involving 
adsorbate-adsorbate and/or adsorbate-metal inter- 
actions. Several such mechanisms have been proposed 
and include: a dependence of the heat of adsorption on 
the coverage (Pikios and Luss, 1977; Rathausky and 
Hlavacek, 1981; Takoudis et al., 1981; Ivanov et al., 
1980), non-uniformity of the catalyst surface (Prasad 
and Kulkarni, 1982; Jensen and Wray, 1980; Sault and 
Masel, 1982), a slow reversible oxidation of the cata- 
lyst metal (Eigenberger, 1978; Sales et al., 1982; 
Lindstrom and Tsotsis, 1985), and an adsorbate- 
induced phase transition of the catalyst surfaceatoms 
[for example, the 1 x lohex transition of Pt( LOO)] 
(Imbihl et al., 1985; Cox et al., 1985; Schwartz and 
Schmidt, 1987). All of these mechanisms have been 
proved to be theoretically and experimentally feasible 
and indicate that surface interactions of adsorbed 
molecules can contribute significantly to reaction kin- 
etics and catalytic activity. Thus, it may become 
necessary to incorporate the effects of these surface 
phenomena in kinetic models to provide an accurate 
appraisal of reactor performance under prescribed 
operating conditions. With this incentive, it is useful to 
study surface phenomena and their effects on reaction 
kinetics. In a previous publication (Fichthorn et a!., 

1988), we have discussed the advantages of utilizing 
Monte Carlo methods and fractal scaling relation- 
ships to accomplish this purpose were discussed. We 
demonstrated the Monte Carlo method through 
simulation of a generic bimolecular Langmuir- 
Hinshelwood reaction 

A,+B,sAB, (1) 

which we have designated the AB model. Although the 
only surface mechanism in this model is the 
Langmuir-Hinshelwood reaction, we found that ad- 
sorbate islands were formed on surfaces in our simu- 
lations and we measured several of their identifying 
fractal attributes. We also discovered that the slow 
growth of these islands Ied to the eventual self- 
poisoning of surfaces in our simulations. In this paper 
we show that the self-poisoning tendency of the irre- 
versible model can contribute to self-sustained oscil- 
lations in the rate of reaction of simulations with 
reversibility. We observe that these oscillations are a 
cooperative surface phenomenon with a time scale 
mu&h greater than those of the elementary steps (e.g. 
adsorption, surface reaction) in our simulation. 
Through dynamic analysis of our oscillatory rate of 
reaction time series, we conclude that they stem from 
deterministic chaos. The innate simplicity of our 
model allows us to isolate the elements responsible for 
the chaos and provide an interpretation of oscillatory 
behavior in actual catalytic systems with similar fea- 
tures. 

THE MODEL SYSTEM 

The model reaction proceeds through the mech- 
anism 

1403 



1404 KRISTEN FICHTHORN et al. 

B,+S?B-S 

A-S + B-S2 AB, + 25 (4) 

where k,, k, and k, are the rate constants for adsorp- 
tion, desorption and surface reaction, respectively, and 
S denotes a vacant site on the catalyst surface. This 
mechanism is not intended to represent that of any 
actual catalytic reaction: rather, we selected the model 
to characterize a generic, bimolecular Langmuir- 
Hinshelwood reaction. At present, we assume a uni- 
form catalytic surface and our only surface mechanism 
is a Langmuir-Hinshelwood reaction. Despite the in- 
nate simplicity of this mechanism, our system exhibits 
a remarkable wealth of kinetic behavior when simu- 
lated with Monte Carlo methods. This kinetic behav- 
ior is influenced largely by the growth dynamics of 
adsorbate islands which form on the simulation sur- 
faces. Wicke et al. (1980) first observed these islands in 
a Monte Carlo simulation of the irreversible (kd=O) 
surface reaction limited (k, B k,) version of the AB 
model. Our group later confirmed that adsorbate 
islands were formed in the irreversible AB model 
regardless of the relative rate of adsorption to reaction 
(Fichthorn et al., 1988; Ziff and Fichthorn, 1986). In 
addition, we found that the slow growth of these 
islands leads to the eventual poisoning of the catalyst 
surface in systems without desorption. The time of this 
poisoning has a power-law dependence on the size of 
the surface in our simulation 

TP - L’ (5) 

where T’ is the poisoning time in Monte Carlo steps 
(to be defined subsequently), L is the linear dimension 
of our square surfaces, and z is the poisoning exponent 
with a value of 2.1 + 0.03 for all kinetic regimes. From 
the results of the irreversible model, it is determined 
that the necessary elements for island formation and 
growth are the Langmuir-Hinshelwood mechanism 
and, to some extent, the irreversibility of reactant 
adsorption. In this paper, we quantify the extent to 
which irreversibility of reactant adsorption influences 
the poisoning of surfaces by introducing the param- 
eter of the rate of spontaneous reactant desorption to 
our simulations. We will show that, through manipu- 
lation of this parameter, we can achieve catalytic 
activity ranging from stationary to oscillatory to 
poisoning_ 

THE MONTE CARLO ALGORITHM 

The algorithm for Monte Carlo simulation of our 
model reaction is depicted in Fig. 1. We utilize a two- 
dimensional computer array to represent the catalyst 
surface. The surfaces in our simulations are uniform 
with square coordination and periodic boundary con- 
ditions. Initially, we populate entire catalytic surface 
randomly and homogeneously with reactants A and B. 
We begin the simulation by picking a site on the 
catalyst surface at random. We then choose desorp- 
tion with probability P,,, or surface reaction with 

1 

the Species 
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Site 

Fig. 1. Flow diagram of the model reaction algorithm. The 
catalyst surface is represented by a two-dimensional com- 
puter array with square coordination and periodic boundary 

conditions. 

probability P, ( = 1 - Pd). If desorption is selected, we 
remove the reactant from its site on the catalyst 
surface and immediately adsorb another in its place (A 
or B with equal probability). If surface reaction is 
chosen, we pick a neighboring site at random (one of 
four for square coordination) and remove the mol- 
ecule and its neighbor if the pair are an A and B. Two 
adsorptions, where A and B are chosen to adsorb with 
equal probability, immediately succeed each reaction. 
This algorithm is run repeatedly, into the long-time 
regime, while we monitor the rate of reaction and 
surface coverage of reactant as a function of time. 
Time in Monte Carlo simulations is measured in 
Monte Carlo steps (MCS). We define 1 MCS as N 
trials (starting from “pick a site”) from the algorithm of 
Fig. 1, where N is the total number of sites on our 
catalytic surface. An MCS is directly proportional to 
real time in an actual catalytic reaction. Given the 
parameters (e.g. pressure, temperature, activation en- 
ergies, sticking coefficients) for a catalytic reaction, we 
can calculate rate constants and, thus obtain time 
scales for each step in the simulation. 

The algorithm of Fig. 1 has been designed to accom- 
modate several specific parameters from the system of 
eqs (2H4). We assume the gas phase partial pressures 
of reactants A and B are equal and we also set the rate 
constants for adsorption and desorption of A equal to 
those for B. These stipulations were chosen to satisfy 
the stoichiometry of the reaction so that maximal rates 
of reaction could be achieved. The algorithm of Fig. I 
reflects this convention through the rule that A and B 
are chosen for adsorption and desorption with equal 
probability. 

Our Monte Carlo algorithm is also designed to 
simulate surface reaction limiting kinetics (k, $ k,). 
Since we had previously ascertained that the qualitat- 
ive kinetic behavior in our simulations was insensitive 
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to the relative rate of adsorption to surface reaction, 
we could assign this ratio somewhat arbitrarily. We 
choose surface reaction limiting kinetics for com- 
putational convenience. In the surface reaction 
limiting regime, adsorption occurs rapidly compared 
to reaction. Thus, in the time scale of a reaction, we 
expect adsorption to occur on every available site. 
As soon as a site is vacated, adsorption immediately 
follows. This convention is implicit in the algorithm of 
Fig. 1 through the initial condition of a full surface 
and the rule that one or two adsorptions must succeed 
each desorption or surface reaction, respectively_ 

The desorption probability, Pd. of Fig. 1 is the 
adjustable parameter in our simulations. With adsorp- 
tion as the fast-step, the desorption probability defines 
the relative rate of desorption to surface reaction: 

k, 
Pa=-. 

kr + k, 
We found that the kinetic behavior of our simulations 
was extremely sensitive to this parameter. Thus, we 
ran simulations over an encompassing range of 
desorption rates (k, > k, > 0, or P, I l/2) to study this 
dependence. 

An additional parameter in our simulations is the 
size of our system. To obtain valid conclusions from 
Monte Carlo simulations, it is essential to determine 
the dependence of results on this parameter. We ran 
most of our simulations on 32 x 32 surfaces (2” sites): 
however, we also obtained results from 16 x 16 and 64 
x 64 surfaces. These sizes were chosen to facilitate our 

calculations and allowed us to run our simulations 
into the long-time regime (greater than 150,000 MCS). 
Thus, we could obtain time series of our results and 

the assurance that the initial relaxation time had been 
greatly exceeded. 

Thus, the rate of desorption and the size of our 
surfaces were manipulated variables affecting the re- 
sponse of our system. We measured this response by 
monitoring the rate of reaction and the fractional 
surface coverage of A as a function of time for all 
simulations. We define the rate of reaction as the 
number of reactions per site in 1 MCS and the 
fractional coverage of A as the ratio of the number of 
surface sites occupied by A to the total number of sites. 
We measured these values every 10 MCS in all 
simulations. Also, with the graphics capabilities of the 
Apollo computer, we were able to watch our surfaces 
as the simulations ran and observe changes in their 
-onfiguration with time. 

RESULTS 

Figure 2 shows the rate of reaction as a function of 
time as the rate of desorption is decreased over five 
orders of magnitude on a 32 x 32 surface. For rela- 
tively large rates of desorption [Fig. 2(a) and (b)], we 
see that the rates of reaction assume essentially 
stationary values. However, from Fig. 2(a) to Fig. 2(b), 
we notice an increasing noise level in the rate of 
reaction as the rate of desorption is decreased. In 
Fig. 2(c), this “noise level” has increased to the point 
where fluctuations in the rate become relatively large 
in magnitude. In Fig. 2(d), oscillations completely 
dominate the rate of reaction, and, finally, in Fig. 2(e), 
the rate of desorption is sufficiently small so that, after 
an initial transient, the lattice is essentially poisoned. 
Thus, by decreasing the rate of desorption in simu- 
lations, we obtain kinetic behavior ranging from 

(b) T-T 
cu- 

0 .A A .n A 
10000 zoo00 40#0 

Tima (MCS) 

Fig. 2. Rate of reaction (reactions per site per MCS) as a function of time (MCS) for successively lower 
values of the desorption probability, Pd. on a 32 x 32 lattice: (a) Pd = 0.2, (b) Pd = 0.02, (c) P, = 0.002, (d) Pd 

= 0.0002, (e) Pd = 0.00002. 
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steady state to oscillatory to virtually poisoning. 
The rate oscillations in our systems were synchro- 

nous with oscillations in surface coverage. Figure 3 
shows the rate of reaction and the fractional coverage 
of A as a function of time on a 32 x 32 lattice. From 
these plots, we see that minima in the rate of reaction 
correspond to coverages of zero and one which are 
configurations poisoned with B and A, respectively. 
Maxima in the rate of reaction coincide with fractional 
coverages near 50%. Figure4 follows the rate and 
coverage plots of Fig. 3 and depicts reactant configur- 
ations on the surface of Fig. 3 at several points. When 
the surface is poisoned with a single species, say A, the 
rate of reaction is zero, as is the case at 15,000 MCS in 
Fig. 3(a). At this point, desorption occurs and allows 
one B to subsequently readsorb. This B reacts, clearing 
two active sites, and allows two more Bs to adsorb 
with 25% probability. This process continues until a 
region of B emerges, as depicted in Fig. 4(a), taken at 
15,500 MCS. Of course, in this process, there is a 
substantial probability that the surface will return to 
its original poisoned configuration. However, oc- 
casionally, the region of B evolves to become seberal 
small islands, as shown in Fig. 4(b) at 16,500 MCS. 
From this point, successive reactions and desorptions 
create a still larger region of B [Fig. 4(c) at 17,500 
MCS] which is eventually broken up as it is consumed 
by the increasing rate of reaction. This produces a 
roughly homogeneous distribution of A and B with a 
maximum reaction rate, as shown in Fig. 4(d) at 19,000 
MCS. From this point, the islands begin tp grow and 
coalesce and the rate of reaction decreases until 
po@oning with A or B occurs and the cycle repeats. 

(a) 

(a (a 
Fig. 4. Snapshots of the surface from a simulation on a 32 
x 32 lattice with P,=O.OOOl. The black area is reactant A 

and the white area is B. (a) 15,500 MCS our surface has one 
small region of B surrounded by A. (b) 16,500 MCS-the 
region of B has grown to several small islands. (c) 17,500 
MCS-the A and B regions are approximately equivalent; 
however, A and B still exist in large islands. (d) 19,000 
MCS-the islands have dispersed, leaving a homogeneous 

distribution of A and B on the surface. 

With a qualitative understanding of the oscillatory and 
behavior in our simulations, we sought more quanti- 
tative measures. Specifically, we addressed the follow- 
ing questions: 

(3) How do we classify the kinetic behavior dynam- 
ically? 

(1) How are kinetics dependent on the rate of 
desorption for a given system size? 

(2) How does the system size affect kinetic be- 
havior? 

The dependence of the kinetic behavior on the rate of 
desorption is depicted qualitatively in Fig. 2. From 
Fig. 2, we see that oscillations arise from the amplifica- 
tion of noise through decreasing desorption rates in 

TIME (MCS) 

Fig. 3. Rate of reaction (a) and fractional surface coverage of A (b) as a function of time for a 32 x 32 lattice 
with Pd = 0.0001. 
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our systems. For our first assessment of the oscil- 
lations, we measured this amplification as a function 
of the rate of desorption. We calculated the average 
rate and the mean-square deviation from the average, 
or the amplitude of the oscillations, for every time 
series obtained in our simulations. Figure 5 shows a 
semi-log plot of this measure for three lattice sizes. For 
a given lattice, the amplitude of the oscillations reac- 
hes a maximum. Through observation of our surfaces 
during simulation, we found that this maximum corre- 
sponds to the desorption rate for which the system 
first reaches a poisoned configuration. For desorption 
rates above this maximum, our system fluctuates 
between nonpoisoned configurations, and for rates 
decreasing below the maximum, the systems spend an 
increasing time in the poisoned configuration. We also 
see from Fig. 5 that the maximum of the oscillation 
amplitude decreases as the system size increases. This 
indicates that the oscillations are a finite size effect: we 
would not expect them in an infinite system. 

0 

Probability of desorption Pd 

Figure 6 shows the average rate of reaction as a 
function of the rate of desorption. From this plot, we 
see that maxima in the amplitude of the oscillations do 
not produce corresponding maxima in the average 
rate. We expect our rate of reaction to .increase 
monotonically with the rate of desorption because 
desorption disperses islands, thereby making the sur- 
face more homogeneous and surface reaction more 
probable. The maximum in Fig. 6 occurs when the 
desorption rate is sufficiently large to be competitive 
with surface reaction. It appears that this maximum is 
independent of the system size, presumably because 
the reactant islands are small compared to the size of 
our surfaces at this point. As the rate of desorption 
decreases from the maximum, however, we see the 
effects of the system size on the average rate of 
reaction. Larger systems are less prone to fluctuations 

Fig. 6. Average rate of reaction as a function of the prob- 
ability of desorption for 16 x 16, 32 x 32 and 64 x 64 lattices. 
The average consists of measurements made every 10 MCS 
through the duration of the simulations (50,00&500,000 

steps). 

in the surface configuration and, thus, maintain higher 
average reaction rates. 

To further define the quality of our rate and cover- 
age oscillations, we analyzed our time series to ascer- 
tain their dynamic classification. For relatively high 
rates of desorption, our rate of reaction remained 
nearly stationary, as shown in Fig. 2(a) and (b). In a 
dynamical notation, we classify this steady state as a 
fixed point. As the rate of desorption in our simulation 
is decreased, the fixed point becomes blurred by 
increasing noise fluctuations in the system, as seen in 
Fig. 2(c). Finally, as the rate of desorption is further 
decreased, the amplitude of the fluctuations exceeds 
the average rate of reaction. From Figs 5 and 6, we see 
that this occurs at the approximate rate of desorption 
where the fluctuations reach a maximum amplitude. 
At this point, our basin of attraction is no longer a 
fixed point, or a single steady state, but a more 
complex attractor. Since our oscillations seemed 
highly aperiodic, or chaotic, at this point of maximum 
amplitude, we sought to characterize the “strange 
attractor” underlying our dynamics. Dynamical infor- 
mation can also be extracted from time series obtained 
experimentally and, thus, be matched with our find- 
ings. 

Probability of desorption Pd 

Fig. 5. Mean-square deviation of the rate of reaction as a 
function of the desorption probability for a- 16 x 16, 32 x 32 

and 44 x 64 surface. 

We utilized the correlation integral method 
(Grassberger and Procaccia, 1983a, b) to analyze our 
rate of reaction time series. Given a time series 

{Xi, i= I,. . . , N} (7) 

taken at times ir, where r is the time interval between 
the N successive measurements in the series, the 
correlation integral over a given length scale, I, is 
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defined as 

C(I) = lim l/N2 
N-m 

{the number of pairs i,j such 

that Ixi-xxjI < 1). (8) 

When the correlation integral is calculated over 
varying length scales, it obeys the scaling relationship 

C(I) - I’ (9) 

for small length scales. Iti this relationship, v is the 
correlation exponent. The correlation exponent 
cl-raracterizes spatial correlations between successive 
values in the time series and, thus, describes the 
homogeneity of the series in phase space. When the 
dimensionality of xi in eq. (7) is low, the series can be 
embedded in higher-dimensional space to eliminate 
error in the measurement of v. This embedding is 
accomplished by creating d-dimensional vectors from 
the time series: 

Si=txi3 Xi+r3 I . 7 Xi+(d- l)r) (10) 

and substituting 5; for xi in eq. (8). When we measure 
the correlation exponent from eqs (8HlO) as the series 
of eq. (7) is embedded in increasing dimensions, its 
value will increase with the embedding dimension if 
the series is random. If the series is governed by a 
strange attractor, the correlation exponent will as- 
sume a constant value, independent of the embedding 
dimension. Foi a chaotic series, the correlation expo- 
nent follows the relationship 

v I D, (11) 

where D, is the fractal dimension of the strange 
attractor. The fractal dimension is necessarily less 
than or equal to the dimensionality of the time series, 
xi. For our system, the dimensions of our rate and 
coverage rime series were both one and this method 
was employed to calculate v. 

Figure 7 shows a plot from which we calculated the 
correlation exponent from the rate of reaction oscil- 
lations on a 32 x 32 lattice at Pd= 0.0001, approxi- 
mately the point where the oscillations reach a maxi- 
mum in amplitude. This time series consisted of 10,000 
points spaced 10 MCS apart (t = 10). The correlation 
exponent, which is obtained from the slopes of succes- 
sive lines, was measured to be 0.3720.03. Figure 8 
shows a similar plot for the coverage time series 
corresponding to the rate series of Fig. 7. This plot was 
obtained from a series of 25,000 points spaced 20 MCS 
apart (T - 20). The correlation exponent for this series 
was 0.38 + 0.01, matching our exponent for the rate 
series within the limits of error. The slopes for the 
higher dimensions (e.g. D = 3 or 4) from both of these 
plots were calculated utilizing points at longer length 
scales. The points at the smaller length scales and 
higher dimensions of Figs 7 and 8 are affected by the 
noise level of our system. This phenomenon is a well- 
documented fact in the literature (Ben-Mizrachi et al., 
1984) and can be corrected by utilization of more data 
points in the analysis of the series. For our work, the 

LOCI* ra 1 

Fig. 7. Log-log plot of the correlation integral [es. (S)] for 
our rate of reaction time series over various length scales, 1. 
The time series was obtained for a 32 x 32 lattice with I’,, 
= 0.0001 and consists of 10,000 points measured at 10 MCS 
intervals (7 = 10). As we embed the time series in increasing 
dimensional space (D= 1, ,4). the correlation exponent, 
which is the slope of successive lines, retains a constant value 

of 0.37 * 0.03. 

9 

Log*(1 1 

Fig. 8. Log-log.plot of the correlation integral [eq. (8)] for 
the coverage time series corresponding to the rate of reaction 
time series of Fig. 7. The series consists of 25,000 points 
measured at 20 MCS intervals (T =20). The correla‘tion 

exponent for this time series is 0.38 + 0.01. 

computation time became prohibitively long for time 
series with more points. 

Thus, with a Monte Carlo simulation, we have 
synthesized deterministic chaos. However, to ensure 
that this chaos was generated by our reaction al- 
gorithm and not our random number generator, we 
also measured the correlation exponent for our ran- 
dom number generator. The distinction between 
randomness and chaos is not always clear-cut and 
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7 

Fig. 9. Log-log plot of the correlation integral [eq. (8)] for a 
series of numbers from our random number generator. The 

series consists of 10.000 numbers. 

> 66 

0 1 2 3 4 5 6 

Embedding Dimension, D 

Fig. 10. Correlation exponent as a function of embedding 
dimension for our random number generator. The slope of 
the line, which is approximately 1.0, indicates the random- 

ness of the numbers. 

complete randomness is generally not attainable with 
number-generating algorithms. However, we deter- 
mined that our generator was random to the degree 
that we could detect, as shown in Figs 9 and 10. In 
Fig. 9, we calculated the correlation integral for 
varying length scales for a series of 10,000 random 
numbers from our number generator. Figure 10 shows 
a plot of the correlation exponent measured from 
Fig. 9 as a function of the embedding dimension. The 
slope of this line is one, indicating the randomness of 
the numbers. 

DISCUSSION AND CONCLUSKONS 

Thus, in a relatively simple model of a bimolecular 
catalytic reaction, we achieve a wealth of interesting 
and unanticipated dynamic behavior. For irreversible’ 

systemq’the island growth dynamics induced by the 
Langmuir-Hinshelwood mechanism leads to poison- 
ing of the catalytic surface. We find that poisoning can 
be avoided in systems with reactant desorption and 
that steady-state, reactive surface configurations can 
be attained. For suticiently high rates of desorption, 
we find that the rates of reaction measured from our 
simulations remain nearly stationary. However, as the 
rate of desorption is decreased from its stationary 
value, we find that the rate of reaction and surface 
coverage become more unstable and oscillate with 
increasing amplitude. The amplitude ‘of the oscil- 
lations increases until the point where our systems 
reach the poisoned configuration. At this point, as the 
rate of desorption is decreased to zero, the amplitude 
of the oscillations also decreases and our systems 
spend increasing amounts of time in the poisoned 
configuration. We also find that the amplitude of our 
oscillations decreases with increasing system size. 
From this observation, we predict that we would not 
observe oscillations in a sufficiently large system. We 
analyzed the oscillatory dynamics of our rate of 
reaction and coverage time series using the correlation 
integral method. From this analysis, we concluded 
that the oscillations were chaotic with a correlation 
exponent v = 0.37. 

The apparent fact that we have generated chaos 
with a Monte Carlo simulation is somewhat 
surprising since, to our knowledge, this has not 
been achieved nor attempted previously. Thus, a 
major finding i.n this work is the identification of the 
potential of utilizing Monte Carlo simulations to 
study the origins of chaos. This result has applications 
in many branches of physics where nonlinear dynam- 
ics are inherent, including surface science. A more 
complete analysis of the dynamic behavior of this 
system is presented elsewhere (Fichthorn et al., 1989) 

Earlier studies (Ziff et al., 1986) have indicated that 
Monte Carlo simulations may be useful in under- 
standing oscillatory behavior in the CO oxidation 
reaction. In this work, an irreversible system was 
studied whose mechanism was chosen to represent the 
most widely-accepted mechanism for 
dation reaction (Engel and Ertl, 1979): 

the CO oxi- 

A,+S- k,i A-S (12) 

B,, + 2s- k02 2B-S (13) 

A-S + B-S zAB,+2S (14) 

This model differs from the system of the present paper 
in that species Bz adsorbs dissociatively, requiring two 
vacant sites on the surface. Although only slightly 
more complex than the present system, this model 
exhibits rich dynamic behavior in the irreversible 
regime. Ziff et al. were abte to construct a “phase 
diagram” of the steady-state coverages of both reac- 
tants as a function of the probability of adsorption of 
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reactant A, Pa, where 

k 
pa’ al 

kc+ k,,’ 
(15) 

This diagram showed a jump in the steady-state 
coverages of both reactants from reactive to poisoned 
at a critical PA of 0.525 f 0.001, indicative of insta- 
bility. Presumably, with desorption of reactant, oscil- 
lations could be achieved at this point in a reversible 
system. 

Our observations of the system size dependence of 
oscillatory behavior in our present model may be 
utilized to elucidate the role of surface defects on the 
oscillatory behavior of actual catalytic reactions. A 
major finding in this work is that the oscillations 
observed are a fimte size effect--they disappear on 
large, perfect surfaces. It is also known that oscil- 
lations of a large variety of catalytic reactions do not 
occur experimentally when the crystal surface is per- 
fect, or nearly perfect, but that oscillations are found 
on surfaces containing defects (Yeates et al., 1985; 
Sautt and Masel, 1982). Actual catalytic surfaces have 
many defects including lattice vacancies, or point 
defects, and slip dislocations along a particular 
crystallographic plane. In general, atoms are more 
strongly adsorbed to defects and, thus, have less 
affinity for reaction. It is quite conceivable that these 
defects can create “nucleation areas” of a size sufficient 
to produce oscillatory behavior coordinated over the 
entire surface. As the concentration of defects becomes 
less, larger regions of perfect crystal plane are avail- 
able and the oscillations cease. 

Our observations also indicate the significant influ- 
ence of gas-phase concentration fluctuations on the 
dynamic behavior of catalytic systems with low rates 
of desorption. Previous studies of oscillatory behavior 
in the CO oxidation reaction have correlated rate of 
reaction oscillations with measured concentration 
fluctuations in an imperfectly-mixed gas inlet 
(Edwards ef al., 1973, 1974). The “gas phase” in our 
simulations is implicitly well-mixed. Thus, for the 
conditions simulated by our algorithm, selection of a 
molecule to adsorb on a given site is like flipping a fair 
coin-SO% of the time, A is chosen to adsorb and, 
50% of the time, B is chosen. However, even in an 
analagous random process of flipping a coin, there are 
fluctuations in the outcome scale as the square root of 
the number of trials (e.g. for 100 flips of a fair coin, we 
expect to see 50 + t0 heads, on the average). In our 
simulations, fluctuations in the gas phase are recorded 
on the catalytic surface when the rate of desorption is 
slow. This is because reaction eliminates an equal 
number of As and Es-the fluctuation is left behind on 
the surface. For slow rates of desorption, the Auctu- 
ation grows until poisoning of the surface occurs. 
However, when the rate of desorption is fast, any 
unreacted adsorbed species are eventually removed 
from the surface by desorption and the fluctuation is 
Iost. In the irreversible limit, poisoning occurs when 
the number of adsorptions of one species exceeds the 
number of adsorptions of another by N, where N is the 

total number of sites on the surface. If N is the 
fluctuation, then approximately N2 adsorptions are 
required for poisoning. Our power-law poisoning 
exponent of eq. (5) is presumably greater than 2 be- 
cause we define time (MCS) in adsorption attempts, 
which may or may not be successful. 

Although our findings provide a plausible explana- 
tion for the existence of oscillatory behavior on single 
crystal surfaces, they are insufficient to explain the 
synchrony of oscillations on supported catalysts or in 
packed-bed reactors. How do numerous and essen- 
tially isolated catalytic surfaces coordinate their oscil- 
lations to produce global kinetic oscillations? To our 
knowledge this remains a question which has not been 
adequately answered by any study completed thus far. 

Monte Carlo simulations may have much to contri- 
bute to the theory of heterogeneous catalysis. In a 
previous paper (Fichthorn et al., lY88), we discussed 
the advantages of Monte Carlo and fractal scaling 
relationships for characterizing surface structures ari- 
sing from specific catalytic mechanisms. In this paper, 
we have also shown that Monte Carlo simulations 
may enhance our understanding of the origin of chaos 
in catalytic reactions. The microscopic detail of a 
Monte Carlo simulation allows immense insight into 
the macroscopic behavior we see. Thus, we have been 
able to infer the origins of chaotic behavior in our 
system and to predict chaotic behavior in systems with 
similar features. For our simple model reaction, we 
found that the Langmuir-Hinshelwood mechanism 
with low rates of desorption is sufficient to produce the 
slow surface mechanism deemed necessary for self- 
sustained oscillations (Chang and Aluko, 1984). How- 
ever, this mechanism did not produce the ‘*period- 
doubling” route to chaos observed in many dynamical 
systems. Rather, we observed “order through fluctu- 
ation” (Prigogine and Stengers, 1984) or deterministic 
chaos borne offluctuations of increasing amplitude. In 
this approach to chaos, we were unable to produce the 
periodic or quasi-periodic oscillations observed in 
actual catalytic systems (Razbn and Schmitz, 1986) 
with period-doubling. However, our model is highly 
simplified. Perhaps with more of the features of actual 
catalytic systems (e.g. adsorbate-adsorbate and ad- 
sorbate-metal interactions, heat transfer, surface dif- 
fusion), the quality of the dynamics in our model will 
change and match those of actual systems more 
closely. Since our reiatively unsophisticated model 
already produces rich and exotic dynamics,.this pro- 
spect looks quite promising. Our research will con- 
tinue in this vein since it is our belief that Monte Carlo 
will have many future contributions to the theory of 
heterogeneous catalysis. 

NOTATION 

A, B, chemical species 
AB, B, 

c correlation integral, defined by eq. (8) 

D, fractal dimension 
k rate constant (number/time*area) 
1 length scale for correlation integral: 
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either in units of the rate (rxns/site/MCS) 
or the coverage (number of sites occupied 
by A/total number of sites) 
linear dimension of simulation lattice 
probability 
poison time for lattice in irreversible 
simulation (MCS) 
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