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1. INTRODUCTION

In Winter [7], a certain class of Lie algebras, symmetric Lie algebras,
and a corresponding class of combinatorial structures, Lie rootsystems, are
introduced and studied independently. They are then interrelated, making
it possible to study symmetric Lie algebras using Lic rootsystems. This is
undertaken in Winter [4, 6] where further results on Lie rootsystems are
obtained and used to study simple symmetric Lie algebras and two large
classes of Lie algebras generalizing the Albert-Zassenhaus Lic algebras and
the Kaplansky Lie algebras.

The Lie algebras and structures to which we refer are the symmetric Lie
algebras and the Lie rootsystems which we define in Definitions 1.1 1.4
below. And the system of roots corresponding to a given symmetric Lie
algebra to which we refer is the one we then describe in Theorem 1.5.

The purpose of this paper is to use the classification of Lie rootsystems
of low rank to gain access to the structure of the automorphism group of
a symmetric Lie algebra L; and then we use the theory of algebraic groups
and the theory of Lie rootsystems to prove the following theorem, which
expresses the structure of a symmetric Lie algebra L in terms of a classical
Lie algebra L, a semisimple symmetric Lie algebra L* whose root system
is a Witt rootsystem (defined below) and solvable ideals. In the case of a
ground field of characteristic 0, the theorem simply says that a symmetric
Lie algebra of characteristic 0 is of the form L =L@ Solv L with L semi-
simple, which follows from Levi’s Theorem. So, we restrict ourselves in this
paper to the much more difficult context of a ground field k of prime
characteristic p >3 (and sometimes 7).

* The author takes this opportunity to thank the University of Michigan for a Rackham
Rescarch Grant in support of this research.
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THEOREM 5.1. Let (L, H) be a symmetric Lie algebra over a field of
characteristic p>"1. Assume that (L, H) has no section of type T,. Then
(L, H) has a subalgebra L” and an ideal I such that

(1) L=L"+1and L"/Solv LY is a symmetric Lie algebra with Witt
rootsystem isomorphic to R" and L" nI< Solv L";

(2) I has a “Levi decomposition” I=Lg@® Solv I where S is any classi-
cal complement of R” in R, Lg is a classical Lie algebra of type S, and
(Solv I)? is nilpotent.

1.1. DeFINITION.  Given a Lie algebra L=3%,. z L, (Cartan decomposi-
tion of L relative to a specified split Cartan subalgebra H= L), we let
Li={xeL,|[h x]=a(h)x for all he Ly}.

1.2. DerFINITION. A symmetric Lie algebra with symmetric Cartan sub-
algebra H= L, is a finite dimensional Lie algebra L=73,. s L, such that
a([L' ,, L1])#0 for all nonzero roots ae R.

—a

We will refer to a symmetric Lie algebra L with symmetric Cartan
subalgebra H as the symmetric Lie algebra (L, H).

1.3. DEFINITION. A rootsystem is a pair (V, R) where V is a vectorspace
and R is a finite subset of V' containing 0 and spanning V" which has a sym-
metry r,(v)=v—a’(v)a (veV) for each nonzero ac R, the conditions
defining “symmetry” being:

(1) a®eHom,(V, k) and a°(a)=2; ’
(2) r.(Ry(a))= Ry(a) for every bounded a-orbit R,(a) (be R).

In the above definition, R,(a) denotes the maximal string {b—ra, ..,
b+ga} of a-consecutive roots containing b, which is unbounded if it has p
(the maximum possible number of) elements and bounded otherwise.

The rank of the root system R is the dimension of V, whereas the Z-rank
of R is the rank of its groupoid dual

Hom(R, Z)= {fR—Z| f(a+b)=f(a) +f(b)
when all of a, b, a+ b are in R}.

The set RnZa of elements of R that are integral multiples of a is
denoted by Ra and is called the 1-section determined by a. Note that Za
has p elements if 4 is not zero, since the characteristic is p > 0.

For a nonzero root a, we introduce the following terminology:

(1) If Ra=Za, then a is called a Witt root and Ra is said to be of
type W, (since it is isomorphic to the system of roots of a Witt algebra of
rank 1).
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(2) fRa={—aqa, 0, a}, then ais called a classical root and Ra is said
to be of type A, (since it is isomorphic to the system of roots of a simple
Lie algebra of type 4,).

This leads us to rootsystems that play a key role in studying symmetric Lie
algebras.

1.4. DEFINITION. A Lie rootsystem is a rootsystem (¥, R) such that

(1) R is the union of the subsets

RY ={ae R|a=0or ais aWitt root }
and
R¢={aeR|ais a classical root };

(2) for every Witt root ae R”, the a-orbit R,{a) of any root b has
1, p—1, or p elements.

In particular, any nonzero rootsystem in the sense of 1.3 ail of whose
roots are classical or 0 is a Lie rootsystem called a classical rootsystem,
condition (2) of 1.4 being satisfied vacuously in this case. Similarly, a Lie
rootsystem all of whose roots are Witt roots is called a Witr rootsystem.
Classical rootsystems play a key role in this paper, because of their
frequent appearance in the structure theory and because they are the root-
systems of the classical Lie algebras (cf. Theorem 2.2). Witt rootsystems
also play a key role, as we see from the main structure theorer,
Theorem 5.1.

Using the representation theory for the simple rank 1 symmetric Lie
algebras (the classical and Witt simple Lie algebras of rank 1), the follow-
ing is proved.

1.5. TueoreM (Winter [7]). For any symmetric Lie algebra I =
YaerLa, (V,RY=(LE, R) is a Lie root system, L§ being the dual space
of Lg.

In order to study the rootsystem locally, two roots at a time, as a tool
to use in studying it globally, the rank two Lie rootsystems are determined
by classifying the possibilities for pairs of roots. These possibilities for root
pairs can be represented by the root pair types

Ay v Ay, Ay, By, Gy, Wi v Ay, Wim, n), W@ A,(m), Sy(m),
T, =S5,(A,)(m).

Here, the parameters m and n are needed to take into account all
possibilities for certain Cartan integers of the pairs of roots, as described in
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TABLE 1
Possibilities for Pairs of Independent Roots g, b, Up to Change of Signs

No. Diagram  Recognition conditions on a and b Typeof Rab  a°(b) b°(a)
L : ; a,be R, R,(a)={b} Av A4 00
2. — a,be R, a*(b)b*(a)=1 A, -1 -1
3. - a,be R, a*(b) b*(a) = a*(b)/b*(a)=2 B, -2 -1
4 == abeR,a*(b)b*(a)=a*(b)/b*a)=3 G, -3 -1
5. o e acRbeR, Rya)={b} Wy A 00
a b
6. o o abeR%R(a)={b} Wy w 00
a b
7. o™ o  a,beR% Rya)=Za+b W, —t —n
a b
8. ore acR%beR,a+berR WA —m0
a b
9. :E’b a,be R, a*(b) b*(a) =4, a*(b)/b*(a)=1 WaA -2 =2
10. = a,beR"%ab)b%a)=4 S, —m —4/m
a b
11, o—e acR%beR,a+beR° T, 0 —m
a - b

Table I taken from Winter [7]. In the diagrams given in the table, black
nodes represent classical roots and white nodes represent Witt roots.

This classification of root pairs induces a classification of Lie rootsystems
of rank 2 (those generated by 2 but no fewer roots). Since the isomorphism
type of a rank 2 Lie rootsystem does not change when only the parameters
of the 2 roots generating it are changed, the isomorphism types of rank 2
rootsystems are obtained by simply dropping the parameters. So, the
isomorphism types can be represented as

Ay v Ay, Ay, By, Gy, Wi v Ay, Wy, W@ A, 8,5, Tr=8,(4,).

The last of these, the Lie rootsystem T, = S,(A,), deserves special atten-
tion at this time because of the role it does not play in this paper:

Henceforth, we assume that there are no 2-sections of type T, in
the Lie rootsystem of the symmetric Lie algebra under study.
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The reasons for making this assumption are that no symmetric Lie algebra
having T, as its Lie rootsystem is known to exist, and that we need it for
our methods to work.

The Lie rootsystem T,=S5,(4,) that we have just banished is the Lie
rootsystem S,(R)=S,+ R introduced in Winter [7] where n=2 and
R=A,. Here S, is the rootsystem

{0y U {(rys s r)lF + oo +7,#0}

(where the r,, .., r, Lie in the prime field) and R is any Lie rootsystem
contained in

{(ryywa )P+ - +7,=0}
{where the r, + .- +r, lie in the prime fieid). So,
T,=8,+{(1, —1),(0,0), (-1, )} =S, u {(1, —1), (-1, 1) }.

It is a rootsystem having p(p — 1) Witt roots and two classical roots +a.

Given this classification, which gives the possibilities for the 2-sections
of L (rootsystems of the symmetric subalgebras of toral rank 2 of 7
determined by two roots), general results about symmetric Lie algebras
are proved in Winter [7] and then applied in Winter [4, 6] to get the
following results:

a. classification of all irreducible Witt rootsystems of ranks 1, 2,
and 3;

b. classification of all irreducible Witt rootsystems having no sections
Sy, Wi® (W, v Wy);

c. the rootsystem of any simple nonclassical symmetric Lie algebra
having no 2-section T, is a Witt rootsystem;

d. classification of the rootsystems of the generalized classical
Albert—Zassenaus Lie Algebras for p > 3;

e. classification of the rootsystems of the classical Albert—
Zassenhaus—Kaplansky Lie algebras for p > 3;

f. construction of a Weyl group W(R) of the rootsystem R of a
symmetric Lie algebra which, when the Cartan matrix is nonsingular, acts
transitively on certain classical complements S (certain maximal classical
subrootsystems of R).

Now, in this paper, we pursue the structure of symmetric Lie algebras
from another vantage point, that of its automorphism group Aut L.
Although it is elementary that Aut L is an algebraic group for any finite
dimensional Lie algebra L, it is rare that much more is known about Aut
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L for general classes of Lie algebras of characteristic p. A notable exception
is when L is a classical Lie algebra, in which case the existence of inner
automorphisms is assured by the shortness of the lengths of root strings.
This is explained in Seligman [2, Chap. I11, pp. 50-72] which is devoted to
determining the automorphism groups of the classical Lie algebras.

In this paper, we make use of the theory of Lie rootsystems and their
classification for low ranks to prove, subject to the assumption that there
be no 2-section of type T, that the lengths of root strings of classical roots
are at most 4. For p>7, this has rather strong implications for Aut L,
namely that it is quite large and that much can be said about its structure
in terms of certain special subgroups. The full power of the theory of
algebraic groups now can be brought into play in studying L, since L is
built from pieces having counterparts in Aut L. It is harnessing the power
of the theory of algebraic groups in this way that lies at the heart of the
proof of the structure theorem of Section 5.

2. PRELIMINARIES

Throughout the paper, k is a field of prime characteristic p, L is a Lie
algebra, and L= ,.zL, is a Cartan decomposition where the Cartan
subalgebra is H= L,. We take the point of view throughout the paper that
we are working with a fixed Lie algebra L and a fixed Cartan subalgebra
H of it, never to be changed in the discussion. So, we are really studying
Lie algebras relative to given Cartan subalgebras.

Assume next that L is a symmetric Lie algebra. We regard the root-
system R of L as a subset of the k-span V of R in the vector space of
functions from L, to k. By Theorem 1.5, (R, V') is a Lie rootsystem. The
type of (L, H) is just the isomorphism class or type of its rootsystem R. For
example, if R is of type W,, then L is of type W,.

If S is a subrootsystem of R, then L, defined below, is a symmetric Lie
algebra with Cartan subalgebra Hy, also defined below, and rootsystem S.

2.1. DEFINITION.  Lg=3,c5_(0) ([Ls L_,1+L,) and Hg=3 ,.s_ (0}
[L., L_.].

The intersection Ra, ---a; of R with Za, ® --- @ Za, is a Lie rootsystem
for any roots ay, ..., a;, called a k-section. We have seen in Section 1 that
the types of possible 2-sections are

Ay v A, 45, 8,,G,, Wi v A, W, W®A4,,5,, T,.

If S is the k-section S= Ra, ---a,, the subalgebra Ly is a k-section of L.
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Then L is a symmetric Lie algebra with rootsystem S and the type of L
is just the isomorphism type of S.
Recall from Section 1 that R" denotes the set of roots ae R such that

a2a,..{(p—1)a

are also in R, the set of Witt roots of R; and R = R — R", the set of classi-
cal roots of R. The set R” of Witt roots is a Witt rootsystem as defined
in Section 1. So, by Winter [7], the possible types of I-, 2-, and 3-sections
of RY are

Wi, W, S, Wo, W@ (W, v W), Wi®S,, 85, S5 (W, v W), §5(5,)

and joins {(unions of pieces sharing exactly one element in common, namely

0) of two or more of these. Moreover, if there are no sections of type 5,

or S;(W, v W,), the irreducible components of R” are finite vector spaces.
We need the following results of Winter [4, 7.

2.2. THEOREM (Winter[71). A Lie rootsystem R is isomorphic to the root-
system of a classical Lie algebra if and only if it is a classical rootsystem as
defined in Section 1 {that is, a nonzero rootsystem all of whose nonzero roots
are classical.)

2.3. TueoreM (Winter[7]). The rootsystem R of a symmetric Lie
algebra L is classical if and only if

LR: Z ([La7 Lfa] +La)
ae R— {0}

is classical with classical Cartan subalgebra Hp=73,cp oy LLo L]

2.4. TueoreM (Winter [4,7]). Let R be a Lie rootsystem which has no
section of type T,, and let be R be any classical root of R. Then

1. R has a splitting f at b, that is, a mapping f° R— R such that
bef(R) and
(i) f(a)=0if and only if ae R”;
(i) f*=f;
(iii) f(a)® (f(c))=a’(c) for all ae R, ceR,;
2. for any splitting f of R, S=f{(R) is a classical rootsystem and
RS R+ §;

3. Any two splittings f, f' are uniquely isomorphic; that is, there exisis
a unique isomorphism W :f(R)— f'(R) of classical vootsystems such that
Wi{c)—ceR"Y for all cef(R).
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If we let f be any splitting fr the rootsystem R of a symmetric Lie algebra
L, we get a classical rootsystem S=f(R). We'll refer to any S obtained in
this fashion as a classical complement of R. By Theorem 2.3, the corre-
sponding Lie subalgebra Lg defined below is a classical Lie algebra with
classical Cartan subalgebra H.

2.5. DErINITION. For any classical complement S of R, the classical Lie
algebra (Lg, Hg) where

LS= Z ([La5L~a]+La)

aeS— {0}

and Hg= Lg¢n H is called a classical complement of L.

Although there is a classical complement Ly of L for any classical com-
plement S of its rootsystem, we define only one Witt core, in the sense
given below, since R" is a subrootsystem of the rootsystem of L.

2.6. DEriNITION.  The Witt core of a symmetric Lie algebra (L, H) is the
subalgebra Ly,=3 , v ([L,, L_,]1+L,).

3. T Groups Aut L AND Inner Aut(L, H)

In this section, we study the group Aut L of automorphisms of a
symmetric Lie algebra L. As a backdrop to this study, we fix a symmetric
Cartan subalgebra H and corresponding Lie rootsystem R of L. Using R
and its properties, we introduce the subgroup InnerAut(L, H) of inner
automorphisms of L with respect to H. We also introduce some important
subgroups of it. These are algebraic groups and their Lie algebras come
into play during the discussion. By using their Lie algebras, we are able to
get the structure of L by going to Aut L, using properties of algebraic
groups and then transferring important information back.

In order to be sure that we can construct automorphisms from inner
derivations by the method given below, we assume for the remainder of the
paper that R has no 2-section T, and that p>.

Consider any roots ae R, be R, and the section Rab determined by
them. If Rab is reducible, then the g-orbit Ry(a) of b is {b}. If Rab is
irreducible, then Rab is isomorphic to one of

Al: AZ: BZa GZ’ Al@ Wla

since 7T, is excluded by hypthesis, and all other rank 2 Lie rootsystems
contain no classical roots. In every case, the cardinality | R,(a)| of the
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a-orbit R,(a} of b is at most 4. This is well known if R is classical, e.g.,
Jacobson [1, p. 117]. In the remaining case, R must be of type 4, ® W,
so that it is isomorphic to {a, 0, —a} ® {0, ¢, ..., (p— 1) ¢}, by Winter [6].
In this case, it is also true since the only coefficients m of linear combina-
tions ma+nce 4,® W, are —1, 0, 1. It follows that (ad x)*=0 for all
xe L, {ae R%).

Since we’ve assumed that p > 7, we have 4 < (p —1)/2 and it follows that
exp(ad x), for ae R and xe L, is contained in the automorphism group
G=Aut L of L. So, for any classical root a and any xe L,, the algebraic
group & contains the subgroup

U,={expix|tek}.

As a homomorphic image (as a group and as an algebraic variety) of the
closed connected additive group kx, U, is a closed connected subgroup of
G. It follows from the theory of algebraic groups that for any subset X of
R, the subgroup Gy of G generated by the union of all U, for which xe L,
for some ae X n R is a closed connected subgroup of L. We now single
out certain of these groups of special interest to us here.

3.1. DeriNiTION.  The group G is called the group of inner auto-
morphisms of L with respect to H and is denoted Inner Aut (L, H). If §is
a classical complement of R, then Gy is called a classical complement of
Aut L.

In Winter [4], we defined IB(X) for any X < R to be the subgroup of the
automorphism group Aut R of R generated by {r,|be X" R}; and we
defined U(X) to be the subgroup of Aut R generated by

{rsfarplbe XN R, aeR”, a+bheR).

{Recall from Section t that r,(a) is defined as a—5%a) b.) We also con-
sidered the matrix (a](?(a,-)), a, .., a, being a base (simple system of roots
in the sense of Jacobson [1,pp. 119-1217) for a given classical complement
of R. Since any two classical complements of R are isomorphic by some
automorphism of R, by Theorem 2.4, the matrices (af(a,-)), (bf{b,—)) relative
toc bases a,,..,q, and by, .., b, of any two classical complements are
similar. In this sense, we refer to any such matrix (aj.’(a,.)) with respect to
any base ay, ..., a, for any classical complement as a Cartan matrix for R.
Since p>7, the Cartan matrix for R is nonsingular if and only if no
irreducible component of a classical complement of R is of type 4, where
pin+ 1. Given this, we state the following result on the rootsystem R of L.

3.2. THEOREM (Winter [4]). Suppose that R has no section of type T,
and let S be a classical complement of R with base of simple roots n. Then
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In any case, the module I7;,,(R) is the trivial submodule of R, and the
module 77}, _y;7(R) is one dimensional. Thus by (3.2) we obtain

(3.7) ProposSITION.  Under the hypothesis of (3.1), we have a direct sum
decomposition

Res (770, 7 (Ind 777 (V)
~ Inf%Ind ;’,;iﬁ TL;(V))@( ® HM(R)>. (3.8)
yeZ+(ANJ")
In particular, the modules of fixed points given in (3.5) are TL -module direct
summands of Res (7o - (Ind 77 (V).

(3.9) Remark. The ring R is a local ring of the form k[ {x;}] where the
{x,;} are a suitable set of generators, and it is naturally a graded ring. The
homogeneous components of R under this grading are invariant under the
conjugation action of TL,. This gives rise to a second decomposition of R,
R=®R,, where R, is the homogeneous component of degree i relative to
the above grading. Each R; has a decomposition analogous to (3.6), and
the decomposition of R obtained from the decompositions of the R’s is a
refinement of (3.6). One can use this to improve the decomposition (3.8).

4. LIFTING, EXTENSIONS, AND FILTRATIONS

(4.1) Lifting. 1f TL, is the Levi factor of a parabolic subgroup scheme
TP,, then it is also the Levi factor of TP?. Thus we have two ways to
inflate TL,-modules to modules for a parabolic subgroup scheme of TG,.
Denote these inflation functors by Inf: .4, — #,p and Inf®: 4, — My,
respectively.

The composition of inflation with induction is called lifting. If TP, < TP,
are two parabolic subgroup schemes of 7G,, we obtain two lifting functors
ATPr: Mry, — Mrp and (A°)7F: Mpy, > My, When TP,=TG,, we
denote these functors by A,, and (A°)r, , respectively.

(4.2) Extensions. In this paragraph, we show that a large class of
modules for TP? can be extended to rational modules for TG,. The exten-
sions are not unique in general, but in one important special case, they are
unique up to isomorphism.

We let Q°=Ind7%7(k) and recall that Res Z’:ZO(QO) is the injective hull of
the trivial U p-module. ’
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(42 1) LeMMA. Let M be a rational TL,-module. Then the TP°-module,
Ind ;L (M) = Inf°(M)® Q° can be extended to a rational TG -module This
extension is not unique in general.

Proof. By (3.1), Resiﬁo(AT,_(M))~Ind (M), $O an extension is
simply 4, (M).

Suppose [ is an injective indecomposable 7G,-module. The restriction of
[ to TP? is also injective since TG,/TP° is affine [CPS 5, (2.1), (4.5)]. In
general, it does not remain indecomposable. We write I=1,&1,®, .., 1,
where the Is are injective indecomposable rational TP%-modules.

Suppose S is an 1rredu01b1e rational 7L -module and Q,(S) is its injec-
tive hull. Then Ind ;{ (Q.(S)) is a rational injective TP°-module. Since the
socle of Ind % e, "(Q.(S))=0 is contained in the space of U reo-fixed pomts
of this module it follows from (3.5) that Soc(Q)= Soc(QU"’ )=
Soc(Q,(S))=Inf°S), hence

Ind72(Q,(S)) is the injective hull of Info(S).

It follows that each of the modules /; has an extension to a 7G,-module,
hence Res”,o(I) has at least two dlstmct extensions to a 7TG,-module

whenever s> 1. It is clear that examples where s> 1 occur in all types of
rank at least two, hence the proof of the lemma is complete.

(4.2.2.) PROPOSITION. Let M be a finite dimensional rational TL,-module.
Let AcX and Z=/4+1ZX,. If M is Z-generated, then the TP°-module
Ind ;{?(M ) has an extension to a rational TG ,-module which is unique up to
isomorphism.

Proof. Suppose V is a rational 7G,-module with
Res TG'( V)~ Info(M)® Q°.

By (2.2.3) and (3.7), it follows that IT,(V') ~ Inf®(M)® Soc(Q°) and that
as an TL,-module we have a direct sum decomposition

Res77(V) = (V)@ IT(V),

where Z' is the complement of Z in X. If 6 is a weight of the module
I1,.(M), then the sum of § and any non-negative integer linear combination
of roots for root subgroups in Uy, is an element of Z’. Hence IT,(V) is
in fact a TP,-submodule of ¥, and the quotient map ¥V — V/IT,.(V) is a
homomorphism of TP,-modules onto Inf®(M)® Soc(Q°). By universal
mapping, we obtain a homomorphism of 7G,-modules, V — Ay, (M). This
homomorphism is injective on the U rro-socle of V, hence it is injective.
Now a dimension count shows it is surjective.
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On the other hand, applying our above equation for r,(a) to A gives

ry(a)(h) = a(h) — 2(a(h,)/b(h,)) b(h)
= a(h)—a(h,) b(h)

since b(h,)=2. Comparing, we see that wi(a)(h)=r,(a)(h) are equal for
all h. |1

For any subset X of R, we let T(X) be the group of elements of G which
map L, into itself for a=0 and all ae X~ R®. Then T(R) is a closed
normal subgroup of M(R). Moreover, it contains the products w,(s) w,(z)
and w,(s) ™! wy(t) for any nonzero s and 1, by a straightforward argument
using Lemma 3.3 and Theorem 3.4. Taking w, = w,(1), we can express

w(2)=w,v(2),

where v(¢) = w; 'w,(¢) € T(R). This having been said, for any subset X of R,
we define N(X) to be the subgroup of M(R) generated by

{w,|be X R} U T(R).

Then N(X) contains w,(z) for all be X R. We then let W(X) be the
factor group N(X)/T(R).

The action of w} on R is the same as the action of the reflection r, of
the Lie rootsystem R, by Theorem 3.4. So, we get the Weyl group M(R) of
the rootsystem R as a homomorphic image of the groups N(R). Since T(R)
leaves each element of R fixed, any action of N(R) factors to an action of
W(R) on R. So, we have a surjective homomorphism from W(R) to I(R).
Since an element of the kernel of this mapping is represented by an element
leaving invariant each L, for ae R, and since such elements are in T(R),
this kernel is trivial. So, our homomorphism is actually an isomorphism
from W(R) to IB(R).

Similarly, we get the same type of thing for each classical complement of
S, where the discussion goes along the same lines as in the case of complex
semisimple Lie algebras. The phenomena for R amounts to a coherently
patched together phenomena for the classical complements. Specifically, for
any classical complement S of R and any be S, S is mapped into itself by
w# and the action of w¥ on S is the same as the action of the reflection r,
of the Lie rootsystem R on S, that is, w}|s=r;|s. So, we get the Weyl
group of the classical rootsystem .S as a homomorphic image of the groups
N(S). As in the case of R above, the action of N(S) factors to an action of
W(S) on §, since T(R) leaves each element of S fixed. So, as in the case
of R, we have an isomorphism from W(S) to 23(S).
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We also define V(X) as the group generated by the set of products
{(Wywaiplbe XN R, ae RY, a+be R} UT(R)

Since be XN RE, ae RY, a+be R implies that a+be RS, V(X) is a sub-
group of W(X). In particular, it follows that ¥(X) normalizes T, so that
UX)=V(X)/T(R) is a group. Under the isomorphism from W{(R} to
W(R), U(R) is mapped isomorphically to U(R). We now can lift
Theorem 6.8 of Winter [4] from Aut R to Aut L as follows, using
Theorem 3.4.

3.5. THEOREM. Suppose that R has no section of type T, and let S be a
classical complement of L with base of simple roots n. Then

1. W(R) and MW(R) are canonically isomorphic, and this isomorphism
induces a canonical isomorphism from U(R) to U(R),

2. Win)= W(S);

3. Ulny=U(S), U(S) is normalized by W(S), US)n W(S)=T(R),
and W{R)= W(S) U(S).

Although the equation

g(La) = Lg*(a)

relates the actions of Z3(R) on R and W(R) on L, the relation between the
action of W(R) on R and the inner automorphism action of W{(R) on
G=Aut L is not so close. About the best that can be done easily is to
exponentiate the relationship g(L,)= L.+, for a classical complement,
using the equation g(exp ad x)g '=exp ad g(x). Of course, this means
that whenever the Weyl group I3(R) of R acts transitively on the classical
complements S of R, the Weyl group W{(R) acts transitively by inner
automorphisms on the classical complements G5 of Aut L. We know that
this is true when the Cartan matrix of R is nonsingular, by Theorem 3.2,
which gives us the following version of Levi’s Theorem for algebraic groups
of characteristic 0.

3.6. THEOREM. When the Cartan matrix of R is nonsingular, the classical
complements G ¢ of the algebraic group Aut L are conjugate.

The G4 are contained in a special part of Aut L whose Lie algebra has
an ideal which we are able to study structurally, in the next section.
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4. AN IDEAL IN THE LIE ALGEBRA OF THE GROUP Inner Aut(L, H)

Whereas the group Gr=Inner Aut L is generated by the closed
connected one parameter groups

U,={exptade,|tek}=expL,(foraec R e,e L,—{0}),

we consider the subalgebral generated by the one-dimensional Lie
algebras L, of these U, (for ae R, e,e L,— {0}).

We show first that 7 is an ideal of L. For this, it suffices to prove that
I is normalized by the Witt core L, of L, since L= L+ I. So, consider
aeL"— {0} and be L. If a+ be R, then a+be RS, as one sees from the
classification of rootsystems of rank 2. It follows that [L,, L,] <=1 On the
other hand, [L,, L,]=0if a+ b is not in R. Using this, we see that ad L"
maps a generating set for the algebra I back into 1, from which it follows
that L, normalizes I So, I is an ideal of L.

The U, (for ae R°) stabilize the ideal I, since they consist of exponen-
tials of inner derivations by elements of I. So, the group Gy, stabilizes I. The
subalgebra Lie G of the Lie algebra Der L of derivations of L contains Lie
U,=ad L, for all ae R". It follows that, Lie G, contains the Lie sub-
algebra ad 7 of Der L generated by the ad L, (for ae R). Since the group
G stabilizes the ideal [, its Lie algebra Lie G stabilizes I. It then follows
that

[Lie Gg,ad I]<ad Lie Gg(I)y<ad I,

so that
1. ad Iis an ideal of Lie G .

Since Gy is an algebraic group with a Cartan subgroup C, containing a
maximal torus of T(R) containing the torus T generated by the elements
wy(s) ™! wy(t) (for nonzero scalars s, ¢ and be RC), its Lie algebra Lie G,
has Cartan subalgebra C containing Lie T and classical Lie algebra
quotient Lie Gr/(Solv Lie Gz) with classical Cartan subalgebra C
containing Lie T. Ideals and quotients of classical Lie algebras are classical,
as one easily verifies from the definition of classical Lie algebra, Seligman
[2, p. 28]. Since

(ad I+ Solv Lie G z)/Solv Lie G,
is an ideal of the classical Lie algebra Lie G /(Solv Lie G ), it follows that

(ad I+ Solv Lie G)/Solv Lie G,
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is a classical Lie algebra. By the fundamental homomorphism theorem,
ad I/J is a classical Lie algebra where J is the intersection of ad f and
Solv Lie G;. Since J is solvable, it is contained in Solvad /. So, since
(Solvad I}/J is a solvable ideal in a classical Lie algebra, it is 0 and
Solvad I'=J. It follows that ad I//=ad //Solv ad I, so that ad I/Solvad 7
is a classical Lie algebra. Since Solv I contains the center of I, the algebras
I/Solv I and ad I/ad(Solv I') are isomorphic. It follows that ad(Solv [} must
be the solvable radical of ad I, so that ad(Solv /}=Solvad Z But then
I/Solv I and ad I/Solv ad I are isomorphic, from which we conclude that

2. I/Solv I is a classical Lie algebra.

Since (Solv Lie G)? is nilpotent, by the Lie-Kolchin theorem for the
connected solvable radical Solv G, of the algebraic group Gy, it follows
that

3. {Solv I)? is nilpotent.

5. THE STRUCTURE OF L

We now use the ideal ad I of Lie Inner Aut(Z, H) and its properties (o
prove

5.1. TaeorReM. Let (L, H) be a symmetric Lie algebra over a field of
characteristic p>"1. Assume that (L, H) has no section of type T,. Then
(L, H) has a subalgebra LY and an ideal I such that

(1) L=L"+1Iand L"/Solv LY is a symmetric Lie algebra with Witt
rootsystem isomorphic to RY and L nI<Solv LY

(2) 1 has a Levi decomposition I = L (@ Solv I where S is any classical
complement of R in R, Lg is a classical Lie algebra of type S, and (Solv I)?
is nilpotent.

Proof. We take L" to be the Witt core of (L, H) introduced in
Section 2, and we let I be the ideal introduced in Section 4. Since

R=R"URS,
we have
L=L"+1
We now prove that L"/Solv L" is symmetric with Witt rootsystem R"”

relative to H+Solv L"™. For this, it suffices to show that for each
ae R¥ - {0}, e,e L' ,e,el}, h,=[e_,, e,] with a(h,)#0 that &, is not

—a’

481/134/2-9
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an element of Solv L". Suppose, to the contrary, that 4, Solv L”, under
such circumstances. Then L,=T[h,,L,] and L_,=[h, L_,] are
contained in Solv L%, so that Solv L” contains the semisimple algebra
ke_,+kh,+ ke,. This is not possible, however, so we must conclude that
h, is not an element of Solv L”, as we set out to show. Consequently,
L"%/Solv L" is a symmetric Lie algebra with Witt rootsystem RY.

We next proceed to show, for any classical complement S of R¥ in R,
that I=Lg+ Solv I where Lg=3Y,.s([L _,, L,]+ L,), that L is a classi-
cal Lie algebra, and that L" N1 is solvable. Since the generators L, (for
ae R€) of the ideal I are one dimensional, by Theorems 2.2 and 2.3,
L% 1, Lg, T do not change when we replace L by Lo+ 3,z (o) L
(Recall that L) = {xe L,|[h x]=a(h) x for all he L,}.) Also, L N1, Lg,
I do not change when we replace L by L By the first of these two observa-
tions, we may assume, with no loss of generality, that ad L, acts diagonally
on Y, x_ (o L, By the second, we may assume, with no loss of generality,

that L = L Since
L=Ly+ Y L,
aeR— {0}
and L= L2 we have

Lo=[Ly, Lo] + z [L_. L,

ac R— {0}

It follows that ad L, acts diagonally (as well as by nilpotent trans-
formations) on the subset 3, x_ (o3 [L_,, L,] of L, as well, so that
ad Lo > e r—g03 [L_4» L,]1=0. From this, we see that

(Lo, Lol= [ Lo, [Lo, LoT] +[Lo, Y [L_., La]]= [Lo, [Lo, Lo]]

asR— {0}

and
[Lo» Lol = [ Lo, [ Lo, Lo11.
It follows from this and the nilpotency of L, that [ L,, Ly,]=0. But then
Lo=[Lo, Lo+ Y [L_,LJ= Y [L_,L,]

ae R— {0} ae R—- {0}

and ad L, acts diagonally on all of L.

It is easy to show that we may assume without loss of generality that L
has center 0. This enables us to imbed L isomorphically via ad in the
derivation algebra Der L of L as ad L. Consider the p-closure ad L of ad L
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in Der L and take K to be any Cartan subaigebra of the centralizer of the
torus ad Ly in ad L. One then easily verifies that K is a Cartan subalgebra
of ad L which centralizes ad L.

Consequently, K stabilizes the rootspaces L, (for ae R) of L with respect
to the Cartan subalgebra L,. Since [ is generated by the one dimensional
rootspaces I, (for ae R%), it follows, in particular, that X acts diagonally
on I Since ad L/ad L is abelian with Cartan subalgebra (K +ad L)/ad L,
we have ad L =K +ad L.

We now show that K+ ad I is a restricted subalgebra of ad L. Taking the
weight space decomposition

K+adI=K+ ) adl(K)
aeQ

of ad K on K+ad I and an element xel(K) {(for ae (), we have
[K,ad x]<k ad x (set of scalar multiples of ad x). The reason for this is
that K acts diagonaily on I, as we have seen. But then

O=[---[K adx],..,ad x]=[K (ad x}7].

It follows from the self-normalizing property of Cartan subalgebras that
{ad x)” is contained in the Cartan subalgebra K. Consequently, the algebra
K+ 1 is spanned by elements whose pth powers are contained in K+ ad 7.
By the theory of restricted Lie algebras of Jacobson [1, pp. 187-1941, it
follows that K+ ad I is a restricted subalgebra of Der L.

Since K+ad I is a restricted subalgebra of Der L, the p-closure ad 7 of
ad I is contained in K+adl Consequently, ad7=M+ad where
M=Knadl Since M S K, M acts diagonally on I. We show now that, in
fact, ad M acts diagonally on ad I, so that ad M is a torus in the restricted
Lie algebra ad 1. For this, let J be the centralizer of M in ad 7 and consider
the subalgebra

J+adI=J+ Y I(K)
ae

of ad I. Then for x € I(K), ae Q we have

[M,ad x]=kad x,
[---[M,adx], ..,ad x]=[M, (ad x)?].

It follows, as in the preceding paragraph, that J+ad /7 is a restricted
subalgebra of ad ] But then J+4ad I equals the p-closure adl Since
adI=J+adl, [M,J]1=0, and M acts diagonally on 7, it follows that
ad M acts diagonally on ad I. In particular, ad M acts diagonally on M, so
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that ad M(M)=0 and M?=0, since M is nilpotent. This establishes that
ad M acts as a torus on ad 1.

Since ad M acts a torus on adl, N={Deadl|[M,D]=0} is
the Fitting nullspace of ad M acting on ad . Consequently, N is a
self-normalizing subalgebra of ad . By the same argument, ad K acts
diagonally on ad 7. Since K is nilpotent and contains M, it follows that ad
K centralizes ad M. But then N is stable under the action of ad X, and
N=Y,.pN,K) (weight space decomposition of N with respect to ad K).
Let xe N,(K). Then [K, x] < kx implies that [ K, x”]=0. Since x* e N by
the self-normalizing property of N, it follows that x* e Ny(K)=KnN<
KnadI=M. But then [x?, N]=0, so that ad x is nilpotent on N. This
establishes that the weakly closed set {J,. p N,(K) of generators of N con-
sists of nilpotent elements, so that N is nilpotent, by Jacobson [1, p. 33].
We now have shown that N is a self-normalizing subalgebra of ad 7 and N
is nilpotent, so that N is a Cartan subalgebra of ad I.

We now can show that A is a maximal torus of ad 1. For this, it suffices
to show that M is a maximal torus of its centralizer N in ad 1. Since N is
restricted with central toral ideal M, it suffices, by Winter [5], to show
that the restricted Lie algebra N/M consists of nilpotent elements. As
shown in the preceding paragraph, N=3,_» N,(K) and the pth powers of
the elements of |J,.»ad N,(K) are contained in ad M. We again invoke
the results of Jacobson [1, p. 337 to conclude that N/M consists of nilpo-
tent elements. Thus, M is a maximal torus of ad

We now know that the p-closure ad / of ad I in Der L has the form
ad L=M+ad] where M=Knad7l and M is a maximal torus of ad [.
Moreover, ad 7 and M stabilize the ideal Solv 7 of 1. We let Solv denote the
p-closure of the radical Solvad 7 of ad 7/ and we consider the quotient
D =ad I/Solv and its ideal C = (ad I+ Solv)/Solv. Note that C is canoni-
cally isomorphic to the classical Lie algebras ad I/Solv ad I, I/Solv I. This
follows from the fundamental homomorphism theorems by the following
argument. We know from Section 4 that /Solv I is classical. Since it is
isomorphic to

ad I/Solv ad [,

the latter is also classical. The algebra C is isomorphic to ad I/ad J where
ad J is the intersection of ad 7 and Solv. Since ad J is contained in Solv ad I
and conversely, we have ad J= Solv ad I It follows that C is isomorphic to
ad 1/Solv ad I, as we had asserted. By Seligman [2, p. 487, the classical Lie
algebra C is restricted. Since C has center 0, this restricted structure for C
is unique. Consequently, C is a restricted ideal of the restricted Lie algebra
D.

Since ad I= M +ad I and M is a maximal torus of ad  whose centralizer
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N is a Cartan subalgebra of ad I, M* = (M + Solv)/Solv is a maximal torus
of D and N* = (N + Solv)/Solv is a Cartan subalgebra of D, by Winter [5],
and D= M*+ C. Since C is a restricted ideal in D and N* is a Cartan
subalgebra of D, we see as in the fourth preceding paragraph, that the
Fitting nuli space C, of ad (N*n () in C is a Cartan subalgebra of C.
Since C is classical, it follows that C, is a torus. For if it were not, we could
extend the ground field to the algebraic closure and get a classical Lie
algebra having a Cartan subalgebra which is not a torus. But this is
impossible by the conjugacy of Cartan subalgebras in this case, as
established in Seligman [2, p. 116]. Since the maximal torus M* of D
centralizes C,, it follows that C, = M*. But then we have

M*NnC=Cy=N*nC.
Since D= M*+ C with M*c N* = D, we have
N*¥*=M*+ N*nC=M*+Cy=M*.

This establishes that M* = N* and M* is a toral Cartan subalgebra of D
such that Cy=M*n C is a Cartan subalgebra of C.

Since we reduced to the case where ad L, acts diagonally on L, ad L,
is contained in the Cartan subalgebra K of ad J, by an easy argument. In
fact, we have Knad L=ad L, since L, is a Cartan subalgebra of L. Now
Co=M*n C where M =Knad L. Since

C = (ad I+ Solv)/Solv,
it foliows that
Co= ((Knad I} + Solv)/Solv.

Since

Knadl=(Knad LYnadI=ad Lynad I=ad i,

where Iy = Lo I, it follows that Cy = (ad I; + Solv)/Solv.
We now take ae R— {0} and consider the corresponding

C,=(ad L,+ Solv)/Solv.

If a e R (the case where q is a classical root), then we have L,=1, (inter-
section of L, and 7) and then

CO=C_,+[C_,,Cl+C,
is isomorphic to

L@=L +[L_,, L+L,
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(which in turn is isomorphic to S1,), since
C“ = (ad L + Solv)/Solv
and
ad L@ nSolv = {0}

(by the semi-simplicity of L‘®). Suppose next that ae R" (the case where
a is a Witt root). When we pass from a to a*:Cy—k defined by
a*(ad h +Solv) = a(h) (for hel,), we consider the two possibilities a* =0
and a*#0. If a* =0, then [1,, I,] =0 and [ C,, C,]=0 implies that C, is
contained in the Cartan subalgebra '

C, = (ad I, + Solv)/Solv.

Since I, N I,= {0} and Solv is a sum of weight spaces for M, it follows that
I,=Solv. Suppose next that a* #0 and choose ke, such that a(k)+#0.
Then the ideal I contains [L,, A]=L, for i=1,.., p—1. But then it
follows that the rootsystem R*={a*|acR} of C with respect to C,
contains the roots 0%, a*, .., (p— 1) a* But then 2a* is a root in R* and
the rootsystem R* is not a reduced classical rootsystem. We claim that this
cannot be. For if it did, then by extending the ground field to the algebraic
closure, it could happen also over an algebraically closed field. Then C
would be a classical Lie algebra over an algebraically closed field. In this
setting, by the conjugacy of Cartan subalgebras of Seligman [2, p. 116],
the rootsystem of C with respect to every Cartan subalgebra is reduced
classical. This is a contradiction which forces us to conclude that the case
a*#0, aeR" never occurs. We conclude that the rootsystem
R*={a*|ae R} of C with respect to C, coincides with

R={a*|lae R} v {0},

and that a* =0* for all ae R". It follows that the algebra

Y o(U_,, L1+1)

ae R%

is contained in Solv I. From this, it follows that L” ~ I is solvable and,
therefore, is contained in Solv LY.

We now let S be a classical complement of R"? in R and consider the
subalgebra Ls=>,.s([L_,, L,]+L,) of I. Then Lg is a classical Lie
algebra, by Theorem 2.2. Consequently, Lgn Solv/={0}. We now
proceed to show that /= L+ Solv I We know that 7/Sol ] is a classical
Lie algebra with Cartan subalgebra I,=3, xc[L_,, L,], since
C = (ad I+ Solv)/Solv is a classical Lie algebra with Cartan subalgebra
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Co={ad I, + Solv)/Solv. Also, by identification of C and {/Solv {, we have
seen that the Cartan decomposition of

=1I/Solv I

is

Z I:‘*’

a* e R*
where

(1) a* is the function on I¥=(I,+Sclv)/Solv] defined by
a*(h+ Solv = a(h) (for ae R);

(2) a*=0if ae R and a* #0 if ae RS

(3) R*={a*|aeR}.

Since RS R" + S and a* =0 for ae RY, it follows that R* coincides with
the set S* = {a*|aeS}. Finally, since a* #0 for all ae S— {0} (since
a*#0* for all a*eR®), the Cartan decomposition for I* is
I*=3 .. I%. Taking any ae S— {0}, we have

(1) (I, + Solv I)/Solv I = I*. and dim [* =1;
{2) I,nSolvI={0} (since I_,+[7_,, I,]1+1,is semisimple).

It follows that ({I,+ Solv I)/Solv I=1[%) for all ae S and, consequently,
that

IfSolvI= Y It.=Y (I,+SolvI)/Solv I=(Is+ SolvI)/Solv L

ae S aeSs

Thus, =15+ Solv I as asserted. [
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