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In a previous study, experimental results for the dynamics of a radially rotating beam 
with impact were found to be in excellent agreement with simulation results using the 
momentum balance method (for impact modeling). In this paper spring-dashpot models 
for impact modeling are compared to experiment for a radially rotating flexible beam. 
Excellent agreement is found between the simulation results using spring-dashpot models 
and the experiments. A sensitivity study is employed to investigate the issue of accurately 
determining the model parameters. 

1. INTRODUCTION 

The impact of a flexible radially rotating beam against a rigid impact surface is considered 
(see Figure 1). In an earlier study [l] experimental results were compared with simulation 
results obtained by using the momentum balance (coefficient of restitution) model for 
impact. Although that model is not intended for application to systems with flexible 
members, good agreement was found between the experiments and the simulation. 
Sensitivity studies were employed to show that the model is applicable over a fairly wide 
range of parameter values. Thus, the momentum balance method has been demonstrated 
to be capable of accurately predicting the dynamics of systems which consist of both 
rigid and elastic links undergoing impact. A second competing method for impact 
modeling, which is applicable to flexible systems, is the spring-dashpot model. In this 
paper the validity and utility of spring-dashpot models are investigated for the dynamics 
of a radially rotating beam with impact. 

A brief literature review on the spring-dashpot models for impact will now be given. 
Some of the energy losses during impact are associated with relative indentation and the 
damping mechanisms involved during this contact period. The first attempt to incorporate 
a theory of local indentations is an elastostatic one given by Hertz [2]. The deformation 
is assumed to be restricted to the vicinity of the contact area and to be given by static 
theory. Elastic wave motion in the impacting bodies is neglected, and the total mass of 
each of the bodies is assumed to be moving at any instant with the velocity of its center 
of mass. The impact, therefore, can be visualized as the collision of two rigid bodies 
restricted to move in the direction of impact with spring buffers; all deformations occur 
in the springs, the inertias of which are neglected [3]. The assumption that deformation 
is quasi-static can only be justified if the duration of impact is long enough to permit the 
stress waves to tranverse the length of the structure many times [4]. This criterion (Love’s 
criterion) does not apply in cases where an object impacts with another very large object, 
in which case no reflected wave returns to the point of impact [3]. Hunter [3] suggested 
as an alternative that the behavior of a large structure can be approximated by a dashpot 
in parallel with the spring to account for the energy radiated through the half-space by 
wave motion. If the time constant of the spring-dashpot system is short compared with 
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the duration of the contact force, then the force variation during impact is determined 
predominantly by the spring; i.e., in a quasi-static manner. In this case the energy absorbed 
by the dashpot will be very small. Though less restrictive than Love’s criterion, this 
criterion limits the velocity of impact to very low values [3]. Another limitation is that 
the Hertzian theory can be extended to describe only non-elastic impact conditions in 
which plastic flow extends to the vicinity of the contact point and does not permeate 
throughout the entire cross-section [2]. In view of these problems, there have been some 
attempts to determine a dynamic contact law based on some experimental measurements 
c51. 

Several workers, notably Dubowsky and Freudenstein [6], have developed the so-called 
“impact-pair” model. They assumed a linear viscous damping law and a Hertzian spring 
for modeling the behavior of the impact surfaces. Dubowsky and Young [7] provided 
some experimental support for the impact-pair model. Hunt and Crossley [8], followed 
by Herbert and Mansour [9], argued that the damping coefficient in the case of vibro- 
impact should be proportional to a power n of the spring force, and they adopted n = 1 
for analytical convenience. The advantages of this modification are a better representation 
of the variation of the energy loss with the approach velocity and a more realistic frequency 
content in the impulse generated [8]. Their results were in good agreement with experi- 
mental results on spheres and plates [lo]. 

The character of impact between beam-like bodies has long been known to differ from 
that of impact between compact bodies. Dubowsky and Gardner [ 1 l] took the flexibilities 
of mechanism links into account and developed their “impact-beam” model. They showed 
that the dynamic behavior changes significantly due to the flexibility of the links [ll]. 

In this paper spring-dashpot models are used having a Hertzian spring and the damping 
models developed by Lee and Wang [12]. Simulation results obtained by using the 
spring-dashpot models and the results of the experiments described in reference [l] are 
compared. Sensitivity studies are also employed to ascertain the generality of the results 
of these comparisons. 

2. SPRING-DASHPOT MODELS 

2.1. STIFFNESS MODELS [2,5,12] 

A non-linear force-displacement law is the most widely used stiffness model for impact, 

F = k(x,)“, (1) 

where F is the contact force, x, is the spring deflection caused by the impact of the rigid 
(assumed) body, 

n=3/2 and k = (4/3){qk/(Q1 +  Q,m}, C&3) 

where qk, A and B are given as functions of the geometry of the contacting bodies and, 

Q1=(l-CL:)IF,~, Q2= (1 -/.&)I&? (435) 

in which pi and Ei are the Poisson ratio and Young’s modulus for the ith body respectively. 
Note that k and n may also be obtained directly from experiments. 

2.2. DAMPING MODELS [2,3,6, 11, 121 

We consider two damping models proposed by Lee and Wang [12]. For both the 
damping force is of the form 

fd = CT(x,)&. (6) 
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In their first damping model they used the damping function 

T,(x,.) =x,., 

and expressed the coefficient of restitution in terms of the impact velocity vi by 
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(7) 

x 

e=a,,- C a,~:‘. (8) 

The (Y,s, determined by a least-squares fit to experimental data, are assumed to be 
material properties. Then they solved approximately the non-linear one-dimensional 
problem of a point mass M contacting a surface through a linear spring (constant k) 
and a dashpot, the constitutive law of which is the same as equation (6). They calculated 
the coefficient of restitution e in terms of k and C, and equated this with the experimental 
least-squares fit to obtain the damping coefficient C( = C,) as a function of k and LY, . 

They used only the first two terms in the series for e, and showed that the damping 
coefficient for their first model C, turns out approximately to be 

C, = @75a,k. (9) 

An advantage of this model is that the damping coefficient is calculated as a function of 
(Y, , which can be thought of as a material property, independent of velocity. 

Lee and Wang [12] pointed out, however, that this first damping model may cause 
instability due to its non-linear characteristic. To overcome such shortcomings, they 
developed a second damping model, 

where the damping function is 

Tz(x,) = [(xc+ lxclY2xcl exp [{(xc - ~1 -lx, - 4(Q/e)I, (11) 
where E defines a so-called transition zone, and Q is a parameter specifying the shape 
of the curve within the transition zone. The damping function in equation (11) is zero 
when x, s 0.0, and is one when x, 2 E. The value of E may be arbitrarily chosen, but it 
must satisfy the conditions [12] 

O~EGX,.,,,, C,TZ(x,)l, + k(x,.)3’2 3 0. (l&13) 

Conditions (12) and (13) assure the positiveness of the sum of the damping and spring 
forces. Then, C2 is calculated by using the same procedure as for C, , but with attention 
restricted to the post transition phase, (for which Tz = 1). The result is 

Cz = 2Mo,J(ln e)*/[(ln e)*+ 7r2], (14) 

where e is the coefficient of restitution appropriate for the initial impact velocity [2], and 
w,=m. 

The main advantage of this second damping model is that it is linear after the transition 
zone. The number of parameters (Q, E, C,) which have to be specified for the model 
however, is greater than for the first damping model. It was shown in references [l, 141 
that multiple impacts can occur in flexible systems. This raises the question whether one 
should update the C, value for each of these multiple impacts, since they occur at different 
velocities. The sensitivity studies presented later in this paper will show the model is not 
sensitive to the value of C2 within the practical range of coefficient of restitution values. 
Thus an updating procedure for C, is not necessary. 
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3. SIMULATION RESULTS AND COMPARISONS 

Both damping models presented in the previous section have been studied for the 
system in Figure 1. A sensitivity study was also performed to investigate the effect of the 
damping coefficient on the dynamic behavior. For the rotating beam (see Figure 1) 

Figure 1. The sketch of the rotating beam. 

discretized equations of motion, including an impact force F(t), have been derived in 
reference [13] by using Galerkin’s method: 

? {~j(m,)+i24,(c,-m,)+4j~,j}+s,~+j~, PgsT cOS e=+r(xr)F(t)9 (15) 
j=l 

wherer=l,2,..,N,and 

(Z~+ls)Bi+ i ~jSj+~pg12 CCOS 8- E STqjg Sin 8= T(t)+X,F(t). (16) 
j=l j=1 

The number of modes used in the simulation is N, and 

I 

I 
t&j = P4Aj dX, cti= - 

0 I 

d [5p(12-X2+22al-2*X)~:~j+p(X+a)~:~j] dX, 

(17,W 

krj = 
I 

’ EZ4,‘+j dX, S,= ‘p(x+a)&dx, 
0 i 

S: = 
0 I 

’ pc$, dx. (19-21) 
0 

Here I is the length of the beam, (Y is the radius of the rigid shaft, ZR is the moment of 
inertia of the rigid shaft about the axis of rotation, Is is the moment of inertia of the 
flexible beam, and p is the mass per unit length. EZ denotes the flexural rigidity of the 
beam,and g is the acceleration of gravity. The qi(t) are the unknown generalized co- 
ordinates and the +i(X) are a set of comparison functions that satisfy all the boundary 
conditions. Here they are chosen as the mode shapes for the non-rotating cantilever beam. 
The position along the beam at which impact occurs is denoted by xP, and F(r) is given 
by 

(22) 
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where 

F,(t)=k(x,.)“+CT(x,.)~~. (23) 

Parameters for the two spring-dashpot models described in the previous section were 
selected to be [2,14] A = 1/2R,, B = 1/2R2, R, = 0.0063 m, Rz = 0.0126 m, E, = E2 = 
6.895 x 10” N/m*, ~,=~~=0.3, Q=3.0, ~=0~5xlO~~rn, k=3*2xlO’N/m, C,= 
1.92 x 10’ kg/ms, and C, = 800 kg/s. 

Condition (13) is checked during the contact phase of the simulation to assure the 
positiveness of the sum of the spring and damping forces. Condition (12) is checked after 
the simulation is completed to ensure that the selection of e is realistic. Contact force is 
calculated and monitored. Whenever it becomes negative this represents the separation 
of the objects and the contact force is set to be zero so that there is no tension in the spring. 

In order to achieve a smooth response, the time step for the integration should be 
adjusted to catch the initial contact with a minimum of spring deflection. A successful 
procedure was found to be as follows [15]. The distance between the impact point and 
the beam was monitored during the simulation, and whenever it became smaller than 
10 E, E being the length of the transition zone, the integration time step At was reduced 
to (l/ lOO)At, , where At, is the original time step before impact. The reduced time step 
is maintained until the beam separates from the impact surface by the same amount (i.e., 
10 E). With this algorithm it is possible to capture multiple impacts. 

For the simulations presented here a three mode approximation was used. Simulations 
involving five and seven modes were also performed and no perceptible difference was 
found with respect to the dynamic behavior. Thus three modes are considered adequate 
for accurately describing the elastic motion for the simulations reported in this paper. 

The measured torque input, shown in Figure 2, was approximated by a pulse in the 
simulations. Simulation result for the angular velocity of the rigid stem are shown in 
Figures 3 and 4 for the two damping models. The corresponding experimental result 
which was reported in reference [ 141 is shown in Figure 5. Strain histories at one location 
along the beam (x = O-275 m) are shown in Figures 6 and 7, again for the two damping 
models. The experimental result for the strain history at the same location is shown in 
Figure 8. 

Comparing the simulation results for the two damping models, one can conclude that 
both models have almost identical performances with regard to capturing the dynamics 
of the system after impact. In the results from the first damping model a third set of 
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Figure 2. Measured torque input. and approximated torque pulse for simulation. 
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Figure 3. Angular velocity of the rigid shaft, first damping model. 
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Figure 4. Angular velocity of the rigid shaft, second damping model. 
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Figure 5. Angular velocity of the rigid shaft, experiment. 
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Figure 8. Strain history at one location, experiment. 
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impacts is seen to have occurred at approximately t = 1.15 s (see Figure 6). However, 
this impact is not seen in Figure 8 for the second damping model. The reason is that the 
two models do not have exactly the same amount of energy dissipation; thus the effective 
coefficient of restitution values for the first set of impacts turns out to be different. The 
third set of impacts would, thus, occur at a different time for the second damping model. 

The dominant frequency predicted by the simulations is about 67 Hz, and this agrees 
well with the experimental result of 66 Hz (Figure 8). Peak strains also agree well as can 
be seen by comparing Figures 8 and 6, or 7. Due to the presence of Coulomb friction at 
the joint (not modelled in the simulation) there is a time delay in the experimental results. 
This effect can be observed by comparing Figures 5 and 3, or 4. The effect of Coulomb 
friction is seen only at the beginning of the motion when the angular velocity is small, 
and it diminishes as the angular velocity increases. The angular velocity obtained from 
the simulation shows a much higher negative peak at the time of initial impact than the 
one observed in the experiment. This difference is probably due to the fact that the angular 
acceleration for this region is beyond the limit of the incremental optical encoder which 
was used to measure the angular velocity. The average acceleration at the time of impact 
as calculated from the simulation is 110 000 [rad/s*]. The negative peaks for the subsequent 
impacts are captured accurately, and they do fall within the acceleration limit of the 
encoder. 

In summary, it can be concluded that both damping models, with appropriately 
evaluated parameters, give excellent agreement with the experimental results reported in 
[141. 

4. SENSITIVITY STUDIES FOR THE SPRING-DASHPOT MODEL 

To give the above findings greater generality, some sensitivity studies will now be 
presented. There are many possible measures of sensitivity. Here two sensitivity measures 
employed previously in [l] are investigated: 

1. Peak elastic deflection sensitivity, s, . This is basically a normalized peak deflection, 
and can be written as 

s1= [WC4 t)m,.x- @Cl, tLa.J~(~, t)rnm, (24) 

where w(Z, t),,x are peak elastic deflections calculated for different values of e, and * 
(Z, t)r?l,, is the arithmetic mean of all those w(Z, t),,,,, values. 

2. Tip-displacement sensitivity, s2. Another possible measure for sensitivity is the total 
displacement wp due to both elastic and rigid-body motion. Because of the rigid-body 
motion, wp does not have a maximum value, and so replacing w by w,, in equation (24) 
is not appropriate. A sensitivity measure s2 (which is a function of time) is introduced by 

s2 = [w,(k tL,=5oo - w,(S t)l/w,(4 f1L2=500r (25) 

where w,(Z, t) is the displacement corresponding to an arbitrary value of Cz, and 
w,(Z, t)r2=500 is the tip displacement for C, = 500. The value 500 is selected arbitrarily as 
an intermediate value of Cz in the range of practical values, and corresponds to a coefficient 
of restitution value of 0.46. The symbol t, denotes a time after impact. In the sensitivity 
plots presented t, is taken as the final time in the simulations. For the results presented 
here t, = 0.2s, and a torque pulse of 1 Nm is applied to the rigid shaft for a duration of 
0.05s. 

Values of s, for two different inertia ratios (= ZR/ I,) are shown in Figure 9. In both 
cases elastic peak deflections vary only by about 5 percent for a wide range of damping 
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Figure 9. Peak elastic tip-deflection sensitivity. 

coefficient values in the practical range of 0 to 1000 kg/s corresponding to coefficient of 
restitution values of O-4 to 0.8. 

Results for the s2 sensitivity measure are presented in Figure 10 for different values of 
CZ and one value of flexural rigidity. In all cases the maximum value is about 6 percent 
up to the final time in the simulation. Similar small values for s2 were found for other 
rigidity values. 

All the above sensitivity results suggest that a damping coefficient value which is 
appropriately chosen from the rigid-body coefficient of restitution data would give 
sufficiently accurate results, within engineering tolerances, for many situations of practical 
interest. By appropriately chosen we mean that it should be selected based on the expected 
initial impact velocity, and the material pair in question. 

5. SUMMARY AND CONCLUSIONS 

Spring-dashpot models were presented to study the dynamics of a radially rotating 
beam with impact. The models use the Hertzian contact law and damping models, and 
enable one to predict the rigid-body motion as well as the elastic motion during, and 
after impact. Two different damping models proposed by Lee and Wang [12] were 
implemented and compared for the specific problem of the radially rotating beam with 
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impact. They were found to give very similar results, which compared well with the 
experimental results reported previously in reference [14]. A sensitivity study was per- 
formed to investigate the importance of the value of the damping coefficient for the 
second damping model. It was found that the dynamic behavior of the system is not 
sensitive to the value of the damping coefficient over a wide range which covers most 
practical situations. 

Compared to the momentum balance method described previously in reference [ 11, 
the spring-dashpot models reported here require additional parameters that have to be 
determined. However, they have the merit of giving the contact force. Also it was found 
from the sensitivity studies that the models do not require a very accurate determination 
of the damping coefficient. Computationally all models, including the momentum balance 
model reported previously in reference [l], were found to be roughly equivalent for the 
specific problem treated here. However, the computational efficiency is a problem depen- 
dent issue. In the momentum balance method a set of linear algebraic equations, the 
number of which is dependent on the degree of freedom of the system, has to be solved 
for each impact [ 11. On the other hand it does not require integration (at a reduced step 
size) over the contact duration. Spring-dashpot models do not require the solution of 
linear algebraic equations, but rather the integration of the equations of motion for the 
contact duration. For a system consisting of rigid bodies the momentum balance method 
has a clear computational advantage over the spring-dashpot models. However, for 
systems involving flexible members the issues is not clear cut, and depends on the rigid 
and elastic degrees of freedom of the system. 
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