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We consider denumerable state nonhomogeneous Markov decision processes and 
extend results from both denumerable state homogeneous and finite state non- 
homogeneous problems. We show that, under weak ergodicity, accumulation points 
of finite horizon optima (termed algorithmic optima) are average cost optimal. We 
also establish the existence of solution horizons. Finally, an algorithm is presented 
to solve problems of this class for the case where there is a unique algorithmic 
optimum. 0 1990 Academic Press, Inc 

Research on Markov decision problems has concentrated on homo- 
geneous problems. Of most interest here are problems with denumerable 
state spaces such as in Federgruen, Schweitzer, and Tijms [4], Cavazos- 
Cadena [3], and Hernandez-Lerma and Lasserre [5]. The usual optimality 
criterion employed is average optimality. Traditional solution procedures 
include policy iteration or fixed point methods. 

Much less work has been done on the nonhomogeneous version of the 
problem. Almost all of this work has considered finite state spaces. Recent 
works include Hopp, Bean, and Smith [S] and Hopp [7]. The primary 
optimality criteria used is algorithmic optimality (i.e., solutions which are 
accumulation points of finite horizon optima) since we no longer have the 
optimality equations for average optimality. Traditional solution proce- 
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dures use solution horizons with cost based stopping rules. A solution 
horizon is a time such that solving a finite horizon problem to that horizon 
or beyond gives a first period policy in agreement with the infinite horizon 
optimal first policy. 

Despite these differences, the problems have a great deal in common. 
Any finite state nonhomogeneous Markov decision process can be refor- 
mulated as a denumerable state homogeneous problem. States are relabeled 
to include time period and state designation in the new formulation. 
However, the converse is not always true. Some denumerable 
homogeneous problems cannot be transformed into finite nonhomogeneous 
problems. 

It is interesting that the finite nonhomogeneous problem is a special case 
of the denumerable homogeneous problem since the former is generally 
considered harder. We attempt, in this paper, to investigate this rela- 
tionship and expand the techniques and theory available to each problem. 
As a mechanism we consider the general denumerable state non- 
homogeneous problem which subsumes both of the traditional problems. 

We show that, under weak ergodicity, an algorithmically optimal 
strategy is also average optimal. We also provide a necessary and sufficient 
condition for a first period decision to be average optimal. Based on this 
result we propose a modified value iteration algorithm. At each step of the 
value iteration procedure a stopping rule permits elimination of some non- 
optimal decisions until only one remains. For a given initial state, the 
optimal first period decision is obtained in a finite number of steps of the 
value iteration procedure. If we assume that, at each state, there are a finite 
number of one-step neighbors with strictly positive probability, then the 
modified value iteration procedure is implementable despite the countable 
state space. 

Section 1 formally states the problem under consideration. Section 2 
generalizes the solution horizon theory of Hopp, Bean, and Smith [8]. 
Section 3 presents the stopping rule and the modified value iteration 
procedure. Finally, Section 4 includes a summary and conclusions. 

1. PROBLEM STATEMENT 

1.1. Notation 

We generalize the notation of Hopp, Bean, and Smith [8]. The decision 
maker chooses a policy in stage k, xk, by selecting actions, XL, from finite 
sets, for states i= 1, 2, 3, . . . . An infinite horizon strategy, x, is an infinite 
sequence of policies. The set of all feasible strategies is denoted by X. 
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Taking action xf in state i of stage k gains a reward, TV, and trans- 
ition probabilities to all states in stage k+ 1, pf(xk), j= 1, 2, 3, ,.. , Let 
I< co denote an upper bound on Ir:(xk)j. Let Rk(xk) represent the 
column vector of rewards in stage k and P,(x,) represent the matrix of 
transition probabilities from all states in stage k to all states in stage k + 1. 
The vector of transition probabilities from state i at stage k is denoted 
P,(x,; i). Note that both the rewards and transition probabilities may be 
stage dependent, i.e., nonhomogeneous. 

If strategy x is used and the one period discount factor is 0 6 CI < 1, the 
expected net present value at the beginning of stage k of the profit from 
stage k to stage N, N> k, is written VJx; N). In evaluating V,(x; N), the 
first k - 1 policies of x are irrelevant. The Vk( .) function maps into ‘91m 
with the ith element given by Vh(x; N), which represents the expected net 
present profit from stage k to stage N given that the process is in state i 
at stage k. In general we are interested in the value function from stage zero 
onward, which is written 

N-l 

vo(x; NJ = c a”T;f(x) R,(x,), 
?I=0 

where 

n-l 
Y(x)= l-l Pkbk), n>l and T;(x) = I. 

k=I 

In the finite horizon problem, with discount factor a, optimization is 
equivalent to maximization of V,(x; N) over x E X. In the infinite horizon 
problem define x* to be a-optimal, for 0 < a < 1, if 

lim V,(x*; N) > ,limm V,(x; N), for all x E X. 
N-30 

If a = 1, so that in general V,(x; N) diverges with N, we define x* to be 
average optimal when 

lirn inf ‘0(x* ; N) > lirn inf ‘0(X’ N) 

N ‘N+ao N ’ 
for all x E X. 

N-CC 

Our assumption that Rc co implies that the lim inf are always finite. 
While this measure is the most commonly used, it is less than satisfactory 
since it allows inclusion of suboptimal leading policies (see [8]). The 
following section presents a more restrictive measure of optimality. 
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1.2. Algorithmic Optimality 

If optimal solutions to the finite horizon problems, {X*(N)}:, , c 
‘91m x m, approach a particular infinite horizon strategy we consider it as the 
optimal strategy. The most useful implementation of this idea is algo- 
rithmic optimality defined in [S] (called periodic forecast horizon 
optimality there). The term algorithmically optimal was first used in [ 131 
and arises since precisely these solutions can be discovered by a forward 
looking algorithm. To formally define this notion we use a metric 
analogous to that presented in [ 11. Let 

p(x, X)= f f 43x, X) 2-(ifk), 
k=Oi=l 

where 

The topology induced by this metric is the product of product topologies. 
In particular, a sequence x(n) + x as n + cc if and only if, for all Z, K < 00, 
there is an N(Z, K) such that x:(n) = xb for i= 1, 2, . . . . Z and k = 1, 2, . . . . K 
for all n > N(Z, K) (I< K). 

DEFINITION. A strategy, x*, is algorithmically optimal if there exists a 
subsequence of the integers, {N,},“_,, such that x*(N,) -+x* in the p 
metric as m + co. Note that x*(N,) is composed of the finite optimal solu- 
tion to the N,,, problem extended arbitrarily to cover the infinite horizon. 

The following two theorems generalize results from Hopp, Bean, and 
Smith. They are stated here without the proofs, since they are obvious 
extensions. 

THEOREM 1. Zf X is compact in the topology generated by p, an algo- 
rithmically optimal strategy exists for the denumerable nonhomogeneous 
Markov decision process. 

As in the finite state problem, algorithmic optimality implies cc-optimality 
of the value function is convergent. This implication is a natural extension 
of the results of Hopp, Bean, and Smith and is stated as Theorem 2. 

THEOREM 2. Zf Assumptions (2)-(4) (Section 2.2) hold and u < 1 then 
algorithmic optimality implies a-optimality. 

Remark. The converse of Theorem 2 is false. For a counterexample see 
c111. 
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If we assume that R < co, the profit functions can diverge only if CY = 1. 
In this case, we show that algorithmic optimality implies average 
optimality. Algorithmic optimality would then be stronger than average 
optimality since algorithmic optimality discourages leading suboptimal 
policies. However, this implication is not true without additional condi- 
tions. 

2. SOLUTION HORIZONS AND AVERAGE OPTIMALITY 

We show that in most denumerable nonhomogeneous problems the algo- 
rithmically optimal solutions are also average optimal, and that solution 
horizons exist leading to discovery of algorithmically optimal solutions. 
However, there are cases where these desirable characteristics fail. Consider 
the following example from Ross [lo]. 

We have a deterministic problem with state space { 1, 2, . ..}. At each 
state, i, there are two choices: remain in place and receive reward i, or 
move up one state and receive reward 1. The infinite horizon average 
reward optimal solution is to go up one state to i, remain there for i 
transitions, then repeat. This is not an algorithmically optimal solution. 

We seek conditions to eliminate the possibility of such behavior. As in 
the finite nonhomogeneous case, the important characteristic is weak 
ergodicity. 

2.1, Weak Ergodicity 

A stochastic matrix is stable if it has identical rows. A scalar function, 
r( .), that is continuous in an appropriate topology on the set of doubly 
infinite stochastic matrices (treated as points in !Ra x “) such that 
0 < z(P) < 1 for any stochastic matrix, P, is a coefficient of ergodicity. 
It is called proper if r(P) =0 if and only if P is stable. See [9] for a full 
discussion. 

DEFINITION. The Markov chain formed by strategy x achieves weak 
ergodicity if 

lim 5( T;(x)) = 0, for all I3 0, 
n-cc 

where r( .) is a proper coefficient of ergodicity. 

The most commonly discussed coefficient of ergodicity is the Hajnal 
coefficient, 

tI(P)=suP f IPis-Pjsl/2 . 
;, I 1 s=l 1 

For example, see [ 9, 81. 
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LEMMA 3. For any infinite sequence of stochastic matrices defined by any 
strategy x, { P,(x,)} r= 0, the following are true: 

(a) z,(. ) is a proper coefficient of ergodicity 

(b) For any 120 

n-1 

T,(TXn)) G l-j ~~(P~(xk)). 
k=l 

Proof. See [9]. 1 

LEMMA 4. For any three stochastic matrices P,, P,, T, vector R with 
(R,I Q R, and proper coefficient of ergodicity, T(T), 

(P, - Pz) TR d (ZT( T) R) e, 

where e is a vector of ones. 

Proof: Omitted. m 

The probability distribution on the states in stage n starting from each 
of the initial states is given by the matrix P,(x,) T;(x). If zl( T;(x)) + 0, so 
that T;(x) has asymptotically identical rows as n + co, then P,(x,) T:(x) 
also approaches a matrix of identical rows irrespective of the P,(x,) matrix. 
The probabilities on the states in stage n, and hence the expected rewards 
in stage n and subsequent stages, become independent of x0 as n increases. 

2.2. Assumptions 

The following assumptions are invoked in subsequent results: 

(1) C,“=, s,(Tt(x,)) < A, < co, uniformly over X, for all k = 1, 2, . . . . 
where A,/k --+ 0 as k -+ co. 

(2) At any stage, the choices available for each state are finite in 
number. 

(3) Iri(xk)l < i? < co for all Stages, k, States, i, and strategies, x. 
(4) From each state, i, at stage k, under strategy x, there exists a 

finite set { jl P!(x) > O}. That is, only a finite set of states is reachable 
in one transition from any state, under any strategy. Further, 
max{il Pi(x) > 0} is uniform over x E X for each stage k. 

Assumption (1) requires slightly more than weak ergodicity since the 
series must converge rather than have its terms just go to zero. This is weaker 
than the equivalent condition in [S] with requires that A, be independent 
of k. All results requiring this assumption can be shown with c( < 1 sub- 
stituting for Assumption ( 1). 
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Assumption (2) limits the problem to discrete, bounded decision 
variables. Assumption (3) requires an upper bound on the maximum 
reward obtainable at each stage. 

Given a known starting state, Assumption (4) requires that the accessible 
states, for any finite time, are finite. 

Remark. Since any sequence of policies is feasible and, by Assump- 
tion (2), there are a finite number of choices at each state, X is compact in 
the topology generated by p (Tychonoff Theorem). 

2.3. Average Optimality 

Theorem 2, stating that algorithmic optimality implies a-optimality if 
CI < 1, is based on the uniform convergence of V,,(x; N) on X. If c( = 1, then 
V,(x; N) is not necessarily convergent under Assumptions (1) through (4). 
However, the uniform convergence of C, T,( T:(x)) over X suffices. 

THEOREM 5. Under the Assumptions (1) through (4), algorithmic 
optimality implies average optimality. 

Proof Let x* be algorithmically optimal. By definition there exists a 
sequence {N,,,}z=, such that x*(N,} + x*. So, by Assumption (4), for all 
k there exists M such that m 2 A4 implies that x,*‘(N,) =x,*‘, n = 1,2, . . . . k, 
state i reachable in k steps. Note that T:(x) is identically zero for columns 
beyond the maximum reachable state in k steps. Fix k and choose x E X 
and m sufficiently large. Since x*(N,) is optimal for horizon N,, 

~oV,(x*(N,); N,) 2 vdx; k) + T:(x) V,(x*W,); N,) 

which implies that 

Vo(x*;k)+ T;b*) T/,(x*W,);N,)- V,,(x;k)- T;(X) v,(x*(N,);N,,J>o, 

since V,(x*; k) = V,(x*(N,J; k) and Tt(x*) = r,k(x*(N,)). Hence, 

f’,(x*; k) - I’,(x; k) + [ T;(x*) - T;(x)] V,(x*(N,); N,) > 0. 

Now 

cG(x*) - cwl I&*; NJ 

= 2 a”[T;(x*) - T;(x)] T;(x*(N,)) R,(x*(N,)) 
n=k 
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by Lemma 4. By Assumption (1 ), this is not greater than 2A,Re. Hence 

V,(x*; k) 3 V,Jx; k) - 2A,Re. 

Divide both sides by k and take the lim inf of both sides to conclude that 
x* is superior to x in average reward, and hence, is average optimal. 1 

2.4. Existence of Solution Horizons 

This section extends results for nonhomogeneous Markov decision 
processes from those of Hopp, Bean, and Smith and Schochetman and 
Smith. By use of solution horizon results we can find algorithmically 
optimal strategies when they are unique. 

THEOREM 6. Under Assumption (2), x*(N) +x* in the p metric as 
N -+ CC for all choices x*(N) at each N if and only if the algorithmically 
optimal strategy is unique. 

Proof. (if) Assume otherwise. Then there is an infinite subsequence of 
{x*(N)};, 1 that is bounded away from x* in the p metric. Since X is 
compact by Assumption (2), this, in turn, has a convergent subsequence. 
By definition, its limit is also algorithmically optimal, a contradiction to 
the assumption of uniqueness. 

(only if) If the algorithmically optimal strategy is not unique, then 
there exist at least two distinct strategies which are limit points of finite 
horizon optima. Then the limit of finite horizon strategies cannot exist. 1 

COROLLARY 7. Under Assumption (2), if all algorithmically optimal 
strategies have the same first L policies then a solution horizon exists leading 
to the optimal first L policies in the infinite horizon problem. 

Note that convergence of x*(N) to x* implies that the optimal finite 
horizon strategy agrees with the optimal infinite strategy over an increasing 
range of states and stages. This fact follows from the definition of the 
metric, p. 

The existence of solution horizons allows computation of algorithmically 
optimal strategies in a forward recursive manner. The following section 
develops such an algorithm. 

3. A COST BASED ALGORITHM 

3.1. Preliminary Results 

In this section we prove that Assumptions (1) and (3) imply that the 
difference between future values from any two states converges. In this 
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case, the problem can be transformed into a finite value problem as in [7]. 
This characteristic, termed coherence, is necessary for the main theorem of 
Section 3. 

DEFINITION. A nonhomogeneous Markov decision process is coherent 
if, for all k, and state pairs, i, j, Vk(x; N) - Vi(x; N) is uniformly con- 
vergent as N + cc, over i, j, and x E .%‘. 

THEOREM 8. Under Assumptions (1) and (3) the denumerable non- 
homogeneous Markov decision problem is coherent. 

Proof: From Assumption (1) for any fixed k, for all E > 0, there exists 
N independent of x, such that 

,ZN Al) <E. 

Let Tk(x; i) be the ith row of the matrix T:(x). By definition of the Hajnal 
coefficient, ri(. ), for any states, i, j, and strategy, x, 

I(T:(x; i)- T:(x;j))~elG27,(T~(x)). 

Hence, by Assumption (3), 

Then 

f? CW; 4 &(x,) - T:(x; j) &(x,)1 < 2R f z~(T:(x)) < 2&, 
I=N I=N 

uniformly over x E X. Hence, the series defining Vi(x) - V’,(x) is uniformly 
convergent for i, j and x E X and the problem is coherent. 1 

If a problem is coherent, it can be transformed, without loss of 
optimality, to a finite value problem. Define the infinite horizon coherent 
value for state i as 

8:‘= lim [ Vi(x*; N) - (V{(x*; N)], 
N-CC 

which is well defined by Theorem 8. Similarly, the finite horizon coherent 
value is P,*‘(N) = V:(x*(N); N) - V:(x*(N); N). For the finite state 
problem, Hopp shows that if x$ uniquely maximizes C&(x,) + 
P,(x,) P:], its is the first policy of an algorithmically optimal strategy. 



MARKOV DECISION PROCESSES 73 

That is, we can transform the infinite valued problem into a traditional 
finite valued problem, even without discounting. Note that an xt exists by 
Theorem 1. We extend this to the denumerable problem. 

The following lemma demonstrates convergence of the finite horizon 
coherent values to the infinite horizon coherent value. It is used to prove 
the validity of the stopping rule. We use the notation 

&k(N) = sup 2 tl(r.xx)) RI(x). 
xEx,,=N 

Under Assumption (1 ), sk(N) + 0 as N + co for all k. 

LEMMA 9. (Coherent Value Convergence). Under Assumptions (1) and 
(3), 1 P:‘(N) - P:‘l < 2s2(N) R for aN i= 1,2, . 

Proof: Let V:(N) = V,(x*(N); N) with element i denoted by V:‘(N). 
For any two integers, N, m, 

V:‘(N+m)=rf(x*(N+m))+P,(xf(N+m);i) V:(N+m) (1) 

V:‘(N+m)3r~(x*(N))+P,(xf(N); 1) V,*(N+m) (2) 

V:‘(N)>rf(x*(N+m))+ P,(x:(N+m); i) V,*(N) (3) 

V:‘(N) = r:(x*(N)) + P,(x:(N); 1) V:(N). (4) 

Taking equations [ (1)-(2)1-I: (3)-(4)] gives 

V:j(N+m)- v:‘(N) 

< [P,(x:(N+m); i)-P,(xf(N); l)][V:(N+m)- V:(N)]. (5) 

Taking (1 )-( 3) gives 

V:(N+m)- V:(N)<P,(x:(N+m))[V:(N+m)- V,*(N)]. 

Similarly, for all k < N, 

I/,*(N+m)- V,*(N)<P,(x,*(N+m))[V,*+,(N+m)- V;+l(N)]. 

Using this fact recursively we can refine (5) to P:‘(N+ m) - P:‘(N) 

<[P,(x:(N+m); i)-P,(x:(N); l)] Nfi’ P,(x,*(N+m)) 
n=2 I 

x [Vz(N+m)- V:(N)]. 
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Noting that V;(N) = 0, the right-hand side equals 

N+m- I 
CP,cew+ m); 4 - P,(Gw); 111 c T;(x*(N,)) RJx*(N,)) 

?I=N 

G 2&,(N) R, 

by Assumption (1) and Lemma 4. 
A similar analysis for the opposite inequality allows strengthening of the 

result to 

1 PT’(N+ m) - P:‘(N)I Q 2&,(N) R. (6) 

Since EJN) -+ 0 in ZV, the sequence {P’:‘(N)} is Cauchy and converges. 
In the product topology, vector convergence is equivalent to pointwise 
convergence so {P:(N)} converges. It must converge to P: or any limit 
point of the sequence {x*(N)} would have greater value than x*. Since 
lim, + m VF(N+ m) = P:, and (6) holds for all m, we conclude that 
1 VT(N) - P:1 < 2&&V) R. 1 

Recall that VT = lim, _ co Pl (x*; N), where x* is algorithmically 
optimal. An immediate corollary of Lemma 9 is that P,* takes the same 
values for any algorithmically optimal x*. 

For ease of expression we introduce the notation 

ui(xo) = rgxo, + P,(x,; i) v’:; 

and 

u’(x,; N) = r;(x()) + P,(x,; i) v:(N). 

LEMMA 10. Under Assumptions (1) through (3), if x$ is the first policy 

of an algorithmically optimal strategy, it maximizes @(x,,) for the starting 
state i,. 

Proof. By definition of algorithmic optimality, there exists {x*~o(N~)) 
beginning with x ziO. That is, for any x0, 

rt(xo*) + P,(xd; iO) V:(N,) 3 r$(x,) + P,(x,; i,) V:(N,). 

For any x,,, 

UiO(xg;N,)=r~(x,)+P,(x,;i,)CV:(N,)-(V:’(N,))el 
= t-$(x,) + P,(x,; iO) V:(N,) - V:‘(iV,) P,(x,; iO) e 

since the series are convergent over the finite horizon (note that V:‘(N,,,) 
is a scalar). This last term is a constant over all x0 since P, is stochastic. 
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Hence @(x,*; NJ > uio(xO, . N,). From Lemma 9 and the definition of 
oio(x,; N,), uio(x,; N,) + uio(xo). Hence, @(xg*) b uio(x,). 1 

ASSUMPTION (5). The maximizer of a’O(xO) is unique. 

COROLLARY 11. Under Assumptions (1) through (5), x$ maximizes 
uio(xO) if and only if it is the first decision of an algorithmically optimal 
strategy. 

We now propose a stopping rule for a value iteration procedure. 

3.2. A Stopping Rule 

In this section we propose a stopping rule inspired by that presented in 
[2] in the discounted cost case and [S] in the (homogeneous) average cost 
case. At each step of the value iteration procedure we use a test which 
permits us to eliminate actions which are not optimal for the average cost 
citerion. Tests in previous works such as [ 121 or [6], include parameters 
which are difficult to obtain since they require knowledge of the optimal 
average cost. We only use known parameters. The most difficult values 
to obtain are the sZ(N). In problems with a geometrically decreasing 
coefficient of ergodicity, these values are easily calculated from problem 
structure. 

The test is based on the following theorem. 

THEOREM 12. Under Assumptions (1) through (5), an initial action for 
state i, xb, is not algorithmically optimal if and only if there exists a time N 
such that 

[rb(x,*(N)) -(,(x0)] + [PJx$(N); i) - P,(x,; i)] v:(N) > 2c2(N) 8. 

That is, if and only if u’(x,*(N)) - u’(xO) <BEG 1. 

Proof. (if) Let x$ be the first policy of an algorithmically optimal 
strategy. By Corollary 11, uI’(x$) 3 uj(xg*(N)). By Lemma 9, for any i, 
I r:‘(N) - p:‘l < 24N) 1. For any x0, a simple algebraic manipulation 
extends this to 

Iui(xo; N) - d(xJ 6 24N) i?. (7) 

From (7) we have u’(x,*(N)) > u’(x,*(N); N) - 2&*(N) R. Combining gives 

uI’(x:) > u’(x:(N); N) - 2&*(N) it 

Since x,*(N) maximizes u’(x,; N), we have ui(xg*( N); N) 2 u’(x$; N). From 
(7), uI’(x$) < u’(x,*; N) + 2&*(N) R for any i. Combining gives 

u’(x,*) < u’(x,*(N); N) + 2&,(N) R, for all i. 
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Summarizing, 

Iu’(x,*) - u’(xo*(N); N)I <2&*(N) 8, for all i. 

This proves the contrapositive of the (if) direction of the theorem. 
(only if) Again by contrapositive, if, for all N, 0 < o’(x,*(N); N) - 

o’(xO; N) <2&*(N) 8, by letting N go to infinity we have that Y~(x,,) = uj(x$) 
and, by Corollary 11, x,, is algorithmically optimal. [ 

3.3. Algorithm Statement 

Given an initial state i,, we propose an algorithm to obtain the optimal 
decision x*~O which begins the algorithmically optimal (also average 
optimal) strategy. It is the classical value iteration procedure plus a test 
based on the previous theorem which permits us to eliminate nonoptimal 
actions without computing an optimal strategy. 

Step 0: Initialize U(i,), the (finite) set of potentially optimal actions 
in state i, at time 0. 

Step 1: For all X~E U(i,), if [$(x,*(N))-r$(x,,)] + [P,(x,*(N); i,) 
- P,(x,; iO)] P:(N) > 2&*(N) 1, then eliminate x,” from U(i,). If U(i,) is a 
singleton then stop. Else, set N := N + 1 and go to Step 1. 

COROLLARY 13. Under Assumptions (1) through (5), the algorithm is 
guaranteed to stop in a finite number of steps with U(i,) = (x,$~O). 

Proof: By Assumption (5) there is a unique maximizer of uio(xO). The 
algorithm eliminates any other x,, by Theorem 12. 1 

To carry out this algorithm we know all necessary data except Q(N), 
which depends on special structure. For example, if weak ergodicity is 
indeed geometric, i.e., tl(Pk(x)) < j? < 1 for all x and k, then Q(N) can be 
computed from the tail of the geometric series as in Bes and Sethi. 

Note that this algorithm permits us to obtain on-line an optimal average 
reward strategy. At time 0, in state i,, run the preceding algorithm until 
x0 *io is obtained. Implement this decision and observe the new state i, at 
time 1. Rerun the above algorithm where the index 0 is replaced by 1, 1 by 
2, and the initial state is i,. In the same manner, compute x:” and iterate. 
At time n we observe the state i, after we have implemented the sequence 
of actions x,*‘O, xTil, . . . . xzji’. Computation of an average optimal policy 
would be impossible since we have an infinite number of states. Here, since 
we are interested in the optimal action at state 0, we need only evaluate the 
value functions V,(x(N); N) k = 0, . . . . N- 1, at states accessible in k steps 
from io. They are finite in number by Assumption (4). 
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4. SUMMARY AND CONCLUSIONS 

We have shown that the analytical framework developed in [S] for the 
finite state space nonhomogeneous Markov decision process can be 
generalized to the denumerable state case. Solution horizons exist if the 
problem is weakly ergodic. 

The algorithm of Hernandez-Lerma and Lasserre is generalized to this 
problem. These results and algorithms can also be applied to the well 
studied denumerable homogeneous problem as a special case. 
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