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Abstract. The coordinate transformation for quadrilateral isoparametric elements is well-defined in the finite 
element literature. However, a corresponding inverse transformation is not found. In fact, it has been commonly 
believed that no explicit solutions to the inverse transformation problem exist. This paper shows that if 
geometric considerations are used, a complete set of general solutions to the inverse transformation problem can 
be derived. An application of the inverse transformation for slope stability analysis is also presented. 

Introduction 

Two types of coordinate  systems are used in finite e lement  analysis:  a global  coordinate  
system (x,  y )  located in a finite e lement  mesh, or  e lement  domain  $2 e and a na tura l  coordinate  
system (~, 7) located in every mas te r  element,  or paren t  domain  D e. There  are pr imar i ly  two 
reasons for  choosing natura l  coordinates  in addi t ion to global coordinates:  one is the ease of  
construct ing trial functions for elements,  and the other  is the ease of  in tegra t ion within the 
elements.  

The  two coordinate  systems are related through well-defined mappings .  The  following 
expression, 

( x ,  y ) :  [(~, 7 ) ~ e ]  -> ae ,  (1) 

states that  for  a given point  (~, 71) in the paren t  domain  ~ ,  there exists a m a p p i n g  (x,  y )  in 
the element  domain  ~2~. In  other  words, for any  given poin t  (~, 7), a m a p p i n g  is def ined by  

x = x ( ~ ,  7 ) ,  Y = Y ( ~ ,  7) .  (2) 

This is common ly  referred to as coordinate transformation. 
An inverse transformation defines m a p p i n g  of a poin t  in the e lement  doma in  ~2~ back into 

the parent  domain  D e in the fo rm 

(+, 7 ) :  [ (x ,  y )  ~ *a+] ~ 9o 

or 

(3) 

= ~ ( x ,  y ) ,  71 = 7 ( x ,  y ) .  (4) 

A typical quadri lateral  i soparamet r ic  e lement  in the two coord ina te  systems is shown in Fig. 
1. The  two systems are related by  the following coord ina te  t ransformat ion:  

4 4 
x ( ~ ,  7 )  = Y'. Ni(~,  7 ) x i ,  "Y(~, 7)  = ~ N/(~,  7)Yi ,  

i=1 i=1 
(5) 
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Fig. 1. A quadrilateral isoparametric element in two coordinate systems. 

where the (x i, yi)'s are global coordinates of nodal points, and the N~(~, TI)'S are shape 
functions given by 

N,(~, "O) = ¼(1 - f ) (1  - ~/), N2(~, 71)=1(1 + f ) (1  - n), 
(6) 

N3(~, 7/) = ¼(1 + ~)(1 + ~), U4(~, 71) = ¼(1 - ~)(1 + ~/). 

The coordinate transformation in equation (5) was introduced by Taig [6] in 1961. However, 
a corresponding inverse transformation is generally not considered in the finite element 
literature. In fact, it has been commonly believed that no explicit solutions to the inverse 
transformation problem exist [7]. Although the parent domain b e can generally provide an 
adequate frame of reference for stress and strain evaluation in most finite element applications, 
there are some circumstances, such as slope stability analysis, in which the stress or strain 
evaluation in the element domain ~2 e becomes necessary. In these circumstances an inverse 
transformation method is the most efficient approach. This paper will show that if geometric 
considerations are used, a complete set of general solutions to the inverse transformation 
problem can in fact be derived. An application of this inverse transformation for slope stability 
analysis is also presented. 

Inverse transformation analysis 

The relationship between the two coordinate systems for quadrilateral isoparametric ele- 
ments can be written in a general form as 

b2 c2 d2 a 2 ~  J 
(7) 

where 

d I = 4 x -  (x 1 + x 2 + x 3 + x4), 

d 2 = 4y - (Yl +Y2 +Y3 +Y4), (8) 

and the a 's, b's and c's are functions of global coordinates of nodal points and depend upon 
local node numbering schemes. The local node numbering possibilities for a quadrilateral 
isoparametric element in a finite element mesh are shown in Fig. 2. The coefficients in equation 
(7) can be obtained by the following equations: 

[ ] [ ] (  Yl] a2 ][Xa 
aa 1 - 1  1 - 1  x2 Y2 
bl b2 = - 1  1 1 - 1  x3 Y3 (9) 
ca c2 - 1 - 1 1 1 x4 Y4 
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Fig. 2. Choices of a local node numbering scheme. 

for the local node number ing scheme Fig. 2(a), 

Ial a21 11 1 1 [x2 y]11 Yl 
b l  b2 = 1 1 - 1 - 1 x3 Y3 
Cl c2 1 1 1 - 1 x4 Y4 

for the local node number ing scheme Fig. 2(b), 

i al c c2 21ill 1 1 1 y2 ] 11 11 11 xl yl y4 Y 

for the local node number ing scheme Fig. 2(c), and 

Ial 1 1 1 1 a2 X Ix2 Xl Ya 
bl  b2 = 1 - 1 1 1 x3 Y3 
ca c2 1 - 1 - 1 1 x4 Y4 

(lO) 

(11) 

(12) 

for the local node  number ing scheme Fig. 2(d). 
A bilinear system of equations in the form of equat ion (7) cannot  be solved in general. 

However,  addit ional condit ions can be provided by  considering the geometric characteristics of  
quadrilateral isoparametric elements. These condit ions are given by  the following lemma. 

Lemma. For any given quadrilateral isoparametric element, the following two inequalities must 
always hoM: 

a I 4 = b 1 and a 2 ~ c 2. (13) 

Proof.  Let the given quadrilateral isoparametric  element be locally numbered  as shown in Fig. 
2(a). Suppose a 1 = b l ,  then according to the explicit expressions for a 1 and b 1 in equat ion (9), 
x 1 must  be equal to x 2. However,  since the local nodes 1 and 2 in Fig. 2(a) will never have the 
same x-coordinates,  a a = b a can never be true. The same arguments  concerning the y-coordi-  
nates can be made  to prove a 2 ~ c 2. By following the same logic, the l emma can be proved for 
local node number ing  schemes Figs. 2(b), 2(c) and 2(d). [] 

A compact  notat ion to represent the determinant  of  a 2 x 2 matrix is in t roduced as 

rs= rrlz ~; = rls2 - r2s1, 

where r, s = a, b, c, d. Notice that  r, = - s  r. 

(14) 
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Table 1 
Solutions for inverse transformation analysis 

No. Condition Solution 

1 aaa2abac-~O ~ a b ~ 2 + ( C b + d a ) ~ + d c = O ,  

2 a 1 = 0 and a2c I 4= 0 ~ rl = (a  d + ba,~)/ac, 
3 a 2 = 0 and alb 2 4= 0 ] where ~ ~ [ - 1.0, 1.0] 
4 ala 2 4= 0 and a b = 0 ~ = ( a l d c ) / ( b l a  c + alad);  71 = a d / a  C 

5 aaa 2 ~ 0 and a c = 0 ~ = ad/ab;  T1 = (aadb) / (c la  b + a lad)  
6 All other conditions ~ = d c / ( a l d  2 + b~); n = b d / (a 2 d l  + b~) 

Theorem. There exists a unique inverse transformation for  any quadrilateral isoparametric 
element. A complete set o f  general solutions to the inverse transformation is given by Table 1. 

Proof. The existence and uniqueness of solutions for the inverse transformation analysis are a 
consequence of the inverse function theorem [5] by the fact that the Jacobian determinant at 
every point in both the S2 e domain and the D e domain is positive [8] and a one-to-one mapping 
relation exists [3]. To establish the solutions requires only elementary algebraic techniques. The 
derivation starts with one of the two possible values of a~. 

I. When a I = 0, the following cases may exist. 
A. If  a 2 = 0, then equation (7) reduces to a linear system 

C 2 j , 1 , / )  = ( d 2 } .  ( 1 5 )  

From the existence and uniqueness condition, the determinant of the coefficient matrix in 
equation (15) must be nonzero and a unique solution is given by 

dlC 2 - d2c  I b i d 2  - -  b 2 d  1 

li = bac2 _ b2Cl , 71 blc2 _ b2cl . (16) 

This case satisfies the condition no. 6 in Table 1. The solution from Table 1 is 

de d i e  2 - d 2 c  I d lC  2 - d 2 c  1 

~g = a i d E  + b c a i d E  + b l c  2 - bEC 1 blC2 - b2c 1 

bd b i d 2  - b 2 d  1 b i d 2  - b 2 d  1 

71 = a 2 d l  + b C a 2 d a  + blC 2 - b2c 1 blC2 - b2c 1 

which is identical to equation (16). 
B. If a 2 ~# 0, then equation (7) becomes 

da 

It  has been proved that b 1 :~ 0 (Lemma). Therefore, only the value of c I needs to be 
considered to solve equation (17). 

(a) If cl = 0, then a unique solution is obtained as 

dl bid2 - bed1 (18) 
= -~1 '  11 = a 2 d l  + blC2 • 

This case also corresponds to condition no. 6, and equation (18) can be deduced from 
Table 1. 
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(b) I f  c 1 4: O, then from the first equation of equation (17), ~ may be expressed in terms 
of ~. Substitution of 71 into the second equation yields a quadratic equation of ~ as 

a2bl~ 2 -b (c2b 1 - a 2 d  I - b2c1)~ -[- ( d 2 c  1 - c2dl) = 0. (19) 

Two values of ~ can be obtained by solving equation (19), but only the one which 
satisfies ~ ~ [ - 1.0, 1.0] is the required unique solution. The value of 7/ is given by 

dl - bl~ 
71 (20) c1 

It is easy to show that the solution given by equations (19) and (20) is the same as that 
obtained by condition no. 2 in Table 1. 

II. When a I 4: 0, the following cases may exist. 
A. If  a 2 ~ 0, multiply the first equation of equation (7) by 42 and the second one by a I and 
then subtract one from the other. Equation (7) becomes 

[;~ ;:] (~} =(dl  adler/}. (21) 
(a) If  a b ~ O, two cases arise depending on the value of a c. 

(1) If ac ~ O, solving equation (21) gives an equation for ~ as 

a l a b ~  2 + ( c l a b  -- a , a  d -- b,a¢)l?; + ( d a a  c - c l a d )  = O, 

or 
ab~ 2 + ( c  b + d a) ~ + d~ = 0, (22) 

where ~ ~ [ - 1.0, 1.0], and an expression for ~ as 

a a - a b ~  a a + b a ~  
~/ (23) 

a c o c 

This solution is identical to that given in Table 1 by condition no. l .  
(2) If a~ = 0, the coefficients a i and ci (i = 1, 2) of equation (7) have a proportional 
relation, while ai and b~ do not; that is, 

ax  c a ba 
- -  = - -  ~ - - .  ( 2 4 )  a2 c2 b2 

Therefore, a unique solution to equation (7) can be found. Since equation (21) now 
takes the form 

a b 0 ~ a d 

the solution is 

aa  d l a b  -- b l a a  a l d b  (26) 
= a----b' rl Clab + a l a d  Clab + a l a d ,  

which is also given in Table 1 by condition no. 5. 
(b) If  ab = 0, then a¢ must not be zero, because if a~ = 0, then 

aa bl = Cl (27) 
a2 b2 c 2 ' 

which indicates that equation (7) has an infinite number  of solutions, and that contradicts 
the uniqueness condition. Therefore, 

a--L = bl Cl (28) 
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As in the case of II-A-(a)-(2), a unique solution can be found from the new form of 
equation (21) [0 
where 

: : ] ( ~ }  = { d l  2 ; 1 , ' 0 }  ' 
(29) 

dla c - -  c l a  d a l d c  a d 
= = - - .  (30)  

4 = b l a c T a l a  d b l a c + a a a  d'  a c 

This is the same solution as that given by condition no. 4 in Table 1. 
B. If a 2 = 0, then c 2 4~ 0 by the Lemma, and equation (7) becomes 

< j .  (31)  

This equation is similar to equation (17), case l-B, and the expression for a solution depends 
on the value of b 2. 

(a) If b 2 = 0, then 

dlC2 - c l d 2  = dc d2 (32) 
-~ a i d 2  q_ blC2 aid2 q._ blC2 , "0 = c"~' 

which can also be deduced from expression for condition no. 6 in Table 1. 
(b) If b 2 ~ 0, solving equation (31) gives the following for 4: 

alb2~ 2 q- (Clb 2 - a i d  2 - blc2) ~ --}- (dlC 2 - Cld2) = 0, (33) 

where ~ ~ [ - 1.0, 1.0], and the following for ~/: 

d 2 -- b2~ 
7/= - -  (34) 

¢2 

This case satisfies the condition no. 3 and the solution given by equations (33) and (34) 
can be obtained directly from Table 1. [] 

The above theorem gives a complete set of general solutions to the inverse transformation 
for any given quadrilateral isoparametric element. The above proof was conducted on a 
case-by-case basis to show the completeness of solutions and to provide an algorithm for 
computer implementation. 

Application for slope stability analysis 

Stress and strain evaluations in finite element analysis are usually conducted in terms of 
natural coordinates (4, 71) in the I2 e domain. There are some circumstances in which the stress 
or strain evaluation is preferred to be performed in terms of global coordinates (x, y)  in the I2 e 
domain. Here slope stability analysis is used as an example. 

Most of the methods used today for slope stabifity analysis fall into two approaches: limiting 
equilibrium methods (LEM) [1,2,4] and finite element methods (FEM). For many practical 
engineering problems, a LEM is preferred for two reasons. First, it is easier to implement, and 
second, it provides civil engineers with a quantitative measure of slope stability in the form of a 
factor of safety against failure. Although the LEM can handle simple slopes, complex boundary 
conditions and unusual inclusions, such as soil reinforcement or underground structures, 
warrant a FEM for the analysis. 
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Fig. 3. Stress state at a point on an as- 
sumed failure surface. 

On the other hand, although the FEM is very effective at providing stresses, strains and 
displacements, it does not furnish a factor of safety against failure. Therefore, neither LEM nor 
FEM alone is ideal for slope stability analysis. However, if the two methods are combined, a 
powerful approach to slope stability analysis can be developed. This is referred to as a FLEM 
(the combination of FEM and LEM) model for slope stability analysis. 

The FLEM model consists of two procedures: (1) a FEM to obtain the stress field in a slope, 
and (2) a LEM to determine the minimum factor of safety against failure. 

The stress state (either effective or total) at a point on an assumed failure surface is shown in 
Fig. 3. If the tangent to the failure surface at the point makes an angle O with the vertical, the 
normal and shearing stresses on the surface at the point are given by 

on ~ + ~ + S y  sin 20, (35) 

o x - o y  . 

~" = ~ sin 20 + "rxy cos 20. (36) 

If the stresses along the failure surface can be computed from the finite element analysis, the 
normal and shearing stresses at every point on the failure surface can be computed by 
equations (35) and (36). The shearing strength, s, at any point on the surface can be obtained 
from the computed normal stress and Mohr-Coulomb theory [4], or 

s = c + o  n t a n ~ ,  (37) 

where c is the cohesion and ~ is the internal angle of friction. 
The total shearing strength and the total shearing force can then be found by summing the 

shearing strengths and shearing stresses at all points along the failure surface. Thus, a factor of 
safety against the surface failing can be defined as 

F S  = shearing strength on failure surface 
shearing force on failure surface 

N 
Y'~ (c, + On, tan q,,)AL, 
i = l  

N 

i=l 

, ( 3 8 )  
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where ALi is the incremental  length at point  i along the failure surface and N is the number  of 
points on the surface at which stresses are evaluated. Different failure surfaces, such as planes, 
circles, logarithmic-spirals, parabolas, and so on, can then be assumed in search of an overall 
min imum factor of  safety for the slope. 

A problem in coupling F E M  and L E M  in F L E M  is the determinat ion of  stresses along a 
failure surface. This problem results f rom the fact that  a failure surface is defined in a ~2 e 
domain  while stress evaluation in F E M  is usually done in the ~ ,  domain.  Two approaches were 
previously used to overcome this obstacle: either simple constant  strain triangular elements 
were used which eliminated this problem because the stresses within such an element were 
constant,  or, when quadrilateral isoparametric elements were used, the stresses along a given 
failure surface were interpolated f rom integration points. An  obviously more  effective and 
efficient solution would be to perform an inverse t ransformat ion analysis which would enable 
natural  coordinates to be expressed in terms of  global coordinates  so that stress evaluation can 
be done directly in the element domain  I2,. 

Conclusions 

The inverse t ransformation algorithm developed above allows for an explicit mapping  ~f a 
point  in the element domain I2 e into a parent  domain  ~e. To some critical applications of finite 
elements, such as slope stability analysis, the inverse t ransformat ion provides an efficient 
approach for stress and strain evaluation in ~2~. 
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